Precision AMR Programme at HSL
Location

- Based within the diagnostic Infection Sciences and Molecular Pathology departments at the Halo building, 1 Mabledon Place.

Microbiology (Level 3 & 4)
- Routine Bacteriology (Swabs & Urines)
- Blood Cultures
- Respiratory Pathogens (CL3)
- Tissues & Fluids
- Enteric Pathogens
- Hospital Acquired Infections
- Regional Mycology Unit
- Hospital of Tropical Diseases Parasitology

Molecular Pathology (Level 5)
- Molecular Virology (including APDU)
- Molecular Microbiology
- Molecular Parasitology
Laboratory Scientific Team

Dr Paul Grant
• Lead Clinical Scientist, Molecular Virology

Dr Alan Williams
• Lead Clinical Scientist, Molecular Microbiology

Dr Rebecca Gorton
• Lead Clinical Scientist, Molecular Microbiology

Dr Jude Heaney
• Lead Research Scientist, ADPU

Dr Vicky Enne
• Senior Research Associate, UCL

New Precision AMR Clinical Scientist Post
Exemplar Projects at HSL

Dr Paul Grant/Dr Jude Heaney
- WGS for detection of drug resistance in herpes simplex virus
- WGS for detection of drug resistance in HIV-1

Dr Vicky Enne/Dr Alan Williams
- Potential of rapid direct from sample ONT MinION sequencing for prediction of antimicrobial resistance phenotypes and strain typing
- Combining long and short-read sequencing for mapping of carbapenemase-encoding plasmids from Gram-negative bacteria: an essential tool for tracing CPE outbreaks

Dr Rebecca Gorton
- WGS of pneumocystis for strain relatability and resistance profiling to Septrin (Cotrimoxazole) in chronic and acute PCP
- WGS of clinically significant aspergillus isolates to determine TLR gene profiling for Azole resistance
Clinical Laboratory Facilities

- High volume DNA/RNA Extraction
- Bacteriology
- Containment Level 3
- Clinical PCR & Sequencing
New Extraction Facilities

- Support for additional DNA/RNA extraction specifically within containment level 3.
Sequencing Technology & Capabilities

New Sequencing Facilities

- Short-read
- Uni-directional
- Short-read
- Bi-directional
- Long-read
- Real time data
Led by Dr Eleni Nastouli and developed by UCLH and UCL Clinicians, Scientists & Bioinformaticians

Validated extensively using HIV and Influenza and other viral and bacterial targets

New bioinformatics framework partner with HSL for Bacterial Informatics

Collaboration with Centre for Clinical Microbiology (UCL/RFL)

Fungal Development Programme with HSL.

Open access informatics tools available through Oxford Nanopore.

Used by clinical and academic researchers across the North London Campus.
GENOME SEQUENCING REPORT - HIV

UCLH - Advanced Diagnostics Pathogen Unit
Report Published: The 6 Jan 2019
Website: www.uclh.nhs.uk
Address: 335 Euston Rd, Bloomsbury, NW1 3BU
Telephone: 020 3456 7890
Patient Name: [Redacted]
Barcode: [Redacted]
Patient ID: [Redacted]
Sample Type: [Redacted]
Sample Collection Date: [Redacted]
Reporting Lab: [Redacted]
Requester Contact: [Redacted]

Summary

The specimen was positive for Human Immunodeficiency Virus-1 (HIV)
Subtype CRF02_AG

Drug Resistance

Nucleoside Reverse Transcriptase Inhibitors (NRTI)

- abacavir (ABC): SUSCEPTIBLE
- zidovudine (AZT): SUSCEPTIBLE
- emtricitabine (FTC): SUSCEPTIBLE
- lamivudine (3TC): SUSCEPTIBLE
- tenofovir (TDF): SUSCEPTIBLE

Non-nucleoside Reverse Transcriptase Inhibitors (NNRTI)

- doravirine (DOR): SUSCEPTIBLE
- efavirenz (EFV): SUSCEPTIBLE
- etravirine (ETR): SUSCEPTIBLE
- nevirapine (NVP): SUSCEPTIBLE
- rilpivirine (RPV): SUSCEPTIBLE

Protease Inhibitor

- atazanavir/r (ATV/r): SUSCEPTIBLE
- darunavir/r (DRV/r): SUSCEPTIBLE
- lopinavir/r (LPV/r): SUSCEPTIBLE

Integrase Strand Transfer Inhibitor

- bictegravir (BIC): SUSCEPTIBLE
- dolutegravir (DTG): SUSCEPTIBLE
- elvitegravir (EVG): POTENTIAL LOW-LEVEL RESISTANCE
- raltegravir (RAL): POTENTIAL LOW-LEVEL RESISTANCE

Authorised

Signature [Redacted]
Name [Redacted]
Position [Redacted]
Date [Redacted]
Informatics Pipelines & Data Analysis

