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A generative model of memory construction 
and consolidation

Eleanor Spens    1   & Neil Burgess    1,2 

Episodic memories are (re)constructed, share neural substrates with 
imagination, combine unique features with schema-based predictions 
and show schema-based distortions that increase with consolidation. 
Here we present a computational model in which hippocampal replay 
(from an autoassociative network) trains generative models (variational 
autoencoders) to (re)create sensory experiences from latent variable 
representations in entorhinal, medial prefrontal and anterolateral temporal 
cortices via the hippocampal formation. Simulations show effects of 
memory age and hippocampal lesions in agreement with previous models, 
but also provide mechanisms for semantic memory, imagination, episodic 
future thinking, relational inference and schema-based distortions 
including boundary extension. The model explains how unique sensory and 
predictable conceptual elements of memories are stored and reconstructed 
by efficiently combining both hippocampal and neocortical systems, 
optimizing the use of limited hippocampal storage for new and unusual 
information. Overall, we believe hippocampal replay training generative 
models provides a comprehensive account of memory construction, 
imagination and consolidation.

Episodic memory concerns autobiographical experiences in their spati-
otemporal context, whereas semantic memory concerns factual knowl-
edge1. The former is thought to rapidly capture multimodal experience 
via long-term potentiation in the hippocampus, enabling the latter to 
learn statistical regularities over multiple experiences in the neocor-
tex2–5. Crucially, episodic memory is thought to be constructive; recall 
is the (re)construction of a past experience, rather than the retrieval 
of a copy6,7. But the mechanisms behind episodic (re)construction and 
its link to semantic memory are not well understood.

Old memories can be preserved after hippocampal damage 
despite amnesia for recent ones8, suggesting that memories initially 
encoded in the hippocampus end up being stored in neocortical areas, 
an idea known as ‘systems consolidation’9. The standard model of 
systems consolidation involves transfer of information from the hip-
pocampus to the neocortex2–4,10, whereas other views suggest that 
episodic and semantic information from the same events can exist in 
parallel11. Hippocampal ‘replay’ of patterns of neural activity during 

rest12,13 is thought to play a role in consolidation14,15. However, consolida-
tion does not just change which brain regions support memory traces; 
it also converts them into a more abstract representation, a process 
sometimes referred to as semanticization16,17.

Generative models capture the probability distributions underly-
ing data, enabling the generation of realistic new items by sampling 
from these distributions. Here we propose that consolidated memory 
takes the form of a generative network, trained to capture the statistical 
structure of stored events by learning to reproduce them (see also refs. 
18,19). As consolidation proceeds, the generative network supports 
both the recall of ‘facts’ (semantic memory) and the reconstruction 
of experience from these ‘facts’ (episodic memory), in conjunction 
with additional information from the hippocampus that becomes less 
necessary as training progresses.

This builds on existing models of spatial cognition in which recall 
and imagination of scenes involve the same neural circuits20–22, and 
is supported by evidence from neuropsychology that damage to the 
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to affect the degree of compression of representations in mem-
ory60 to make efficient use of limited HF capacity42.

	9.	 Memory traces in the hippocampus appear to involve a mixture 
of sensory and conceptual features, with the latter encoded by 
concept cells61, potentially bound together by episode-specific 
neurons62. Few models explore how this could happen.

Consolidation as the training of a generative model
Our model simulates how the initial representation of memories can 
be used to train a generative network, which learns to reconstruct 
memories by capturing the statistical structure of experienced events 
(or ‘schemas’). First, the hippocampus rapidly encodes an event; 
then, generative networks gradually take over after being trained 
on replayed representations from the hippocampus. This makes the 
memory more abstracted, more supportive of generalization and 
relational inference, but also more prone to gist-based distortion. 
The generative networks can be used to reconstruct (for memory) 
or construct (for imagination) sensory experience, or to support 
semantic memory and relational inference directly from their latent 
variable representations (see Fig. 1).

Before consolidation, the hippocampal autoassociative network 
encodes the memory. A modern Hopfield network (MHN)63 is used, 
which can be interpreted such that the feature units activated by an 
event are bound together by a memory unit64 (see Methods and Sup-
plementary Information). Teacher–student learning29 allows transfer of 
memories from one neural network to another during consolidation30. 
Accordingly, we use outputs from the autoassociative network to train 
the generative network: random inputs to the hippocampus result in 
the reactivation of memories, and this reactivation results in consolida-
tion. After consolidation, generative networks encode the information 
contained in memories. Reliance on the generative networks increases 
over time as they learn to reconstruct a particular event.

Specifically, the generative networks are implemented as vari-
ational autoencoders (VAEs), which are autoencoders with special 
properties such that the most compressed layer represents a set of 
latent variables, which can be sampled from to generate realistic new 
examples corresponding to the training dataset65,66. Latent variables 
can be thought of as hidden factors behind the observed data, and 
directions in the latent space can correspond to meaningful transfor-
mations (see Methods). The VAE’s encoder ‘encodes’ sensory experi-
ence as latent variables, while its decoder ‘decodes’ latent variables 
back to sensory experience. In psychological terms, after training on a 
class of stimuli, VAEs can reconstruct such stimuli from a partial input 
according to the schema for that class, and generate novel stimuli 
consistent with the schema. (Our use of VAEs is illustrative, and we 
would expect a range of other generative latent variable models, such 
as predictive coding networks67–69, to show similar behaviour.) See 
Methods and Supplementary Information for further details.

Generative networks capture the probability distributions under-
lying events, or ‘schemas’. In other words, here ‘schemas’ are rules or 
priors (expected probability distributions) for reconstructing a certain 
type of stimulus (for example, the schema for an office predicts the 
presence of co-occurring objects such as desks and chairs, facilitating 
episode generation), whereas concepts represent categories but not 
necessarily how to reconstruct them. However, schemas and concepts 
are closely related, and their meanings can overlap, with conflicting 
definitions in the psychology literature70,71.

During perception, the generative model provides an ongoing 
estimate of novelty from its reconstruction error (also known as ‘predic-
tion error’, the difference between input and output representations). 
Aspects of an event that are consistent with previous experience (that 
is, with low reconstruction error) do not need to be encoded in detail 
in the autoassociative ‘teacher’ network36–39. Once the generative net-
work’s reconstruction error is sufficiently low, the hippocampal trace is 
unnecessary, freeing up capacity for new encodings. However, we have 

hippocampal formation (HF) leads to deficits in imagination23, epi-
sodic future thinking24, dreaming25 and daydreaming26, as well as by 
neuroimaging evidence that recall and imagination involve similar 
neural processes27,28.

We model consolidation as the training of a generative model by 
an initial autoassociative encoding of memory through ‘teacher–stu-
dent learning’29 during hippocampal replay (see also ref. 30). Recall 
after consolidation has occurred is a generative process mediated 
by schemas representing common structure across events, as are 
other forms of scene construction or imagination. Our model builds 
on: (1) research into the relationship between generative models and 
consolidation18,19, (2) the use of variational autoencoders to model the 
hippocampal formation31–33 and (3) the view that abstract allocentric 
latent variables are learned from egocentric sensory representations 
in spatial cognition22.

More generally, we build on the idea that the memory system 
learns schemas which encode ‘priors’ for the reconstruction of input 
patterns34,35. Unpredictable aspects of experience need to be stored in 
detail for further learning, while fully predicted aspects do not, con-
sistent with the idea that memory helps to predict the future36–39. We 
suggest that familiar components are encoded in the autoassociative 
network as concepts (relying on the generative network for recon-
struction), while novel components are encoded in greater sensory 
detail. This is efficient in terms of memory storage40–42 and reflects the 
fact that consolidation can be a gradual transition, during which the 
autoassociative network supports aspects of memory not yet captured 
by the generative network. In other words, the generative network can 
reconstruct predictable aspects of an event from the outset on the 
basis of existing schemas, but as consolidation progresses, the network 
updates its schemas to reconstruct the event more accurately until the 
formerly unpredictable details stored in HF are no longer required.

Our model draws together existing ideas in machine learning to 
suggest an explanation for the following key features of memory, only 
subsets of which are captured by previous models:

	1.	 The initial encoding of memory requires only a single exposure 
to the event and depends on the HF, while the consolidated form 
of memory is acquired more gradually2,3,10, as in the complemen-
tary learning systems (CLS) model4.

	2.	 The semantic content of memories becomes independent of the 
HF over time43–45, consistent with CLS.

	3.	 Vivid, detailed episodic memory remains dependent on HF46, 
consistent with multiple trace theory11 (but not with CLS).

	4.	 Similar neural circuits are involved in recall, imagination and 
episodic future thinking27,28, suggesting a common mechanism 
for event generation, as modelled in spatial cognition22.

	5.	 Consolidation extracts statistical regularities from episodic 
memories to inform behaviour47,48, and supports relational in-
ference and generalization49. The Tolman–Eichenbaum machine 
(TEM)31 simulates this in the domain of multiple tasks with com-
mon transition structures (see also ref. 50), while ref. 51 models 
how both individual examples and statistical regularities could 
be learned within HF.

	6.	 Post-consolidation episodic memories are more prone to schema- 
based distortions in which semantic or contextual knowledge 
influences recall6,52, consistent with the behaviour of generative 
models32.

	7.	 Neural representations in the entorhinal cortex (EC) such as grid 
cells53 are thought to encode latent structures underlying expe-
riences31,54, and other regions of the association cortex, such as 
the medial prefrontal cortex (mPFC), may compress stimuli to a 
minimal representation55.

