Identifying carbapenem and amikacin-sparing first-line combination therapy for neonatal sepsis in high extended-spectrum beta-lactamase (ESBL) prevalence settings

Joseph F Standing [1,2], John B Readman [2], Aveen Hamawandi [2], Cheng-Hsun Chiu [3], Mike Sharland [2], Jodi Lindsay [2]

[1] j.standing@ucl.ac.uk

1. UCL Great Ormond Street Institute of Child Health, London, UK
2. St Georges, University of London, UK
3. Chang Guang Memorial Hospital, Tauyuan, Taiwan

17 February 2020
Hollow fibre cartridge
Hollow Fibre Set-up
Hollow Fibre Uses

► Drug development:
 ► Dose ranging studies - human PK
 ► Optimising duration of treatment
 ► EMA TB guideline:

► Combinations
 ► Induction of resistance
 ► Multi-organism
 ► Intracellular pathogens
 ► Genotype-phenotype correlation
Paediatric blood stream infections (e.g. Malawi)

Tam et al 2018 CID

Figure 2. Proportion of culture-confirmed bloodstream pathogens resistant to empiric first-line antimicrobials by period, for children ≤5 years and ≤60 days. First-line antimicrobials in Malawi are ampicillin/penicillin with gentamicin, or ceftriaxone.
Neonatal sepsis

- ↑ infections with multi-drug resistant (MDR) organisms
- Culture positive neonatal sepsis mortality:
 - 12% for non-MDR pathogens
 - 15.7% for MDR pathogens

Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study

Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration

- Need to optimise use of current agents, and develop new antimicrobials
- Includes studying dose for efficacy and resistance suppression
Paediatric drug development

- Running pivotal phase III trials challenging
- Clinical PKPD not always straight-forward:

(Germovsek 2018 JAC)

- Legislation \rightarrow \uparrow paediatric trials, but 42% failures (Wharton 2014 Pediatrics)
- Regulators ready to accept PK and safety
- What is the PD target and duration?

(Lonsdale 2018 PhD thesis)
Study Summary

► **Problem:** We have clinical isolates of *E. coli* and *K. pneumoniae* which are: ampicillin/cefotaxime/gentamicin R/R/R (usual first-line agents)

► **Research question:** Using combinations of these agents, can we prevent need for first-line meropenem/amikacin use?
 - What is the activity of β-lactam PLUS gentamicin (additivity, synergy?)
 - Can phenotype be reversed with double β-lactam or adding β-lactamase inhibitor?
 - What is the optimal duration?

► **Aim:** Perform detailed *in vitro* characterisation of neonatal isolates, particular focus on hollow fibre method
Methods

► STEP 1:
 ► Take *E. coli* and *K. pneumoniae* isolated in neonates where clinical outcome is documented (Europe and Taiwan):
 ► Chose sulbactam (SUL) as β-lactamase inhibitor as available in combination with ampicillin and cefotaxime
 ► Identify isolates with multi-drug resistance, take forward to STEP 2

► STEP 2:
 ► Checkerboard test for synergy with 2 and 3 agents
 ► Checkerboard layout (concentrations informed by 2D experiments):
Fractional inhibitory concentration index (FICI):

If we have drug 1 and drug 2 recall:

\[
FICI = \frac{\text{MIC}_{1,\text{comb}}}{\text{MIC}_{1,\text{alone}}} + \frac{\text{MIC}_{2,\text{comb}}}{\text{MIC}_{2,\text{alone}}}
\]

If \(\text{MIC}_{1,\text{alone}} \) is halved in presence of drug 2 and vice versa = \(\Rightarrow \) additivity \((FICI = 1)\)

Synergy \(FICI < 0.5 \) Antagonism \(FICI > 2 \)

Assuming additivity = \(\Rightarrow \) n-fold reduction in MIC can extend to n drugs:

\[
FICI = \frac{\text{MIC}_{1,\text{comb}}}{\text{MIC}_{1,\text{alone}}} + \frac{\text{MIC}_{2,\text{comb}}}{\text{MIC}_{2,\text{alone}}} + \cdots + \frac{\text{MIC}_{n,\text{comb}}}{\text{MIC}_{n,\text{alone}}}
\]
Methods

