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Episodic memories are (re)constructed, share neural substrates with
imagination, combine unique features with schema-based predictions

and show schema-based distortions that increase with consolidation.

Here we present a computational model in which hippocampal replay

(from an autoassociative network) trains generative models (variational
autoencoders) to (re)create sensory experiences from latent variable
representations in entorhinal, medial prefrontal and anterolateral temporal
cortices via the hippocampal formation. Simulations show effects of
memory age and hippocampal lesions in agreement with previous models,
but also provide mechanisms for semantic memory, imagination, episodic
future thinking, relational inference and schema-based distortions
including boundary extension. The model explains how unique sensory and
predictable conceptual elements of memories are stored and reconstructed

by efficiently combining both hippocampal and neocortical systems,
optimizing the use of limited hippocampal storage for new and unusual
information. Overall, we believe hippocampal replay training generative
models provides acomprehensive account of memory construction,
imagination and consolidation.

Episodic memory concerns autobiographical experiencesin their spati-
otemporal context, whereas semantic memory concerns factual knowl-
edge’. The former is thought to rapidly capture multimodal experience
vialong-term potentiationin the hippocampus, enabling the latter to
learn statistical regularities over multiple experiences in the neocor-
tex””. Crucially, episodic memory is thought to be constructive; recall
is the (re)construction of a past experience, rather than the retrieval
of acopy®’. But the mechanisms behind episodic (re)construction and
its link to semantic memory are not well understood.

Old memories can be preserved after hippocampal damage
despite amnesia for recent ones®, suggesting that memories initially
encodedinthe hippocampus end up being stored inneocortical areas,
an idea known as ‘systems consolidation”. The standard model of
systems consolidation involves transfer of information from the hip-
pocampus to the neocortex” *'°, whereas other views suggest that
episodic and semantic information from the same events can exist in
parallel”. Hippocampal ‘replay’ of patterns of neural activity during

rest””isthoughtto play arolein consolidation'*"*. However, consolida-
tiondoes not just change which brain regions support memory traces;
it also converts them into a more abstract representation, a process
sometimes referred to as semanticization'".

Generative models capture the probability distributions underly-
ing data, enabling the generation of realistic new items by sampling
fromthese distributions. Here we propose that consolidated memory
takes the form of agenerative network, trained to capture the statistical
structure of stored events by learning to reproduce them (see also refs.
18,19). As consolidation proceeds, the generative network supports
both the recall of ‘facts’ (semantic memory) and the reconstruction
of experience from these ‘facts’ (episodic memory), in conjunction
with additional information from the hippocampus thatbecomesless
necessary as training progresses.

This builds on existing models of spatial cognition in which recall
and imagination of scenes involve the same neural circuits®*??, and
is supported by evidence from neuropsychology that damage to the
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hippocampal formation (HF) leads to deficits in imagination®, epi-
sodic future thinking®, dreaming® and daydreaming?®, as well as by
neuroimaging evidence that recall and imagination involve similar
neural processes®*,

We model consolidation as the training of a generative model by
aninitial autoassociative encoding of memory through ‘teacher-stu-
dent learning™ during hippocampal replay (see also ref. 30). Recall
after consolidation has occurred is a generative process mediated
by schemas representing common structure across events, as are
other forms of scene construction or imagination. Our model builds
on: (1) research into the relationship between generative models and
consolidation'®', (2) the use of variational autoencoders to model the
hippocampal formation® " and (3) the view that abstract allocentric
latent variables are learned from egocentric sensory representations
in spatial cognition®.

More generally, we build on the idea that the memory system
learns schemas which encode ‘priors’ for the reconstruction of input
patterns®***, Unpredictable aspects of experience need tobe storedin
detail for further learning, while fully predicted aspects do not, con-
sistent with the idea that memory helps to predict the future®* . We
suggest that familiar components are encoded in the autoassociative
network as concepts (relying on the generative network for recon-
struction), while novel components are encoded in greater sensory
detail. Thisis efficient in terms of memory storage****and reflects the
fact that consolidation can be a gradual transition, during which the
autoassociative network supports aspects of memory not yet captured
by the generative network. Inother words, the generative network can
reconstruct predictable aspects of an event from the outset on the
basis of existing schemas, but as consolidation progresses, the network
updatesits schemasto reconstruct the event more accurately until the
formerly unpredictable details stored in HF are no longer required.

