CORNERSTONE MATHS

Linear functions

Examples of pupils' work

CORNERSTONE MATHS

Examples are from

- Investigation 2, Q. 1D "What is speed?"
- Investigation 3, Q. 1C "Explain how fast the car is going in two ways."
- Investigation 4, Q. 1A "How fast is Shakey going? How do you know?"
- Investigation 4, Q. 1D "Compare the equations of Fast Shakey and Slow Shakey. Describe any differences"
- Investigation 4, Q. 2 "Describe how time, distance and speed are represented..."

CORNERSTONE

"What is speed?" (Inv 2, Q1D)

D. In your own words, explain what is 'speed'?

D. In your own words, explain what is 'speed'?

```
& Hew long it 
get somewhere
```

D. In your own words, explain what is 'speed'?

D. In your own words, explain what is 'speed'?

How aviclely smexthing roves

Discuss the responses...

- How might you use all or any of these responses to stimulate a discussion?
- What mathematical language might you need to develop?
- How could you use the software (Inv 2) to support discussion?

CORNERSTONE

MATHS

Explain how fast the car is going..."(Inv 3, 1C)

C. How fast is this car going? Explain in two ways how you know. Think about your answers to A and B or use other ideas.
$\angle 50$ milesh

- The graph (y axis + xaxis)
- Every hour it went it kraveled so miles
- $350 \div 7=50$!
C. How fast is this car going? Explain in two ways how you know. Think about your answers to A and B or use other ideas.

$$
\begin{aligned}
& \text { 1 } 50 \mathrm{mph} \text { because over } 1 \text { how dey tranelled } \\
& 50 \text { mules } \\
& \text { and if you diridl } 350 \quad b_{y}>=50 \mathrm{mph}
\end{aligned}
$$

C. How fast is this car going? Explain in two ways how you know. Think about your answers to A and B or use other ideas.

- 50 mph

Because in 1 how it traveld
MilS
C. How fast is this car going? Explain in two ways how you know. Think about your answers to A and B or use other ideas. \& 50mph, as everyhour it has gone 50 miles
C. How fast is this car going? Explain in two ways how you know. Think about your answers to A and B or use other ideas.

$$
\angle 50 \mathrm{mh}
$$

- He tavels 50rides in I har
- He tratb 350 mides in 7 how $350: 77=50$
- Which concepts of speed are pupils using? (i.e. unit rate, overall distance \div overall time, ...)
- Which show deeper understanding?
"How fast is Shakey going? How do you know?" (Inv 4, Q.1A)

1. Open Activity 4.1, which shows Shakey the Robot.
A. Run the simulation. How fast is Shakey going? How do you know?

Bye looking at the Data Table and secing now fast he travelled in I second.

1. Open Activity 4.1, which shows Shaky the Robot.
A. Run the simulation. How fast is Shakey going? How do you know?
$<4 \mathrm{~cm} / \mathrm{s}$ I know this because the graph shows it
A. Run the simulation. How fast is Shaky going? How do you know?

I know because he goes 40 cm in 10 which is the same as 4 cm in one seconds second.

1. Open Activity 4.1, which shows Shakey the Robot.
A. Run the simulation. How fast is Shaker going? How do you know?

2 $4 \mathrm{~cm} / \mathrm{s}$ because every second he goes 4 cm as it said in the data table

1. Open Activity 4.1, which shows Shaky the Robot.
A. Run the simulation. How fast is Shakey going? How do you know?
the is going 4w/s because 100 ked at the graph

- Which representations are the pupils using to work out the speed?
- How could you use the software (Inv 4) to promote discussion of different strategies?

CORNERSTONE

MATHS Compare the equations of Fast Shaker and Slow Shakey..." (Inv 4, Q1D)

D. Compare your equation from Slow Shakey with your equation from Fast Shakey. Describe any differences. Where are these differences shown in the graphs and the tables?
Q The line on the graph that is quicker, is steeper.
Number before x is larger, if it goes quicker.
D. Compare your equation from Slow Shakey with your equation from Fast Shaky. Describe any differences. Where are these differences shown in the graphs and

$$
\begin{aligned}
& \text { the tables? } \\
& \text { If you go slower the graph goes Sher and ir it is fetter } \\
& \text { it gets stepper (gradient) } \\
& \text { The number before to } x \text { is higher if its faster }
\end{aligned}
$$

Compare your equation from Slow Shakey with your equation from Fast Shakey. Describe any differences. Where are these differences shown in the graphs and the tables?
D. Compare your equation from Slow Shakey with your equation from Fast Shakey Describe any differences. Where are these differences shown in the graphs and the tables?
cone is steel (fast shaker) and
one is not steed (Sb shakey)

Record your equations for Slow Shakey and Fast Shakey and describe any differences.

$$
\begin{aligned}
\text { slow }-y & =3.6 x+0 \text { The difference vs } 30 \\
y & =7 \cdot 2 x+0
\end{aligned}
$$

Where are these differences shown in the graphs and the tables?

- Which differences is it important to focus the pupils' attentions towards?
- How might using the software help?

CORNERSTONE

MATHS " "Describe how time distance and speed are represented..."(Inv 4, Q2a)
E. To answer these questions, use Activity 4.1. Edit the graph and play the simulation while noticing what is changing in the graph, table, and equation Investigate how time, position and speed are represented in each.
A. How is time represented in each of the following?

B. How is position represented in each of the following?

C. How is speed represented in each of the following?

Graph	gradient of the line
Table	distance travelled in 1 second
Equation	co efficient of x

2. To answer these questions, use Activity 4.1. Edit the graph and play the simulation while noticing what is changing in the graph, table, and equation Investigate how time, position and speed are represented in each
A. How is time represented in each of the following?

B. How is distance represented in each of the following?

Graph	Distance is on they y-adis
Table	The values in the column labelled Shakey's distance
Equation	It is y.

c. How is speed represented in each of the following?

- How will you use the software to enable pupils to respond to this challenging set of questions?