	8.	 Novelty is thought to promote encoding within HF56, while more 
predictable events consistent with existing schemas are consoli-
dated more rapidly57. Activity in the hippocampus can reflect 
prediction error or mismatch novelty58,59, and novelty is thought 
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not simulated decay, deletion or capacity constraints in the autoas-
sociative memory part of the model.

Combining conceptual and sensory features in episodic 
memory
Consolidation is often considered in terms of fine-grained sensory 
representations updating coarse-grained conceptual representations, 
for example, the sight of a particular dog updating the concept of a dog. 
Modelling hippocampal representations as sensory-like is a reasonable 
simplification, which we make in simulations of the ‘basic’ model in 

Fig. 1. However, memories probably bind together representations 
along a spectrum from coarse-grained and conceptual to fine-grained 
and sensory. For example, the hippocampal encoding of a day at the 
beach is likely to bind together coarse-grained concepts such as ‘beach’ 
and ‘sea’ along with sensory representations such as the melody of an 
unfamiliar song or the sight of a particular sandcastle, consistent with 
the evidence for concept cells in the hippocampus61. (This also fits with 
the observation that ambiguous images ‘flip’ between interpretations 
in perception but are stable when held in memory72, reflecting how the 
conceptual content of memories constrains recall.)
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Fig. 1 | Architecture of the basic model. a, First, the hippocampus rapidly 
encodes an event, modelled as one-shot memorization in an autoassociative 
network (an MHN). Then, generative networks are trained on replayed 
representations from the autoassociative network, learning to reconstruct 
memories by capturing the statistical structure of experienced events. b, A 
more detailed schematic of the generative network to indicate the multiple 
layers of, and overlap between, the encoder and decoder (where layers closer to 
the sensory neocortex overlap more). The generation of a sensory experience, 
for example, visual imagery, requires the decoder to the sensory neocortex 
via HF. c, Random noise inputs to the MHN (top row) reactivate its memories 
(bottom row) after 10,000 items from the Shapes3D dataset are encoded, with 

five examples shown. d, The generative model (a variational autoencoder) can 
recall images (bottom row) from a partial input (top row), following training 
on 10,000 replayed memories sampled from the MHN. e, Episodic memory 
after consolidation: a partial input is mapped to latent variables whose return 
projections to the sensory neocortex via HF then decode these back into 
a sensory experience. f, Imagination: latent variables are decoded into an 
experience via HF and return projections to the neocortex. g, Semantic memory: 
a partial input is mapped to latent variables, which capture the ‘key facts’ of the 
scene. The bottom rows of e–g illustrate these functions in a model that has 
encoded the Shapes3D dataset into latent variables (v1, v2, v3, …, vn). Diagrams 
were created using BioRender.com.
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Furthermore, encoding every sensory detail in the hippocam-
pus would be inefficient (elements already predicted by conceptual 
representations being redundant); an efficient system should take 
advantage of shared structure across memories to encode only what 
is necessary40,41. Accordingly, we suggest that predictable elements are 
encoded as conceptual features linked to the generative latent variable 
representation, while unpredictable elements are encoded in a more 
detailed and veridical form as sensory features.

Suppose someone sees an unfamiliar animal in the forest (Fig. 2b). 
Much of the event might be consistent with an existing forest schema, 
but the unfamiliar animal would be novel. In the extended model  
(Fig. 2 and section ‘Combining conceptual and unpredictable sensory 
features’), the reconstruction error per element of the experience is 

calculated by the generative model during perception, and elements 
with high reconstruction error are encoded in the autoassociative 
network as sensory features, along with conceptual features linked to 
the generative model’s latent variable representation. In other words, 
each pattern is split into a predictable component (approximating the 
generative network’s prediction for the pattern), plus an unpredictable 
component (elements with high prediction error). This produces a 
sparser vector than storing every element in detail, increasing the 
capacity of the network42.

Neural substrates of the model
Which brain regions do the components of this model represent? The 
autoassociative network involves the hippocampus binding together 
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Fig. 2 | Architecture of the extended model. a, Each scene is initially encoded as 
a combination of predictable conceptual features related to the latent variables 
of the generative network and unpredictable sensory features that were poorly 
predicted by the generative network. An MHN (in red) encodes both sensory 
and conceptual features (with connections to the sensory neocortex and latent 
variables in EC, respectively), binding them together via memory units. Memories 
may eventually be learned by the generative model (in blue), but consolidation 
can be a prolonged process, during which time the generative network provides 
schemas for reconstruction and the autoassociative network supports new or 
detailed information not yet captured by these schemas. Multiple generative 
networks can be trained concurrently, with different networks optimized for 
different tasks. This includes networks with latent variables in EC, mPFC and alTL, 

each with its own semantic projections. However, in all cases, return projections 
to the sensory neocortex are via HF. b, An illustration of encoding in the extended 
model. c, Encoding ‘scenes’ from the Shapes3D dataset, with each ‘scene’ 
decomposed into unpredicted sensory features (top) and conceptual features 
linked to the generative network’s latent variables (bottom). Novel features (white 
squares overlaid on the image with varying opacity) are added to each ‘scene’.  
d, Recalling ‘scenes’ (with novel features) from the Shapes3D dataset. First, the 
input is decomposed; then, the MHN performs pattern completion on both 
sensory and conceptual features. The conceptual features (which in these 
simulations are simply the generative network’s latent variables) are then 
decoded into a schema-based prediction, onto which any stored sensory features 
are overwritten. Diagrams were created using BioRender.com.
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the constituents of a memory in the neocortex, whereas the genera-
tive network involves neocortical inputs projecting to latent variable 
representations in the higher association cortex, which then project 
back to the neocortex via the HF. The entorhinal (EC), medial prefrontal 
cortex (mPFC) and anterolateral temporal lobe (alTL) are all prime 
candidates for the site of latent variable representations.

First, the EC is the main route between the hippocampus and the 
neocortex, and is where grid cells, which are thought to be a latent 
variable representation of spatial or relational structure31,54, are most 
often observed73. Second, mPFC and its connections to HF play a cru-
cial role in episodic memory processing70,74–78, are thought to encode 
schemas57,71, are implicated in transitive inference79 and the integration 
of memories80, and perform dimensionality reduction by compressing 
irrelevant features55. Third, the anterior and lateral temporal cortices 
associated with semantic memory81 and retrograde amnesia82 probably 
contain latent variable representations capturing semantic structure. 
This might correspond to the ‘anterior temporal network’ associated 
with semantic dementia83, while the first network (between sensory 
and entorhinal cortices) might correspond to the ‘posterior medial 
network’83, and to the network mapping between visual scenes and 
allocentric spatial representations20–22.

Which regions constitute the generative network’s decoder? The 
decoder converts latent variable representations in the higher associa-
tion cortex back to sensory neocortical representations via HF. Patients 
with damage to the hippocampus proper but not the EC can generate 
simple scenes (or fragments thereof), but an intact hippocampus is 
required for more coherent imagery of complex ones23. We hypothesize 
that conceptual units in the hippocampus proper help to generate 
complex, conceptually coherent scenes (perhaps through a recurrent 
‘clean up’ mechanism), but that an intact EC and its return pathway to 
the sensory neocortex (the ventral visual stream for images) can still 
decode representations to some extent in their absence.

Multiple generative networks can be trained concurrently from 
a single autoassociative network through consolidation, with differ-
ent networks optimized for different tasks. In other words, multiple 
networks could update their parameters to minimize prediction error 
on the basis of the same replayed memories. This could consist of a 
primary VAE with latent variables in the EC, plus additional parallel 
pathways from the higher sensory cortex to the EC via latent variables 
in the mPFC or the alTL. (Computationally, the shared connections 
could be fixed as the alternative pathways are trained.) Note that in all 
cases, return projections to the sensory neocortex via HF are required 
to decode latent variables into sensory experiences.

Results
Modelling encoding and recall
Each new event is encoded as an autoassociative trace in the hippocam-
pus, modelled as an MHN. Two properties of this network are particu-
larly important: memorization occurs with only one exposure, and 
random inputs to the network retrieve stored memories sampled from 
the whole set of memories (modelling replay).

We model recall as (re)constructing a scene from a partial input. 
First, we simulate encoding and replay in the autoassociative net-
work. The network memorizes a set of scenes, representing events, as 
described above. When the network is given a partial input, it retrieves 
the closest stored memory. Even when the network is given random 
noise, it retrieves stored memories (see Fig. 1c). Second, we simulate 
recall in the generative network trained on reactivated memories from 
the autoassociative network, which is able to reconstruct the original 
image when presented with a partial version of an item from the train-
ing data (Fig. 1d).

In the basic model (Fig. 1a), the prediction error could be calcu-
lated for each event so that only the unpredictable events are stored 
in the hippocampus, as the predictable ones can already be retrieved 
by the generative network (however, this is not simulated explicitly). 

In the extended model (Fig. 2 and section ‘Combining conceptual and 
unpredictable sensory features’), prediction error is calculated for 
each element of an event, determining which sensory details are stored.

Modelling semantic memory
Existing semantic memory survives when the hippocampus is 
lesioned43–45, and hippocampal amnesics can describe remote memo-
ries more successfully than recent ones8,84, even if they might not recall 
them ‘episodically’11. This temporal gradient indicates that the semantic 
component of memories becomes HF-independent. In the model, EC 
lesions impair all truly episodic recollection since the return projections 
from the HF are required for the generation of sensory experiences. 
Here we describe how remote memories could be retrieved ‘in semantic 
form’ despite lesions including the hippocampus and the EC.