Our model draws together existing ideas in machine learning to
suggest an explanation for the following key features of memory, only
subsets of which are captured by previous models:

1. The initial encoding of memory requires only a single exposure
to the event and depends on the HF, while the consolidated form
of memory is acquired more gradually>*'°, as in the complemen-
tary learning systems (CLS) model®.

2. Thesemantic content of memories becomesindependent of the
HF over time**, consistent with CLS.

3. Vivid, detailed episodic memory remains dependent on HF*,
consistent with multiple trace theory" (but not with CLS).

4. Similar neural circuits are involved in recall, imagination and
episodic future thinking”*®, suggesting a common mechanism
for event generation, as modelled in spatial cognition®.

5. Consolidation extracts statistical regularities from episodic
memories to inform behaviour**¥, and supports relational in-
ference and generalization*’. The Tolman-Eichenbaum machine
(TEM)* simulates this in the domain of multiple tasks with com-
mon transition structures (see also ref. 50), while ref. 51 models
how both individual examples and statistical regularities could
be learned within HF.

6. Post-consolidationepisodicmemoriesaremorepronetoschema-
based distortions in which semantic or contextual knowledge
influences recall®?, consistent with the behaviour of generative
models™.

7. Neural representationsin the entorhinal cortex (EC) such as grid
cells* are thought to encode latent structures underlying expe-
riences®**, and other regions of the association cortex, such as
the medial prefrontal cortex (mPFC), may compress stimuli to a
minimal representation®,

8. Novelty is thought to promote encoding within HF**, while more
predictable events consistent with existing schemas are consoli-
dated more rapidly”. Activity in the hippocampus can reflect
prediction error or mismatch novelty**’, and novelty is thought

to affect the degree of compression of representations in mem-
ory®® to make efficient use of limited HF capacity*.

9. Memory traces in the hippocampus appear to involve a mixture
of sensory and conceptual features, with the latter encoded by
concept cells®, potentially bound together by episode-specific
neurons®2. Few models explore how this could happen.

Consolidation as the training of agenerative model

Our model simulates how the initial representation of memories can
be used to train a generative network, which learns to reconstruct
memories by capturing the statistical structure of experienced events
(or ‘schemas’). First, the hippocampus rapidly encodes an event;
then, generative networks gradually take over after being trained
onreplayed representations from the hippocampus. This makes the
memory more abstracted, more supportive of generalization and
relational inference, but also more prone to gist-based distortion.
The generative networks can be used to reconstruct (for memory)
or construct (for imagination) sensory experience, or to support
semantic memory and relational inference directly from their latent
variable representations (see Fig. 1).

Before consolidation, the hippocampal autoassociative network
encodes the memory. A modern Hopfield network (MHN)® is used,
which can be interpreted such that the feature units activated by an
event are bound together by a memory unit®* (see Methods and Sup-
plementary Information). Teacher-student learning® allows transfer of
memories from one neural network to another during consolidation™.
Accordingly, we use outputs from the autoassociative network to train
the generative network: random inputs to the hippocampus result in
thereactivation of memories, and this reactivation results in consolida-
tion. After consolidation, generative networks encode the information
contained inmemories. Reliance on the generative networks increases
over time as they learn to reconstruct a particular event.

Specifically, the generative networks are implemented as vari-
ational autoencoders (VAEs), which are autoencoders with special
properties such that the most compressed layer represents a set of
latent variables, which can be sampled from to generate realistic new
examples corresponding to the training dataset®>®°, Latent variables
can be thought of as hidden factors behind the observed data, and
directionsin the latent space can correspond to meaningful transfor-
mations (see Methods). The VAE’s encoder ‘encodes’ sensory experi-
ence as latent variables, while its decoder ‘decodes’ latent variables
backtosensory experience. In psychological terms, after trainingona
class of stimuli, VAEs can reconstruct such stimuli from a partial input
according to the schema for that class, and generate novel stimuli
consistent with the schema. (Our use of VAEs is illustrative, and we
would expect arange of other generative latent variable models, such
as predictive coding networks®*’, to show similar behaviour.) See
Methods and Supplementary Information for further details.