Validated Pathogens

<table>
<thead>
<tr>
<th>Species</th>
<th>cgMLST</th>
<th>MLST</th>
<th>Other typing schemes</th>
<th>Markers of special interest</th>
<th>Antibiotic classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>⬜️</td>
<td>⬜️</td>
<td>SCCmec, spa sequences</td>
<td>TSST-1, PVL, ETs</td>
<td>13</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>ESBL, CRE</td>
<td>25+</td>
</tr>
<tr>
<td>E. coli</td>
<td>⬜️</td>
<td>⬜️</td>
<td>phylogroup</td>
<td>ESBL, CRE</td>
<td>25+</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>Vancomycin</td>
<td>25+</td>
</tr>
<tr>
<td>C. difficile</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>Multiple</td>
<td>25+</td>
</tr>
<tr>
<td>S. enterica</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>Multiple</td>
<td>25+</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>Multiple</td>
<td>25+</td>
</tr>
<tr>
<td>N. gonorrhoeae</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>Multiple</td>
<td>25+</td>
</tr>
<tr>
<td>A. baumannii</td>
<td>⬜️</td>
<td>⬜️</td>
<td>-</td>
<td>Multiple</td>
<td>25+</td>
</tr>
</tbody>
</table>
Staphylococcus aureus

#83 - P26 - 2017-09-27 13:55

Resistance markers for the following antibiotics have been identified: Ciprofloxacin, Clindamycin [inducible], Erythromycin, Gentamicin, Isoniazid-Perfloxacin, Penicillin-tabile-Perfloxacin, Trimethoprim.

Identified resistance markers

Identified resistance markers confer a resistance level above EUCAST clinical breakpoints.

<table>
<thead>
<tr>
<th>ANTIBIOTIC</th>
<th>GENES</th>
<th>MUTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>Not supported</td>
<td>grA (S80I) [J231], grA (S80G) [J231], grA (S80I) + grA (S80G) [J231]</td>
</tr>
<tr>
<td>Clindamycin (Inducible)</td>
<td>emc[4][15][12]</td>
<td>Not supported</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>emc[4][15][12]</td>
<td>Not supported</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>aac(3)-Ia [15][17]</td>
<td>Not supported</td>
</tr>
<tr>
<td>Isoniazid-Perfloxacin</td>
<td>nac(1)[4][18]</td>
<td>Not supported</td>
</tr>
<tr>
<td>Penicillin-tabile-Perfloxacin</td>
<td>nac(1)[4][18]</td>
<td>Not supported</td>
</tr>
<tr>
<td>Penicillin</td>
<td>nac(1)[4][18]</td>
<td>Not supported</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>dfr[A] [23][21]</td>
<td>No mutations found</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>No genes found</td>
<td>Not supported</td>
</tr>
<tr>
<td>Fusidic Acid</td>
<td>No genes found</td>
<td>Not supported</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>No genes found</td>
<td>Not supported</td>
</tr>
<tr>
<td>Rifampicin (Rifampin)</td>
<td>No genes found</td>
<td>Not supported</td>
</tr>
<tr>
<td>Tetacycline</td>
<td>No genes found</td>
<td>Not supported</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>No genes found</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Typing

<table>
<thead>
<tr>
<th>MLST-TYPE: 2371</th>
</tr>
</thead>
<tbody>
<tr>
<td>araC</td>
</tr>
<tr>
<td>araE</td>
</tr>
<tr>
<td>grF</td>
</tr>
<tr>
<td>grk</td>
</tr>
<tr>
<td>pta</td>
</tr>
<tr>
<td>tpi</td>
</tr>
<tr>
<td>vga</td>
</tr>
</tbody>
</table>

SCCMEC - TYPE IV

<table>
<thead>
<tr>
<th>IS1272</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ccrA1</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrA2</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrA3</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrA4</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrB1</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrB2</td>
<td></td>
</tr>
<tr>
<td>ccrB3</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrB4</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrB6</td>
<td>Not found</td>
</tr>
<tr>
<td>ccrC</td>
<td>Not found</td>
</tr>
<tr>
<td>mecA</td>
<td></td>
</tr>
<tr>
<td>mecC</td>
<td>Not found</td>
</tr>
</tbody>
</table>

Sample Quality

<table>
<thead>
<tr>
<th>Measure</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence depth</td>
<td>83x</td>
</tr>
<tr>
<td>Average read length</td>
<td>151bp</td>
</tr>
<tr>
<td>Fraction of core genes identified</td>
<td>98.6%</td>
</tr>
</tbody>
</table>

References

[3] Topoisomerase mutations that are associated with high level resistance to earlier fluoroquinolones in Staphylococcus aureus have less effect on the antibacterial activity of levofloxacin. [Link](http://www.ncbi.nlm.nih.gov/pubmed/21986499)

[7] Extended spectrum of quinolone resistance, even to a potential third generation agent, as a result of a minimum of two grA and two grB mutations. [Link](http://www.ncbi.nlm.nih.gov/pubmed/21986499)
Phylogenic Analysis (cgMLST / SNP clustering)

Reference: *Staphylococcus aureus subsp. aureus HO 5096 0412 complete genome (NC_017763.1)* [Link]
WIMP report, shown for a sample containing bacteria, viruses and fungi.
How to Access the Facility

- Email: Precision-AMR@hslpathology.com
- Email: apdu@nhs.net
- Website: www.hslpathology.com/research-development
How to Access the Facility

Sign In

Email Address

Password

Sign In

Forgot Password?
Thankyou