The latent variable representation of an event in the generative 
network encodes the key facts about the event and can drive semantic 
memory directly without decoding the representation back into a 
sensory experience (Fig. 1g). The output route via HF is necessary for 
turning latent variable representations in mPFC or alTL into a sensory 
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model. a, Reconstruction error (red) and decoding accuracy (blue) improve 
during training of the generative model. Decoding accuracy refers to the 
performance of a support vector classifier trained to output the central object’s 
shape from the latent variables, using 200 examples at the end of each epoch 
of generative model training. An epoch is one presentation of the training set 
of 10,000 samples from the hippocampus. b, Relational inference as vector 
arithmetic in the latent space. The three items on the right of each equation are 
items from the training data. Their latent variable representations are combined 
as vectors according to the equation, giving the latent variable representation 
from which the first item is generated. The pair in brackets describes a relation 
which is applied to the second item to produce the first. In the top row, the 
object shape changes from a cylinder to a sphere. In the second, the object shape 
changes from a cylinder to a cube, and the object colour from red to blue. In the 
third and fourth, more complex transitions change the object colour and shape, 
wall colour and angle. c, Imagining new items via interpolation in latent space. 
Each row shows points along a line in the latent space between two items from  
the training data, decoded into images by the generative network’s decoder.  
d, Imagining new items from a category. Samples from each of the shape 
categories of the support vector classifier in a are shown.
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experience, but the latent variables themselves could support semantic 
retrieval. Thus, when the HF (including the EC) is removed, the model 
can still support retrieval of semantic information (see section ‘Mod-
elling brain damage’ for details). To show this, we trained models to 

predict attributes of each image from its latent vector. Figure 3a shows 
that semantic ‘decoding accuracy’ increases as training progresses, 
reflecting the learning of semantic structure as a by-product of learn-
ing to reconstruct the sensory input patterns (rs(48) = 0.997, P < 0.001, 
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right, respectively) for three original images. Bottom row: the predicted images 
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decreases it in atypically ‘zoomed in’ views, as in ref. 92. Two hundred images are 
used at each ‘zoom level’. See b for a description of boxplot elements.
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95% confidence interval (CI) = 0.987, 1.000). While semantic memory 
is much more complex than simple classification, richer ‘semantic’ 
outputs such as verbal descriptions can also be decoded from latent 
variable representations of images85,86.

Imagination, episodic future thinking and relational inference
Here we model the generation of events that have not been experienced 
from the generative network’s latent variables. Events can be generated 
either by external specification of latent variables (imagination) or by 
transforming the latent variable representations of specific events 
(relational inference). The former is simulated by sampling from cat-
egories in the latent space then decoding the results (Fig. 3d). The lat-
ter is simulated by interpolating between the latent representations 
of events (Fig. 3c) or by doing vector arithmetic in the latent space 
(Fig. 3b). This illustrates that the model has learnt some conceptual 
structure to the data, supporting reasoning tasks of the form ‘what is 
to A as B is to C?’, and provides a model for the flexible recombination 
of memories thought to underlie episodic future thinking24.

Modelling schema-based distortions
The schema-based distortions observed in human episodic memory 
increase over time6 and with sleep52, suggesting an association with 

consolidation. Recall by the generative network distorts memories 
towards prototypical representations. Figure 4a–d shows that hand-
written digits from the MNIST dataset87 ‘recalled’ by a VAE become more 
prototypical (MNIST is used for this because each image has a single cat-
egory). Recalled pairs from the same class become more similar, that is, 
intra-class variation decreases (paired samples t-test t(7,839) = 60.523, 
P < 0.001, Cohen’s d = −0.684, 95% CI = 0.021, 0.022). The pixel space 
of MNIST digits before and after recall and the latent space of their 
encodings also show this effect. In summary, recall with a generative 
network distorts stimuli towards more prototypical representations 
even when no class information is given during training. As reliance on 
the generative model increases, so does the level of distortion.

Boundary extension and contraction exemplify this phenom-
enon. Boundary extension is the tendency to remember a wider field 
of view than was observed88, while boundary contraction is the oppo-
site89. Unusually close-up views appear to cause boundary extension, 
and unusually far away ones boundary contraction89, although this 
is debated90,91. We modelled this by giving the generative network a 
range of new scenes that were artificially ‘zoomed in’ or ‘zoomed out’ 
compared with those in its training set; its reconstructions are distorted 
towards the ‘typical view’ (Fig. 4e), as in human data. Figure 4g shows 
the change in the object size in memory quantitatively, mirroring the 
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Fig. 5 | Retrieval dependence on reconstruction error threshold and replay 
in the extended model. a, The stages of recall are shown from left to right (see 
Fig. 2d), where each row represents an example scene. Each scene consists 
of a standard Shapes3D image with the addition of novel features (several 
white squares overlaid on the image with varying opacity). b, Repeating this 
process with a higher error threshold for encoding (with the same events and 
partial inputs) means fewer poorly predicted sensory features are stored in 
the autoassociative MHN, leading to more prototypical recall with increased 

reconstruction error. c, Average reconstruction error and number of sensory 
features (that is, pixels) stored in the autoassociative MHN against the error 
threshold for encoding. One hundred images are tested and error bars give the 
s.e.m. d, Replay in the extended model. The autoassociative network retrieves 
memories when random noise is given as input, as shown for three example 
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findings in ref. 92 (Fig. 4f). (Note that the measure of boundary exten-
sion vs contraction used by ref. 92 is produced by averaging ‘closer’ 
vs ‘further’ judgements of an identical stimulus image in comparison 
with the remembered image, rather than the drawing-based measure 
we use, but the two measures are significantly correlated89.)

Combining conceptual and unpredictable sensory features
In the extended model, memories stored in the hippocampal autoas-
sociative network combine conceptual features (derived from the gen-
erative network’s latent variables) and unpredictable sensory features 
(those with a high reconstruction error during encoding) (Fig. 2). In 
these simulations, the conceptual features are simply a one-to-one copy 
of latent variable representations. (Since latent variable representa-
tions are not stable as the generative network learns, concepts derived 
from latent variables seem more likely to be stored than the latent 
variables themselves, so this is a simplification; see section ‘Extended 
model’ for further details.)

Figure 5a,b shows the stages of recall in the extended model after 
encoding with a lower or higher prediction error threshold. After 
decomposing the input into its predictable (conceptual) and unpre-
dictable (sensory) features, the autoassociative network performs 

pattern completion on the combined representation. The prototypi-
cal (that is, predicted) image corresponding to the retrieved concep-
tual features must then be obtained by decoding the associated latent 
variable representation into an experience via the return projections 
to the sensory neocortex. Next, the predictable and unpredictable 
elements are recombined, simply by overwriting the prototypical 
prediction with any unpredictable elements, via the connections 
from the sensory features to the sensory neocortex. The extended  
model is therefore able to exploit the generative network to recon-
struct the predictable aspects of the event from its latent variables, 
storing only those sensory details that were poorly predicted in 
the autoassociative network. Equally, as the generative network 
improves, sensory features stored in the hippocampus may no longer 
differ significantly from the initial schematic reconstruction in the 
sensory neocortex, signalling that the hippocampal representation 
is no longer needed.

Schema-based distortions in the extended model
The schema-based distortions shown in the basic model result from the 
generative network and increase with dependence on it, but memory 
distortions can also have a rapid onset93,94. In the extended model, even 
immediate recall involves a combination of conceptual and sensory 
features, and the presence of conceptual features induces distortions 
before consolidation of that specific memory.

In general, recall is biased towards the ‘mean’ of the class soon 
after encoding due to the influence of the conceptual representations  
(Fig. 5a,b). This is more pronounced when the error threshold for 
encoding is high, as there is more reliance on the ‘prototypical’ rep-
resentations, resulting in the recall of fewer novel features. At a lower 
error threshold, more sensory detail is encoded, that is, the dimen-
sion of the memory trace is higher (rs(3) = −1, P < 0.001). This results 
in a lower reconstruction error (rs(3) = 1, P < 0.001), indicating lower 
distortion but at the expense of efficiency.

External context further distorts memory. Reference 95 asked par-
ticipants to reproduce ambiguous sketches. A context was established 
by telling the participants that they would see images from a certain 
category. After a delay, drawings from memory were distorted to look 
more like members of the context category. Figure 6b shows the result 
of encoding the same ambiguous image with two different externally 
provided concepts (a cube in the top row, a sphere in the bottom row), 
represented by the latent variables for each concept, as opposed to 
the latent variables predicted by the image itself as in Fig. 5a,b. Dur-
ing recall, the encoded concept is retrieved in the autoassociative 
network, determining the prototypical scene reconstructed by the 
generative network. This biases recall towards the class provided as 
context, mirroring Fig. 6a.

We also simulate the Deese–Roediger–McDermott (DRM) task93,94 
in the extended model to demonstrate its applicability to non-image 
stimuli. In the DRM task, participants are shown lists of words that 
are semantically related to ‘lure words’ not present in the list; there 
is a robust finding that false recognition and recall of the lure words 
occur93,94. In the extended model, gist-based semantic intrusions arise 
as a consequence of learning the co-occurrence statistics of words. 
First, the VAE is trained to reconstruct the sets of words in simple sto-
ries96 converted to vectors of word counts, representing background 
knowledge. The system then encodes the experimental lists as the com-
bination of an ‘id_n’ term capturing unique spatiotemporal context, and 
the VAE’s latent representation of each word list (respectively analo-
gous to the stimulus-unique pixels and the VAE’s latent representation 
of each image in Fig. 5). As in the human data, lure words are often but 
not always recalled when the system is presented with ‘id_n’ (Fig. 7a), 
since the latent variable representations that generate the words in the 
list also tend to generate the lure word. The system also forgets some 
words and produces additional semantic intrusions. In addition, the 
chance of recalling the lure word is higher for longer lists, as in human 
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data from ref. 97, as more related words provide a stronger ‘prior’ for 
the lure (Fig. 7b) (rs(10) = 0.998, P < 0.001, 95% CI = 0.982, 1.000).