Generative networks capture the probability distributions under-
lying events, or ‘schemas’. In other words, here ‘schemas’ are rules or
priors (expected probability distributions) for reconstructing acertain
type of stimulus (for example, the schema for an office predicts the
presence of co-occurring objects such as desks and chairs, facilitating
episode generation), whereas concepts represent categories but not
necessarily how toreconstruct them. However, schemas and concepts
are closely related, and their meanings can overlap, with conflicting
definitionsin the psychology literature’”",

During perception, the generative model provides an ongoing
estimate of novelty fromits reconstructionerror (alsoknown as ‘predic-
tionerror’, the difference between input and output representations).
Aspects of anevent that are consistent with previous experience (that
is, with low reconstruction error) do not need to be encoded in detail
in the autoassociative ‘teacher’ network®*°, Once the generative net-
work’s reconstruction error is sufficiently low, the hippocampal traceis
unnecessary, freeing up capacity for new encodings. However, we have
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Fig.1| Architecture of the basic model. a, First, the hippocampus rapidly five examples shown. d, The generative model (a variational autoencoder) can
encodes an event, modelled as one-shot memorization in an autoassociative recallimages (bottom row) from a partial input (top row), following training
network (an MHN). Then, generative networks are trained on replayed on 10,000 replayed memories sampled from the MHN. e, Episodic memory
representations from the autoassociative network, learning to reconstruct after consolidation: a partial input is mapped to latent variables whose return
memories by capturing the statistical structure of experienced events. b, A projections to the sensory neocortex via HF then decode these back into
more detailed schematic of the generative network to indicate the multiple asensory experience. f,Imagination: latent variables are decoded into an
layers of, and overlap between, the encoder and decoder (where layers closer to experience via HF and return projections to the neocortex. g, Semantic memory:
the sensory neocortex overlap more). The generation of asensory experience, apartial input is mapped to latent variables, which capture the ‘key facts’ of the
for example, visual imagery, requires the decoder to the sensory neocortex scene. The bottom rows of e-gillustrate these functions ina model that has
via HF. ¢, Random noise inputs to the MHN (top row) reactivate its memories encoded the Shapes3D dataset into latent variables (v,, v,, U, ..., v,). Diagrams
(bottom row) after 10,000 items from the Shapes3D dataset are encoded, with were created using BioRender.com.

not simulated decay, deletion or capacity constraints in the autoas-  Fig. 1. However, memories probably bind together representations

sociative memory part of the model. along aspectrum from coarse-grained and conceptual to fine-grained

and sensory. For example, the hippocampal encoding of a day at the
Combining conceptual and sensory features in episodic beachislikely to bind together coarse-grained concepts such as ‘beach’
memory and ‘sea’ along with sensory representations such as the melody of an

Consolidation is often considered in terms of fine-grained sensory  unfamiliar songor the sight of a particular sandcastle, consistent with
representations updating coarse-grained conceptual representations,  theevidence for concept cellsin the hippocampus®. (This also fits with
forexample, the sight of a particular dog updating the conceptofadog. theobservationthatambiguousimages ‘flip’ betweeninterpretations
Modelling hippocampal representations as sensory-likeisareasonable  in perception butare stable when held in memory’?, reflecting how the
simplification, which we make in simulations of the ‘basic’modelin  conceptual content of memories constrains recall.)
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Fig. 2| Architecture of the extended model. a, Each scene is initially encoded as
acombination of predictable conceptual features related to the latent variables
ofthe generative network and unpredictable sensory features that were poorly
predicted by the generative network. An MHN (in red) encodes both sensory

and conceptual features (with connections to the sensory neocortex and latent
variablesin EC, respectively), binding them together via memory units. Memories
may eventually be learned by the generative model (in blue), but consolidation
canbea prolonged process, during which time the generative network provides
schemas for reconstruction and the autoassociative network supports new or
detailed information not yet captured by these schemas. Multiple generative
networks can be trained concurrently, with different networks optimized for
different tasks. This includes networks with latent variablesin EC, mPFC and alTL,

network output

eachwith its own semantic projections. However, in all cases, return projections
tothesensory neocortex are via HF. b, Anillustration of encoding in the extended
model. ¢, Encoding ‘scenes’ from the Shapes3D dataset, with each ‘scene’
decomposed into unpredicted sensory features (top) and conceptual features
linked to the generative network’s latent variables (bottom). Novel features (white
squares overlaid on theimage with varying opacity) are added to each ‘scene’.