► STEP 3:
 ► Time-kill experiments with most resistant (highest MIC) isolates and most promising combinations identified in STEP 2

► STEP 4:
 ► Investigate dose and duration in hollow fibre
 ► PK parameters for GEN, CTX, AMP and SUL simulated for typical neonate receiving:
 GEN 5 mg/kg q24h, CTX 50mg/kg q12h, AMP 100 mg/kg q12h (SUL in ratio according to commercially available formulations)

![Diagram of hollow fibre system]

- \(R \cdot R_u (\text{mL/h}) \) from diluent (no drug)
- \(R (\text{mL/h}) \) to waste
- \(V_u (\text{mL}) \) GEN reservoir
- \(V (\text{mL}) \) central reservoir
- \(R_u (\text{mL/h}) \) to/from hollow fibre cartridge
- \(R_g (\text{mL/h}) \) dose CTX/SUL + GEN
Overview

► Introduction
► Aims
► Methods
► Results
► Discussion
► Conclusion
Results

- **Isolates:**
 - 34 *E. coli*
 - 4 *K. pneumoniae*

- **E. coli**
 - 7 resistant to cefotaxime (CTX) AND ampicillin (AMP) AND gentamicin (GEN)
 - 26 resistant to at least one, all sensitive to amikacin and/or meropenem

- **K. pneumoniae**
 - 3/4 CTX/AMP/GEN R/R/R
 - 3 also resistant to amikacin (AMIK)
 - 1 resistant R/R/R/R/R to CTX/AMP/GEN/AMIK/Meropenem
Results - FICI median (range) & Time Kill (e.g. CTX/SUL/GEN)

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Median FICI (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTX/GEN</td>
<td>0.25 (0.063-0.625)</td>
</tr>
<tr>
<td>AMP/GEN</td>
<td>0.75 (0.156-1)</td>
</tr>
<tr>
<td>CTX/AMP</td>
<td>0.38 (0.14-0.63)</td>
</tr>
<tr>
<td>CTX/SUL</td>
<td>0.16 (0.09-0.36)</td>
</tr>
<tr>
<td>AMP/SUL</td>
<td>0.42 (0.078-0.75)</td>
</tr>
<tr>
<td>CTX/SUL/GEN</td>
<td>0.22 (0.11-0.41)</td>
</tr>
<tr>
<td>AMP/SUL/GEN</td>
<td>0.51 (0.31-0.82)</td>
</tr>
<tr>
<td>AMP/CTX/GEN</td>
<td>0.32 (0.25-1.09)</td>
</tr>
<tr>
<td>AMP/CTX/SUL</td>
<td>0.28 (0.22-0.50)</td>
</tr>
</tbody>
</table>
Results - Hollow fibre

- CTX/AMP/GEN E.coli
- CTX/GEN E.coli
- CTX/SUL/GEN E.coli
- CTX/SUL/GEN K.pneumoniae
- AMP/SUL/GEN E.coli

![Graph showing CFU/mL over time after first dose (days)](image-url)
Overview

► Introduction
► Aims
► Methods
► Results
► Discussion
► Conclusion
Hollow Fibre Discussion - “Internal control” and inferring duration?

Bacterial loads in neonatal sepsis of *E. coli* and *K. pneumoniae* around 10^4 cfu/mL

(van den Brand 2018 Critical Care)
Conclusions

This project:
- Sulbactam addition to ampicillin or cefotaxime promising for first-line neonatal sepsis
- Future work:
 - Attempt to replicate clinical cases in hollow fibre
 - Broader range of isolates
 - Need for optimising ratio of sulbactam

HFIM general:
- Complimentary to *in vitro* and *in vivo* data
- May replace some animal work
- Need to agree on/standardise hollow fibre methods
 - Ongoing systematic literature review: Zahra Sadouki
Acknowledgements

Main collaborators on work presented here: Mike Sharland (SGUL), Jodi Lindsay (SGUL), Cheng-Hsun Chiu (CGMH)
London Pharmacometrics Interest Group

Student/Postdoc work presented here: John Readman, Aveen Hamawandi

Funding: MRC (Clinician Scientist Fellowship); NIHR