Modelling brain damage
Recent episodic memory is impaired following damage to the HF, 
whereas semantic memory, including the semantic content of remote 
episodes, appears relatively spared. In the model, the semantic form of 
a consolidated memory survives damage to the HF due to latent vari-
able representations in the mPFC or the alTL (even if those in the EC 
are lesioned); Fig. 3a demonstrates how semantic recall performance 
improves with the age of a memory, reflecting the temporal gradient of 
retrograde amnesia (see section ‘Modelling semantic memory’). How-
ever, these semantic ‘facts’ cannot be used to generate an experience 
‘episodically’ without the generative network’s decoder, in agreement 
with multiple trace theory11.

The extent of retrograde amnesia can vary greatly depending in 
part on which regions of the HF are damaged98,99. The dissociation of 
retrograde and anterograde amnesia in some cases suggests that the 
circuits for encoding memories and the circuits for recalling them 
via the HF only overlap partially99. For example, if the autoassociative 
network is damaged but not the generative network’s decoder, the 
generative network can still perform reconstruction of fully consoli-
dated memories. This could explain varying reports of the gradient of 
retrograde amnesia when assessing episodic recollection (as opposed 
to semantic memory), if the generative network’s decoder is intact in 
patients showing spared episodic recollection of early memories45. 
Note that the location of damage within the generative network’s 
decoder also affects the resulting deficit in our model. In particular, 
patients with damage restricted to the hippocampus proper can (re)
construct simple scenes but not more complex ones23.

Our model also shows the characteristic anterograde amnesia after 
hippocampal damage, as the hippocampus is required to initially bind 
features together and support off-line training of the generative model. 
Anterograde semantic learning would also be impaired by hippocampal 
damage (as the generative network is trained by hippocampal replay). 
While hippocampal replay need not be the only mechanism for schema 
acquisition, it would probably be much slower without the benefit 
of replay. However, semantic learning over short timescales may be 
relatively unimpaired, as it is less dependent on extracting regularities 
from long-term memory100.

In semantic dementia, semantic memory is impaired, and remote 
episodic memory is impaired more than recent episodic memory101. 
This would be consistent with lesions to the generative network, as 
recent memories can rely more on the hippocampal autoassociative 
network. However, the exact effects would depend on the distribu-
tion of damage across the various potential generative networks in 
the EC, mPFC and alTL. Of these, the alTL network is associated with 
semantic dementia, and the posterior medial network (corresponding 
to the generative network between the sensory areas and the EC) with 
Alzheimer’s disease83.

Finally, neuropsychological evidence suggests a distinction 
between familiarity and recollection, and furthermore a partial disso-
ciation between different tests of familiarity; patients with selective hip-
pocampal damage can exhibit recognition memory deficits in a simple 
‘yes/no’ task with similar foils, but not in a ‘forced choice’ variant involv-
ing choosing the more familiar stimulus from a set102. This is consistent 
with the idea that lower prediction error in the neocortical generative 
network indicates familiarity, but retrieval of unique details from the 
hippocampus is required for more definitive recognition memory.

Discussion
We have proposed a model of systems consolidation as the training of a 
generative neural network, which learns to support episodic memory, 
and also imagination, semantic memory and inference. This occurs 
through teacher–student learning. The hippocampal ‘teacher’ rapidly 

encodes an event, which may combine unpredictable sensory elements 
(with connections to and from the sensory cortex) and predictable 
conceptual elements (with connections to and from latent variable 
representations in the generative network). After exposure to replayed 
representations from the ‘teacher’, the generative ‘student’ network 
supports reconstruction of events by forming a schematic represen-
tation in the sensory neocortex from latent variables via the HF, with 
unpredictable sensory elements added from the hippocampus.

In contrast to the relatively veridical initial encoding, the genera-
tive model learns to capture the probability distributions underlying 
experiences, or ‘schemas’. This enables not just efficient recall, recon-
structing memories without the need to store them individually, but 
also imagination (by sampling from the latent variable distributions) 
and inference (by using the learned statistics of experience to predict 
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the values of unseen variables). In addition, semantic memory (that 
is, factual knowledge) develops as a by-product of learning to predict 
sensory experience. As the generative model becomes more accurate, 
the need to store and retrieve unpredicted details in the hippocampus 
decreases (producing a gradient of retrograde amnesia in cases of 
hippocampal damage). However, the generative network necessarily 
introduces distortion compared to the initial memory system. Multiple 
generative networks can be trained in parallel, and we expect this to 
include networks with latent variables in the EC, mPFC and alTL.

We now compare the model’s performance to the list of key find-
ings from the introduction:

	1.	 Gradual consolidation follows one-shot encoding: A memory 
is encoded in the hippocampal ‘teacher’ network after a single 
exposure, and transferred to the generative ‘student’ network 
after being replayed repeatedly (Fig. 1c,d).

	2.	 Semantic memory becomes hippocampus-independent: The 
latent variable representations learned by the generative net-
works constitute the ‘key facts’ of an episode, supporting se-
mantic memory (Fig. 3a).

	3.	 Episodic memory remains hippocampus-dependent: Return 
projections to the sensory neocortex via the HF are required to 
decode the latent variable representations into a sensory expe-
rience (Fig. 1). (EC is required for even simple (re)construction, 
while the hippocampus proper helps to generate complex con-
ceptually coherent scenes and retrieves unpredictable details 
that are not yet consolidated into the generative network; see 
section ‘Neural substrates of the model’.)

	4.	 Shared substrate for episode generation: Generative models are 
a common mechanism for episode generation. Familiar scenes 
can be reconstructed and new ones can be generated by sam-
pling or transforming existing latent variable representations 
(Fig. 3b–d), providing a model for imagination, scene construc-
tion and episodic future thinking.

	5.	 Consolidation promotes inference and generalization: Rela-
tional inference corresponds to vector arithmetic applied to the 
generative network’s latent variables (Fig. 3b).

	6.	 Episodic memories are distorted: We show how memory distor-
tions arise from the generative network (Figs. 4, 6 and 7). This 
extends the model of ref. 32 to relate memory distortion to 
consolidation.

	7.	 Association cortex encodes latent structure: Latent variable 
representations in the EC, mPFC, and alTL provide schemas for 
episodic recollection and imagination (via HF) and for semantic 
retrieval and inference.

	8.	 Prediction error affects memory processing: The generative 
network is constantly calculating the reconstruction error of 
experiences58,59. Events that are consistent with the existing gen-
erative model require less encoding in the autoassociative hip-
pocampal network (Fig. 5).

	9.	 Episodic memories include conceptual features: When an expe-
rience combines a mixture of familiar and unfamiliar elements, 
both concepts and poorly predicted sensory elements are 
stored in the hippocampus via association to a specific memory 
unit.
Our model can be seen as an update to the complementary learn-

ing systems (CLS)4 framework to better account for points 3 to 9 
above, reconciling the development of semantic representations in 
the neocortex (as in CLS) with the continued dependence on the hip-
pocampal formation for episodic recall (as in multiple trace theory11). 
Furthermore, it provides a unified view of: (1) episode generation, (2) 
how episodic memories change over time and exhibit distortions and 
(3) how semantic and episodic information are combined in memory. 
We build on previous work exploring the role of generative networks 
in consolidation18,19, as models of the hippocampal formation31–33, as 
priors for episodic memory35 and as models of spatial cognition22.

A key aspect of the model is that multiple generative networks can 
be trained concurrently from a single autoassociative network (Fig. 2a) 
and may be optimized for different tasks. Thus, the latent representa-
tions in the mPFC and the alTL may be more closely linked to value or 
language than those in the EC103,104. These differences may arise from 
differences in network structure (for example, the degree of compres-
sion) or from additional training objectives that shape their representa-
tions105 (for example, the generative network with latent variables in 
the mPFC might be trained to predict task-relevant value in addition to 
the EC representations). We expect the generative networks to overlap 
closer to their sensory inputs/outputs, where general-purpose features 
are more useful, and diverge as the representations become more 
abstract (or task-specific if there are additional training objectives)106. 
This may involve a primary VAE with latent variables in the EC, with 
additional pathways from the higher sensory cortex to the EC routed 
via latent variables in the mPFC or the alTL.

Our model raises some fundamental questions: Does true episodic 
memory require event-unique detail, and does this require the hip-
pocampus? Or can prototypical predictions qualify as memory rather 
than imagination? In the model, event-unique details are initially pro-
vided by the hippocampus but can also be provided by the generative 
network. For example, if you know that someone attended your 8th 
birthday party and gave you a particular gift, these personal semantic 
facts need not be hippocampal-dependent but could generate a scene 
with the right event-specific details, which would seem like episodic 
memory. The increasingly sophisticated generation of images from 
text using generative models107 suggests that episode construction 
from semantic facts is computationally plausible.

Episodic memories are defined by their unique spatiotemporal 
context1. In the model, spatial and temporal context correspond to 
conceptual features captured by place108,109 or time110,111 cells in the 
hippocampus and might be linked to latent variable representations 
formed in the EC, such as grid cells in the medial EC, which form an 
efficient basis for locations in real31,112,113 or cognitive spaces31,54, or 
temporal context representations in the lateral EC114,115. Events with spe-
cific spatial and temporal context can be generated from these latent 
variable representations, as has been modelled in detail for space20–22.