d, Recalling ‘scenes’ (with novel features) from the Shapes3D dataset. First, the
inputis decomposed; then, the MHN performs pattern completion on both
sensory and conceptual features. The conceptual features (which in these
simulations are simply the generative network’s latent variables) are then
decoded into aschema-based prediction, onto which any stored sensory features
are overwritten. Diagrams were created using BioRender.com.

Furthermore, encoding every sensory detail in the hippocam-
pus would be inefficient (elements already predicted by conceptual
representations being redundant); an efficient system should take
advantage of shared structure across memories to encode only what
isnecessary*>*, Accordingly, we suggest that predictable elements are
encoded as conceptual features linked to the generative latent variable
representation, while unpredictable elements are encoded in amore
detailed and veridical form as sensory features.

Suppose someone sees an unfamiliar animalin the forest (Fig. 2b).
Much of the event might be consistent with an existing forest schema,
but the unfamiliar animal would be novel. In the extended model
(Fig.2 and section ‘Combining conceptual and unpredictable sensory
features’), the reconstruction error per element of the experience is

calculated by the generative model during perception, and elements
with high reconstruction error are encoded in the autoassociative
network as sensory features, along with conceptual features linked to
the generative model’s latent variable representation. In other words,
each patternissplitintoapredictable component (approximating the
generative network’s prediction for the pattern), plus an unpredictable
component (elements with high prediction error). This produces a
sparser vector than storing every element in detail, increasing the
capacity of the network*.

Neural substrates of the model
Which brainregions do the components of this model represent? The
autoassociative network involves the hippocampus binding together
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the constituents of amemory in the neocortex, whereas the genera-
tive network involves neocortical inputs projecting to latent variable
representations in the higher association cortex, which then project
backtotheneocortex viathe HF. The entorhinal (EC), medial prefrontal
cortex (mPFC) and anterolateral temporal lobe (alTL) are all prime
candidates for the site of latent variable representations.

First, the EC is the main route between the hippocampus and the
neocortex, and is where grid cells, which are thought to be a latent
variable representation of spatial or relational structure®-*, are most
often observed”. Second, mPFC and its connections to HF play a cru-
cial role in episodic memory processing’®”*7’%, are thought to encode
schemas™”', areimplicated intransitive inference’ and the integration
of memories®’, and perform dimensionality reduction by compressing
irrelevant features™. Third, the anterior and lateral temporal cortices
associated with semantic memory® and retrograde amnesia® probably
containlatent variable representations capturing semantic structure.
This might correspond to the ‘anterior temporal network’ associated
with semantic dementia®’, while the first network (between sensory
and entorhinal cortices) might correspond to the ‘posterior medial
network’®?, and to the network mapping between visual scenes and
allocentric spatial representations® 2,

Whichregions constitute the generative network’s decoder? The
decoder converts latent variable representations in the higher associa-
tion cortex back to sensory neocortical representations via HF. Patients
with damage to the hippocampus proper but not the EC can generate
simple scenes (or fragments thereof), but an intact hippocampus is
required for more coherentimagery of complex ones*. We hypothesize
that conceptual units in the hippocampus proper help to generate
complex, conceptually coherent scenes (perhaps througharecurrent
‘clean up’ mechanism), but that anintact EC and its return pathway to
the sensory neocortex (the ventral visual stream for images) can still
decode representations to some extent in their absence.

Multiple generative networks can be trained concurrently from
a single autoassociative network through consolidation, with differ-
ent networks optimized for different tasks. In other words, multiple
networks could update their parameters to minimize prediction error
on the basis of the same replayed memories. This could consist of a
primary VAE with latent variables in the EC, plus additional parallel
pathways from the higher sensory cortex to the EC vialatent variables
in the mPFC or the alTL. (Computationally, the shared connections
couldbe fixed asthe alternative pathways are trained.) Note that in all
cases, return projections to the sensory neocortex via HF arerequired
todecode latent variables into sensory experiences.