More generally, this work builds on the spatial cognition litera-
ture, in which place and head direction cells act as latent variables 
in a generative model20–22, allowing the generation of a scene from a 
specific viewpoint. References 20–22 explore how egocentric sensory 
representations could be transformed into allocentric latent vari-
ables before storage in the medial temporal lobe and conversely, how 
egocentric representations could be reconstructed from allocentric 
ones to support imagery. The latent representations learned through 
consolidation in our model correspond loosely to the allocentric rep-
resentations, and the sensory representations produced by HF to the 
egocentric ones; only egocentric and sensory representations are 
directly experienced, whereas allocentric and semantic representa-
tions are useful abstractions that can also be exploited for efficient 
hippocampal encoding.

Our model simplifies the true nature of mnemonic processing in 
several ways. First, the interaction of sensory and conceptual features 
in the hippocampus and latent variables in the EC during retrieval could 
be more complex, with each type of representation contributing to 
pattern completion of the other as in interactions between items and 
contextual representations in the Temporal Context Model116, and 
might iterate over retrievals from both hippocampal and generative 
networks50. Second, our model distinguishes between ‘sensory’ and 
‘conceptual’ representations in the hippocampus, respectively linked 
to the sensory neocortex at the input/output of the generative network 
and to the latent variable layer in the middle. In reality, a gradient of lev-
els of representation in the hippocampus is more likely, from detailed 
sensory representations to coarse-grained conceptual ones, respec-
tively linked to lower or higher neocortical areas117, and might map onto 
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the observed functional gradients along the longitudinal axis of the 
hippocampus118. Third, our generative network uses back-propagation 
of the prediction error between output and input patterns to learn. Gen-
erative networks with more plausible (if less efficient) learning rules 
exist67–69, which have the advantage of producing a prediction error 
signal at each layer (between top–down prediction and bottom–up 
recognition), potentially allowing learning of concepts and excep-
tions at all levels of description. Fourth, considering consolidation as 
a continual lifelong process rather than during encoding of a single 
dataset introduces new complexities; these include the instability of 
latent representations and the prevention of catastrophic forgetting 
of already consolidated memories as new memories are assimilated 
into the generative network. The model could be extended to address 
this, for example, by using replay from the generative network as well 
as from the hippocampal network, which could reduce catastrophic 
forgetting and stabilize latent variable representations in both net-
works33,119,120, building on previous research on sleep and learning121. 
Fifth, we model semantic memory as prediction of categorical infor-
mation for an ‘event’, but future work should model more complex 
semantic knowledge, for example, by decoding language from latent 
representations of multimodal stimuli85,86. In particular, the relation-
ship between semantic memory for specific ‘events’ and the broader 
‘web’ of general knowledge should be considered.

Episodic memories contain important sequential structure not 
modelled by our encoding and reconstruction of simple scenes. Future 
work could expand the model’s scope to sequential information as fol-
lows. A range of stimuli could be represented as sequences of arbitrary 
symbols (including language, spatial trajectories and transitions on a 
graph). A heteroassociative variant of an MHN, which is better suited 
to sequential data, could be used to store such stimuli. Specifically, 
the interpretation of an MHN that we use64 can capture sequential 
information if the projections from feature units to memory units 
correspond to the current state, but the projections from memory 
units back to feature units correspond to the next state so that one 
state retrieves the next122–124. With certain modifications based on 
previous work involving the role of temporal context in memory116,125, 
asymmetric MHNs can store sequences with complex repetitions and 
temporal correlations, such as language. We could then implement the 
student model as a sequential generative network trained to predict 
the next input during sequential replay (for example, GPT-2 (ref. 126)). 
Such networks capture relational structure, developing grid-like latent 
representations in spatial tasks31, and learn the gist of narratives. The 
sequential model could also be applied to phenomena such as event 
segmentation127 and memory distortions in narratives6. (Note that for 
more complex sequential data such as videos, pattern completion of 
both the current stimulus and the next stimulus would be required, 
potentially needing a combination of autoassociative and heteroas-
sociative connectivity in the hippocampal network.)

Our model makes testable predictions. First, if participants learn 
stimuli generated from known latent variables, it predicts that these 
specific latent variable representations should develop in the associa-
tion cortex over time (and that this representation would support, for 
example, vector arithmetic and interpolation). This could be tested 
by representational similarity analysis, which should reveal a more 
conceptual similarity structure developing in the association cortex 
through consolidation, as opposed to a similarity structure reflect-
ing the sensory stimuli in earlier sensory cortices. If the stimuli also 
contained slight variation, that is, they were not entirely described 
by the latent variables, the development of a latent variable represen-
tation should be correlated with gist-based distortions in memory 
and anti-correlated with hippocampal processing of unpredictable 
elements.

Second, the model makes multiple predictions about the effects 
of brain damage. Just as boundary extension is reduced in patients 
with damage to the HF128 or the vmPFC129, we predict that other biases 

towards the ‘canonical view’ would be attenuated in such patients; for 
example, healthy controls would distort images with an atypical view-
ing angle towards a more typical angle in memory, but this would be 
reduced in, for example, hippocampal patients. Similarly, ambiguous 
images such as the duck/rabbit drawing ‘flip’ between interpretations 
in perception but are stable when held in imagery72, presumably due 
to maintained hippocampal conceptual representations. We predict 
that this conceptual stability in imagery would also be reduced in such 
patients. This could also extend to non-scene stimuli: if the ref. 95 task 
were tested with both healthy controls and patients with damage to the 
generative decoder, we would predict reduced contextual distortion in 
the latter. Furthermore, patients with an inaccurate generative model, 
for example, due to semantic dementia, might rely more on sensory fea-
tures to compensate. (Note that the pattern of deficits would depend on 
both the nature of the priors encoded in the generative network and the 
error threshold for encoding. In some cases, damage to the generative 
network could produce atypical ‘priors’ rather than suppressing them. 
Thus, if the generative network is inaccurate but the error threshold 
for encoding is high, atypical distortions will be observed rather than 
a reduction in conceptual distortions.)

Third, the model suggests that the error threshold for encoding 
could vary depending on the importance of the stimuli or the amount 
of attentional resource available. For example, emotional salience 
could lower this threshold, with traumatic memories being encoded in 
greater sensory detail and with less contextual coherence130,131. Equally, 
conditions such as autism spectrum disorder, which are potentially 
attributable to hypo-priors132, might be associated with a lower predic-
tion error threshold for veridical storage (and thus reduced conceptual 
influence on memory and increased sensory detail). In addition, real-
ity monitoring deficits would change the perceived prediction error 
relative to reality, leading to atypical memory storage (for example, a 
reduced ability to compensate for prediction errors by storing sensory 
details).

Fourth, biological intelligence excels at generalizing from only a 
small number of examples. The model predicts that learning to gener-
alize rapidly benefits from having a generative model that can create 
new examples, for example, by inferring variants (as in Fig. 3b) (see also 
ref. 133). Finally, the model suggests a link between latent spaces and 
cognitive maps134. For example, one might predict that the position 
of a memory in latent space is reflected in place and grid cell firing, as 
observed for other conceptual representations54,134,135.

In summary, our proposed model takes inspiration from recent 
advances in machine learning to capture many of the intriguing phe-
nomena associated with episodic memory, its (re)constructive nature, 
its relationship to schemas, and consolidation, as well as aspects of 
imagination, inference and semantic memory.

Methods
Data
In the simulations, images represent events (except for the DRM93,94 
task stimuli). The Shapes3D dataset136 was used throughout, except 
for the use of MNIST87 to explore certain distortions. Note that one 
MHN was used per dataset, and one generative model was trained per 
dataset from the corresponding MHN’s outputs.

Basic model
In our model, the hippocampus rapidly encodes an event, modelled 
as one-shot memorization in an autoassociative network (an MHN). 
Then, generative networks are trained on replayed representations 
from the autoassociative network, learning to reconstruct memories 
by capturing the statistical structure of experienced events.

The generative networks used are variational autoencoders, a type 
of autoencoder with special properties such that randomly sampling 
values for the latent variables in the model’s ‘bottleneck’ layer gener-
ates valid stimuli65. Figure 3 of Supplementary Information, adapted 
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from ref. 137, shows how directions in the latent space can correspond 
to meaningful transformations. While most diagrams show the VAE’s 
input and output layers in the sensory neocortex as separated (in line 
with conventions for visualizing neural networks), it is important to 
note that the input and output layers are in fact the same, as shown 
in Fig. 1b. There may be considerable overlap between the encoder 
and decoder, especially closer to the sensory neocortex, but we did 
not model this explicitly. The autoassociative model is an MHN, with 
the property that even random input values will retrieve one of the 
stored patterns via pattern completion. Specifically, we considered 
the biological interpretation of the MHN as feature units and memory 
units suggested by ref. 64 (see Supplementary Information for details).

We modelled consolidation as teacher–student learning, where 
the autoassociative network is the ‘teacher’ and the generative network 
is the ‘student’ trained on replayed representations from the ‘teacher’. 
We gave random noise (consisting of uniformly sampled values in each 
channel for each pixel) as an input to the MHN, then used the outputs 
of the network to train the VAE. (These outputs represent the high-level 
sensory representations activated by hippocampal pattern comple-
tion, via return projections to the sensory cortex.) The noise input to 
the autoassociative network could potentially represent random acti-
vation during sleep138–140. Attributes such as reward salience might also 
influence which memories are replayed but were not modelled here141.

During the encoding state in our simulations, images were stored 
in a continuous MHN with high inverse temperature, β, set to 20 (higher 
values of β produce attractor states corresponding to individual memo-
ries, while lower values of β make metastable states more likely). Ref-
erence 63 provides an excellent Python implementation of MHNs that 
we used in our code. During the ‘rest’ state, random noise was given 
as an input N times to the MHN, retrieving N attractor states from the 
network. (The distribution of retrieved attractor states was not tested 
but was approximately random, and very few spurious attractors were 
observed with sufficiently high inverse temperature.) In the main 
simulations, 10,000 items from the Shapes3D dataset were encoded 
in the MHN, and 10,000 replayed states were used to train the VAE (that 
is, N is 10,000). (Rather than replaying new samples from the MHN at 
each epoch of the VAE’s training, a single set of samples was used for 
efficiency and simplicity.)

A VAE was then trained on the ‘replayed’ images from the MHN, 
using the Keras API for TensorFlow142. The loss function (that is, the 
error minimized through training) is the sum of two terms, the recon-
struction error and the Kullback–Leibler divergence65; the former 
encourages accurate reconstruction, while the latter (which measures 
the divergence between the latent variables and a Gaussian distribu-
tion) encourages a latent space one can sample from. Specifically, the 
reconstruction loss in our model is a mean absolute error loss. (Note 
that the terms reconstruction error and prediction error are used 
interchangeably throughout.)

The stochastic gradient descent method used was the AMSGrad 
variant of the Adam optimizer with early stopping enabled, for a maxi-
mum of 50 epochs (where an epoch is a complete pass through the 
training set). A latent variable vector length of 20, learning rate of 0.001 
and Kullback–Leibler weighting of 1 were used in the main results. The 
variational autoencoders were not optimized for performance, as their 
purpose is illustrative (more data and hyperparameter tuning would 
be likely to improve reconstruction accuracy). Architectural choices 
within the VAE were not principled but were based on successful archi-
tectures for similar stimuli in the literature. See Supplementary Infor-
mation for details of the VAE’s architecture. The VAEs were trained using 
gradient descent and back-propagation as usual; while this method is 
biologically implausible due to its non-local nature, more plausible 
learning algorithms might be feasible143.

While this was not modelled explicitly, once the generative net-
work’s reconstruction error is sufficiently low, the hippocampal trace is 
unnecessary. As a result, it could be ‘marked for deletion’ or overwritten 

in some way, freeing up capacity for new encodings. However, we did 
not simulate decay, deletion or capacity constraints in the autoas-
sociative memory part of the model. In these simulations, the main 
cause of forgetting would be interference from new memories in the 
generative model.

Note that throughout the simulations, the input to recall was a 
noisy version of the encoded stimulus image. Specifically, noise was 
added by replacing a random fraction (0.1 unless stated otherwise) of 
values in the image array with zero.

While we used only one modality at a time (imagery for the major-
ity of simulations, text for the DRM task), our model is compatible with 
the multimodal nature of experience, as multimodal inputs to VAEs 
are possible, which result in a multimodal latent space144. This could 
reflect the multimodal nature of concept cells in the hippocampus61.

Modelling semantic memory
We modelled semantic memory as the ability to decode latent vari-
ables into semantic information without the need to reconstruct the 
event episodically.

Decoding accuracy was measured by training a support vector 
machine to classify the central object’s shape from the network’s latent 
variables, using 200 examples at the end of each epoch and measuring 
classification accuracy on a held-out test set. (Notably, there was good 
performance with only a small amount of training data when decoding 
the latent variables, compared with decoding alternative representa-
tions such as the sensory input or intermediate layer activations, that 
is, few-shot learning is possible by making use of compressed ‘semantic’ 
representations. See Fig. 2 of Supplementary Information.)

Modelling imagination and inference
In the generative network, new items can either be generated from 
externally specified (or randomly sampled) latent variables (imagi-
nation), or by transforming the latent variable representations of 
specific events (relational inference). The former was simulated by 
sampling from categories in the latent space, then decoding the results 
(Fig. 3d). The latter was simulated by interpolating between the latent 
representations of events (Fig. 3c) or by doing vector arithmetic in the 
latent space (Fig. 3b).

Examples of the four different object shapes were generated by 
Monte Carlo sampling for simplicity, that is, samples from the latent 
space were classified by the semantic decoding classifier, and examples 
that activate each category are displayed. (Note that there are many 
alternative ways to do this, for example, by extracting the decision 
boundaries from the classifier and sampling within the region cor-
responding to each class.) Generating imagined scenes from more 
naturalistic inputs, for example, natural language descriptions, would 
require a much more sophisticated text to the latent space model, but 
recent machine learning advances suggest that this is possible145.

To demonstrate interpolation, each row of Fig. 3c shows items gen-
erated from latent variables along a line in the latent space between two 
real items from the training data. To demonstrate vector arithmetic, 
each equation in Fig. 3b shows ‘result = vectorA + (vectorB − vectorC)’ 
(reflecting relational inference problems of the form ‘what is to A as B 
is to C?’), where the result is produced by taking the relation between 
vectorB and vectorC, applying that to vectorA and decoding the result. In 
other words, the three items on the right of each equation in Fig. 3b are 
real items from the training data. Their latent variable representations 
are combined as vectors according to the equation shown, giving the 
latent variable representation from which the first item is generated. 
Thus, the pair in brackets describes a relation that is applied to the first 
item on the right to produce the new item on the left of the equation.

Modelling schema-based distortions
Items recalled by the generative network become more prototypical, a 
form of schema-based distortion. This can be shown simply in the basic 
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model, using the MNIST digits dataset87 to exemplify ten clearly defined 
classes of items (Fig. 4). To show this quantitatively, we calculated the 
intra-class variation, measured as the mean variance per pixel, within 
each MNIST class before and after recall, for 5,000 images from the test 
set. As expected, the intra-class variation was smaller for the recalled 
items than for the original inputs. (See Supplementary Information 
for details of the model architecture.)

To visualize this, we projected the pixel and latent spaces before 
and after recall (of 2,000 images from the MNIST test set) into two 
dimensions (2D) with uniform manifold approximation and projec-
tion (UMAP)146, a dimensionality reduction method, and colour-coded 
them by class (Fig. 4c,d). The pixel space of MNIST digits (bottom 
row) and the latent space of their encodings (top row) showed more 
compact clusters for the generative network’s outputs (Fig. 4d) than 
for its inputs (Fig. 4c).

Modelling boundary extension and contraction
Boundary extension is the tendency to remember a wider field of view 
than was observed for certain stimuli88, while boundary contraction is 
the tendency to remember a narrower one89. Whether boundaries are 
extended or contracted seems to depend on the perceived distance of 
the central object, with unusually close-up (that is, ‘object-oriented’) 
views causing boundary extension, and unusually far away (that is, 
‘scene-oriented’) views causing boundary contraction89.

We tested boundary extension and contraction in the basic model 
by giving it a range of artificially ‘zoomed in’ or ‘zoomed out’ images, 
adapted from Shapes3D scenes not seen during training, and observing 
the outputs. The ‘zoomed in’ view was produced by removing n pixels 
from the margin. The ‘zoomed out’ view was produced by extrapolating 
the pixels at the margin outwards by n additional pixels. (In both cases, 
the new images were then resized to the standard size.) The zoom level 
is the ratio of the central object size in the output image to the size in 
the original image, given as a percentage; for example, an image with a 
zoom level of 80% or a ratio of 0.8 was produced by adding a margin so 
that the object size is 80% of the original size. As the Shapes3D images 
are of width and height 64, the number of pixels to add or remove was 
calculated as ‘margin = (32/ratio) − 32’.

In Fig. 4g, the change in object size between the noisy input and 
output was estimated as follows: first the image was converted to a few 
colours by k-means clustering of pixels. Then, the colour of the central 
object was determined by finding the predominant colour in a particu-
lar central region of the image. A 1D array of pixels corresponding to a 
vertical line at the horizontal midpoint of the image was processed to 
identify the fraction of pixels of the central object colour. This enabled 
us to calculate the change in object size, which we plotted against the 
degree of ‘zoom’. (For this object size estimation approach to work, 
we filtered the Shapes3D dataset to images where the object colour 
was different from both the wall and floor colour, and additionally to 
cubes to minimize shadow.)

Note that the measure of boundary extension vs contraction dis-
played in Fig. 4f, reproduced from ref. 92, was not based on the degree 
of distortion, but was produced by averaging ‘closer’ vs ‘further’ judge-
ments of an identical stimulus image in comparison to the remem-
bered image. This differs from our measure in Fig. 4g, which instead 
corresponds to the drawing-based measure in ref. 89; however, these 
measures have been shown to be correlated89.

Figure 4e shows a few examples of boundary extension and con-
traction. In the left- and right-hand images of each set, the margin n 
is chosen such that the central object is 80% and 120% of the original 
size, respectively.

Extended model
The extended model was designed to capture the fact that memory 
traces in the hippocampus bind together a mixture of sensory and 
conceptual elements, with the latter encoded by concept cells61, and 

the fact that schemas shape the reconstruction of memories even 
before consolidation, as shown by the rapid onset of schema-based 
distortions93,94.

In the extended model, each scene was initially encoded as the 
combination of a predictable and an unpredictable component. The 
predictable component consisted of concepts captured by the latent 
variables of the generative network, and the unpredictable component 
consisted of parts of the stimuli that were poorly predicted by the 
generative network. Thus, the MHN model has both conceptual and 
sensory feature units, which store the predictable and unpredictable 
aspects of memory, respectively. While memories may eventually 
become fully dependent on the generative model, consolidation can 
be a prolonged process during which the generative network provides 
schemas for reconstruction and the autoassociative network supports 
new or detailed information not yet captured by schemas. (The VAE 
trained in the basic model simulations was used in the extended model 
simulations described below.)

How did encoding work in our simulations? For a new image, the 
prediction error of each pixel was calculated by the VAE (simply the 
magnitude of the difference between the VAE’s input and output). 
Those pixels with a reconstruction error above the threshold consti-
tuted the unpredictable component, while the VAE’s latent variables 
constituted the predictable component, and these components were 
combined into a single vector and encoded in the MHN. Note that 
when the threshold is zero, the reconstruction is guaranteed to be 
perfect, but as the threshold increases, the reconstruction decreases 
in accuracy.

How did recall work before full consolidation? After decomposing 
the input into its predictable (conceptual) and unpredictable (sensory) 
components, as described above, the autoassociative network could 
retrieve a memory. The image corresponding to the conceptual com-
ponent was then obtained by decoding the stored latent variables. 
Next, the predictable and unpredictable elements were recombined, 
simply by overwriting the initial schematic reconstruction in the sen-
sory neocortex with any stored (that is, non-zero) sensory features in 
the hippocampus. Figure 5a,b shows this process. The lower the error 
threshold for encoding sensory details, the more information was 
stored in the autoassociative network, reducing the reconstruction 
error of recall (see also section ‘Modelling schema-based distortions’).

How did replay work? When the autoassociative network was 
given random noise, both the unpredictable elements and the corre-
sponding latent variables were retrieved. In Fig. 5d, the square images 
show the unpredictable elements of MNIST images and the rectangles 
below these display the vector of latent variables. (As the generative 
model improves, the presence of hippocampal sensory features that 
no longer differ from the initial reconstruction indicates that the hip-
pocampal representation is no longer needed, but this was not simu-
lated explicitly.)

We note that the latent variable representation is not stable as the 
generative network learns. If some latent variables are stored in the 
autoassociative network while the VAE continues to change, the quality 
of the VAE’s reconstruction will gradually worsen; this is also a feature 
of previous models42. Some degree of degradation may reflect forget-
ting, but consolidation can be a prolonged process and hippocampal 
representations can persist in this time. Therefore, we think that con-
cepts derived from latent variables are more likely to be stored than the 
latent variables themselves, promoting the stability of hippocampal 
representations. (For example, in humans, language provides a set 
of relatively persistent concepts, stabilized by the need to communi-
cate.) Projections from the latent variables can classify attributes with 
only a small amount of training data (see section ‘Modelling semantic 
memory’); we suggest that there could be a two-way mapping between 
latent variables and concepts, which supports categorization of incom-
ing experience as well as semantic memory. However, for simplicity, the 
conceptual features were simply a one-to-one copy of latent variable 
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representations in these simulations. It may also be possible to stabilize 
the latent variable representations by reducing catastrophic forgetting 
in the generative network, for example, by using generative as well as 
hippocampal replay33,119,120, with the generative network trained on its 
own self-generated representations in addition to new memories. This 
builds on previous research suggesting that certain stages of sleep are 
optimized to preserve remote memories, while others consolidate new 
ones121. This could reduce interference of new learning with remote 
memories in the generative network, as well as make hippocampal 
representations in the extended model more stable.

Modelling schema-based distortions in the extended model
Carmichael experiment. We demonstrated the contextual modulation 
of memory (as in ref. 95) in the extended model by manipulating the 
conceptual component of an ‘event’. To model an external conceptual 
context being encoded, the original image was stored in the autoas-
sociative network along with activation of a given concept (a cube or 
a sphere), represented as the latent variables for that class. While in 
most simulations the latent variables stored in the MHN were simply 
the output of the VAE’s encoder, here an external context activated the 
conceptual representation, consistent with activity in the EC, mPFC or 
alTL driven by extrinsic factors.

During recall, a noisy input was processed by the generative net-
work to produce a predicted conceptual feature and the sensory fea-
tures not predicted by the prototype for that concept, for input to the 
autoassociative MHN. Pattern completion in the MHN produced the 
originally encoded sensory and conceptual features, and these were 
recombined to produce the final output.

DRM experiment. The DRM task is a classic way to measure gist-based 
memory distortion93,94. Here we demonstrated the rapid onset of 
semantic intrusions in the extended model, coming about as a con-
sequence of learning the co-occurrence statistics of words in a text 
dataset representing ‘background knowledge’. This followed on from 
previous work showing that VAEs produce semantic intrusions32.

In brief, the DRM task involved showing participants a list of words 
that were semantically related to a ‘lure word’, which was not present in 
the list. There was a tendency for both false recognition and false recall 
of the lure word. We focused on modelling the recall task, but the same 
model could be extended to recognition (with recognition memory 
measured by the reconstruction error of the network).

The generative network was pre-trained on a set of word lists 
extracted from simple stories96, representing learning from replayed 
memories before the DRM stimuli (although replay was not simulated 
explicitly). Words occurring in <0.05% or >10% of documents were 
discarded to keep the vocabulary to a manageable size of 4,206 words 
(this meant that some rarer words in the DRM lists were removed). The 
word lists were converted to vectors of word counts of length 4,206, 
in which the value at index i of the vector for a given list indicated the 
count of word i in the document. As these representations ignore word 
order, a sequential model was not required (however, this prevented 
exploring the effect of list position on recall).

Specifically, the variational autoencoder used for this simulation 
consisted of an input layer followed by a dropout layer147 projecting to 
300 latent variables (sampled from representations of the mean and log 
variance vectors as usual), and then to an output layer with a sigmoid 
activation so that predictions were between 0 and 1, with L1 regulariza-
tion to promote sparsity in this layer. As above, this was implemented 
using the Keras API for the TensorFlow library142,148, with the VAE trained 
to reconstruct input vectors in the usual way.

Following pre-training of the generative network, the system 
encoded the DRM stimuli, with each of the 20 word lists represented 
as vectors of word counts. One important detail was the addition of a 
term, given by ‘id_n’ for the nth document in the corpus, representing 
the unique spatiotemporal context of each word list. (Note that this 

is a highly simplified representation of the spatiotemporal context116 
for illustration.) This enabled recall to be modelled by presenting the 
network with the ‘id_n’ term, and seeing which terms were retrieved.

In the extended model, the latent representation of the word 
list was encoded in the MHN as the conceptual component, while the 
unique ‘id_n’ terms were encoded veridically (as vectors of word counts 
of length 4,226—the original vocabulary size plus the 20 new ‘id_n’ 
terms—with 1 at ‘id_n’ and 0 elsewhere). The sparse vector representing 
the unexpected ‘id_n’ term is analogous to the sparse arrays of poorly 
predicted pixels in the main simulations of the extended model.

When the MHN was given ‘id_n’ as an input, it retrieved the hip-
pocampal trace consisting of ‘id_n’ together with the latent represen-
tation of the word list. The latent representation was then decoded to 
produce the outputs shown in Fig. 7a (a dashed line shows the threshold 
for recall, interpreting the output as a probability so that words with 
an output >0.5 are recalled). As in the human data, lure words were 
often but not always recalled. The system also forgot some words and 
produced additional semantic intrusions, for example, ‘vet’ in the case 
of the ‘doctor’ list.

To test the effect of varying the number of associates, as in ref. 97, 
subsets of the DRM lists were encoded in the way described above. Spe-
cifically, to test the probability of lure recall with n associates studied, n 
items from each DRM list were encoded. For each list, this was repeated 
for 20 randomly sampled combinations of n items. Once again, recall 
was tested by giving the system ‘id_n’ as an input.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The following datasets (all covered by the Creative Commons Attribu-
tion 4.0 License) were used in the simulations:
MNIST88: https://www.tensorflow.org/datasets/catalog/mnist
Shapes3D137: https://www.tensorflow.org/datasets/catalog/shapes3d
ROCStories97: https://cs.rochester.edu/nlp/rocstories

Code availability
Code for all simulations can be found at https://github.com/ellie-as/
generative-memory. Some diagrams were created using BioRender.
com.
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A Supplementary information

A.1 Supplementary results

Figure 1 shows results for the 18 remaining Deese-Roediger-McDermott task word lists not shown
in Figure 7. As in the human data, lure words are often but not always recalled when the model
is presented with ‘id n’. The model also forgets some words, and produces additional semantic
intrusions. See Methods for further details.

Figure 2 shows that latent representations support few-shot learning better than intermediate rep-
resentations extracted from the encoder or the ‘sensory’ image features. Decoding accuracy is
measured by training a support vector machine to classify the central object’s shape, varying the
input features and the amount of data, and evaluating the resulting model on a held-out test
set. The intermediate features tested are the outputs of four convolutional layers in the encoder,
flattened to one-dimensional vectors.

A.2 Further model details

A.2.1 Variational autoencoders

The generative networks used in the model are variational autoencoders. An autoencoder is a
neural network which encodes an input into a shorter vector, and then decodes this compressed
representation back to the original. It learns by minimising the difference between the inputs and
outputs. There is no guarantee that decoding an arbitrary compressed representation produces
a sensible output, so standard autoencoders do not perform well as generative models. In other
words, there are many regions in the vector space of the compressed representations which do not
correspond to anything meaningful. However, one can train an autoencoder with special properties,
such that each latent variable is normally distributed for a given input, which allow one to sample
realistic items. The result is called a variational autoencoder.2,3 Latent variables can be thought
of as hidden factors behind the observed data, and directions in the latent space can correspond to
meaningful transformations - see Figure 8b for an example from Hou et al.4

The VAEs in these simulations use convolutional layers to better encode and decode image features.
Convolutional layers learn sliding windows that scan the image for a relevant feature, outputting a
stack of feature maps.5 Applying such a layer to the output of a preceding convolutional layer has
the effect of finding higher-level features in the stacked feature maps, i.e. if the first convolutional
layer learns to identify simple features such as lines at different orientations, the second convolutional
layer might learn features consisting of combinations of lines.

A large VAE was used for the Shapes3D dataset (containing RGB images of size 64x64 pixels), and
a small VAE was used for the MNIST dataset (containing greyscale images of size 28x28 pixels).
In the large model’s encoder, four convolutional layers gradually decrease the width and height of
the representation and increase the depth (as is standard when using convolutional neural networks
to encode images), followed by a pooling layer and dense layers to represent the mean and log
variance of the latent representation. In addition, a dropout layer immediately after the input
layer is added to improve the denoising abilities of the model.6 In the decoder, four convolutional
layers alternate with up-sampling layers to increase the width and height of the representation and
decrease the depth. The smaller VAE used for the MNIST simulations has a latent dimension of 20,



Figure 1: Additional results for the Deese-Roediger-McDermott task. In the extended model, gist-based semantic
intrusions arise as a consequence of learning the co-occurrence statistics of words. First the VAE is trained to
reconstruct simple stories1 converted to vectors of word counts, representing background knowledge. The system
then encodes the lists as the combination of an ’id n’ term capturing unique spatiotemporal context, and the VAE’s
latent representation of the word list. In each plot, recalled stimuli when the system is presented with ’id n’ are
shown, with output scores treated as probabilities so that words with a score of above 0.5 are recalled. Words from
the stimulus list are shown in blue, and lures in red.



Figure 2: Latent representations support few-shot category learning. The accuracy of an object shape classifier on
a held-out test set is shown for different amounts of training data, with different layers of the VAE as input features.
The classifier is a simple support vector machine as in Figure 2a.

and a reduced architecture with fewer convolutional layers for efficiency (specifically, there are two
convolutional layers in the encoder and two transposed convolutional layers in the decoder).

The following list describes the sequence of operations within the large VAE’s encoder network,
using the layer names from the TensorFlow Keras API7 (see also Figure 3):

1. Input layer for arrays of shape (n, 64, 64, 3), representing n 64x64 RGB images

2. Dropout layer with a dropout rate of 0.2 (during training, dropout randomly sets a fraction
of the input units to 0 at each step, reducing overfitting and encouraging robustness)

3. Conv2D layer with 32 filters (i.e. convolutional windows, or feature detectors) and kernel size
of 4 (i.e. windows of 4x4 pixels)

4. Batch normalisation layer (batch normalisation is a common technique which computes the
mean and variance of each feature in a mini-batch and uses them to normalise the activations)

5. LeakyReLU activation layer (LeakyReLU is an activation function that is a variant of the
Rectified Linear Unit, ReLU)

6. Conv2D layer with 64 filters and kernel size of 4

7. Batch normalisation layer

8. LeakyReLU activation layer

9. Conv2D layer with 128 filters and kernel size of 4

10. Batch normalisation layer

11. LeakyReLU activation layer



12. Conv2D layer with 256 filters and kernel size of 4

13. Batch normalisation layer

14. LeakyReLU activation layer

15. Global average pooling 2D layer

16. Dense layer to produce the mean of the latent vector

17. Dense layer to produce the log variance of the latent vector (in parallel with the layer above)

18. Custom sampling layer that samples from the latent space, with the mean and log variance
layers as inputs

The same information for the decoder network is as follows:

1. Input layer for arrays of shape (n, latent dimension), where latent dimension is 20 in these
results, representing n latent vectors

2. Dense layer that expands the latent space to a size of 4096

3. Reshape layer to reshape the input to a 4x4x256 tensor

4. Upsampling2D layer with a 2x2 upsampling factor

5. Conv2D layer with 128 filters and kernel size of 3

6. Batch normalisation layer

7. LeakyReLU activation layer

8. Upsampling2D layer with a 2x2 upsampling factor

9. Conv2D layer with 64 filters and kernel size of 3

10. Batch normalisation layer

11. LeakyReLU activation layer

12. Upsampling2D layer with a 2x2 upsampling factor

13. Conv2D layer with 32 filters and kernel size of 3

14. Batch normalisation layer

15. LeakyReLU activation layer

16. Upsampling2D layer with a 2x2 upsampling factor

17. Conv2D layer with 3 filters and kernel size of 3

A.2.2 Modern Hopfield networks

A Hopfield network uses a simple Hebbian learning rule to memorise patterns after a single expos-
ure.8 However one issue is their limited capacity; a Hopfield network can only recall approximately
0.14d states, where d is the dimension of the input data.9 It therefore seems unlikely that classical
Hopfield networks are a good model of hippocampal memory encoding – even if we assume that
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Figure 3: Additional model details. a) Variational autoencoder architecture. Trainable layers (plus the input,
output, and sampled latent vector) are shown in boxes, along with the dimensions of their outputs, and non-
trainable operations such as activation functions, batch normalisation, and upsampling are shown as annotations.
See the SI for more details. b) Figure adapted from Hou et al.4 with permission, showing the effect of adding and
subtracting a proportion α of various different vectors in the latent space of their VAE. (Diagrams were created using
BioRender.com.)



only a temporary store is required until consolidation occurs. In addition, they frequently recall
incorrect memories, as the energy function can get ‘stuck’ in a local minimum.

However, recent research has shown that the storage capacity of a Hopfield network can be increased
in several ways. Krotov and Hopfield10 devise a new energy function involving a polynomial func-
tion, and a corresponding update rule to minimise this; the activation of a node flips from -1 to 1
or vice versa if the energy is lower in the flipped state. Ref.11 develops this idea further, increasing
the capacity from approximately 0.14d to 2d/2 with the use of an exponential energy function.
Ramsauer et al.9 extend this to memories involving continuous variables and further amend the
energy function, enabling the recall of much more complex data. (For example, whilst classical
Hopfield networks can only recall black and white images, the modern variant can recall greyscale
ones.)

However, understanding these new variants of Hopfield networks in terms of neural networks is less
straightforward. To recap, Equation (1) gives the energy of a standard Hopfield Network.10 During
recall, a node’s value is updated to the sign of the weighted sum of its inputs; in other words, a
node’s value is flipped if it decreases the energy. The matrix T gives the weights of the network,
and the calculation of T is simply Hebbian learning. (In these equations, σ gives the state of the
network as a vector, and ξ gives a stored pattern.)

(1) E = −1

2

N∑
i,j=1

σiTijσj , Tij =

K∑
µ=1

ξµi ξ
µ
j

Equation (2) gives the energy of a dense Hopfield network.12 In this example F(x) is x3, but it
can be any polynomial function. As above, at recall time a node’s value flips if it decreases the
energy. When F(x) is x2, Equation (2) reduces to Equation (1) for a standard Hopfield network. In
any other case, the tensor T has more than two indices, and can no longer be thought of a matrix
produced by Hebbian learning. This means the energy is no longer a function of weights and
activations in a neural network. Modern Hopfield networks12 suffer from the same problem.

(2) E = −
∑
µ

F (
∑
i

ξµiσi) = −
∑
i,j,k

Tijkσiσjσk

Krotov and Hopfield12 suggest a way to overcome this problem by using hidden units (which they
call ‘memory units’) in addition to the ‘feature units’ which represent the input. As a result, a
modern Hopfield network can be understood as a neural network, like its predecessor. The authors
provide two equations for the evolution of the feature neurons and hidden neurons over time. Rather
than using discrete time steps as in a classical Hopfield network, time is modelled as continuous.
They therefore give a pair of differential equations, in which change to each set of currents is
driven by the weighted sum of currents in the other layer. They then define an energy function,
chosen ‘so that the energy function decreases on the dynamical trajectory’. The energy function
has three terms: energy in the feature neurons, energy in the hidden neurons, and energy from the
interaction between the two groups. Importantly, the interaction term can be described in terms
of two-body synapses, so once again the energy is a function of weights and activations in a neural
network.



The authors state that ‘the memory patterns . . . can be interpreted as the strengths of the synapses
connecting feature and memory neurons’. To understand the intuition behind this, suppose we set
the weights connecting a particular hidden node with the feature neurons to the values of the
pattern to be memorised. Then activating the hidden node results in the pattern being reinstated
in the feature neurons. In other words, each hidden node represents a memory, and each memory
could be encoded using Hebbian learning. The key point is that the energy does not require a
matrix of stored patterns, unlike in earlier formulations of modern Hopfield networks – the patterns
are encoded in the weights, and the energy is a function of weights and activations as explained
above.

Krotov and Hopfield12 show that under different circumstances, their formulation can be simplified
to dense associative memory,10 or modern Hopfield networks.9 Having established that modern
Hopfield networks increase memory performance and are biologically plausible (in the sense that
they involve only ‘two-body synapses’, and that memories can be stored as weights), we use them
to model the initial learning in the hippocampus.

An important question is how the memories get encoded as the weights of a bipartite graph in the
ref.12 formulation of a modern Hopfield network. Each memory is bound together by a single node,
which connects the features that comprise that memory. The weights between a given memory node
and the feature nodes are simply the values of the features for that memory; these weights can be
learned by Hebbian learning. Therefore encoding in a modern Hopfield network is similar to previous
models of the hippocampus as ‘indexing’, or binding together, a set of memory components.13 The
innovative aspect of modern Hopfield networks is the update rule, which is cleverly designed to
guarantee the desired properties. The equation below gives the new state pattern ξnew in terms of
the previous state ξ, stored patterns XT , and inverse temperature β:

(3) ξnew = Xsoftmax(βXT ξ)

In modern Hopfield networks, the inverse temperature parameter β determines whether individual
attractors or metastable states (superpositions of stored attractors) are retrieved. In our simulations
we set β very high in order to ensure that only individual ‘memories’ are recalled.

It should be noted that the modern Hopfield network could be swapped out for other computational
models of associative memory, providing they i) are high capacity, ii) can retrieve memories from
noise, and iii) are capable of one-shot memorisation.
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