Results

Modelling encoding and recall

Eachnew eventis encoded as an autoassociative tracein the hippocam-
pus, modelled asan MHN. Two properties of this network are particu-
larly important: memorization occurs with only one exposure, and
randominputsto the network retrieve stored memories sampled from
the whole set of memories (modelling replay).

We model recall as (re)constructing a scene from a partial input.
First, we simulate encoding and replay in the autoassociative net-
work. The network memorizes a set of scenes, representing events, as
described above. When the network s given a partial input, it retrieves
the closest stored memory. Even when the network is given random
noise, it retrieves stored memories (see Fig. 1c). Second, we simulate
recallinthe generative network trained on reactivated memories from
the autoassociative network, which is able to reconstruct the original
image when presented with a partial version of anitem from the train-
ing data (Fig. 1d).

In the basic model (Fig. 1a), the prediction error could be calcu-
lated for each event so that only the unpredictable events are stored
inthe hippocampus, as the predictable ones can already be retrieved
by the generative network (however, this is not simulated explicitly).
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Fig.3|Learning, relational inference and imaginationin the generative
model. a, Reconstruction error (red) and decoding accuracy (blue) improve
during training of the generative model. Decoding accuracy refers to the
performance of asupport vector classifier trained to output the central object’s
shape from the latent variables, using 200 examples at the end of each epoch

of generative model training. An epoch is one presentation of the training set
0f10,000 samples from the hippocampus. b, Relational inference as vector
arithmeticin the latent space. The three items on the right of each equation are
items from the training data. Their latent variable representations are combined
as vectors according to the equation, giving the latent variable representation
fromwhich the firstitemis generated. The pair in brackets describes a relation
whichis applied to the second item to produce the first. In the top row, the
object shape changes froma cylinder to a sphere. Inthe second, the object shape
changes fromacylinder to a cube, and the object colour fromred to blue. In the
third and fourth, more complex transitions change the object colour and shape,
wall colour and angle. ¢, Imagining new items via interpolation in latent space.
Each row shows points along alinein the latent space between two items from
the training data, decoded into images by the generative network’s decoder.

d, Imagining new items from a category. Samples from each of the shape
categories of the support vector classifierin aare shown.

d

‘sphere’

‘cube’

Inthe extended model (Fig. 2 and section ‘Combining conceptual and
unpredictable sensory features’), prediction error is calculated for
eachelementofan event, determining which sensory details are stored.

Modelling semantic memory

Existing semantic memory survives when the hippocampus is
lesioned*~*, and hippocampal amnesics can describe remote memo-
ries more successfully than recent ones®**, even if they might not recall
them ‘episodically”™. This temporal gradientindicates that the semantic
component of memories becomes HF-independent. In the model, EC
lesionsimpair all truly episodic recollection since the return projections
from the HF are required for the generation of sensory experiences.
Here we describe how remote memories could be retrieved ‘in semantic
form’ despite lesions including the hippocampus and the EC.

The latent variable representation of an event in the generative
network encodes the key facts about the event and can drive semantic
memory directly without decoding the representation back into a
sensory experience (Fig. 1g). The output route via HF is necessary for
turning latent variable representationsin mPFC or alTL into asensory
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Fig. 4| Generative network shows schema-based distortions. a, MNIST digits
(top) and the VAE's output for each (bottom). Recalled pairs from the same class
become more similar. A total of 10,000 items from the MNIST dataset were encoded
inthe MHN, and 10,000 replayed samples were used to train the VAE.

b, The variation within each MNIST class is smaller for the recalled items than for
the original inputs. For each of the 10 classes, the variance per pixelis calculated
across 500 images, and the 784 pixel variances are then plotted for each class before
and after recall. Ineach boxplot, the box gives the interquartile range, its central

line gives the median, and its whiskers extend to the 10th and 90th percentiles of
thedata. c,d, The pixel spaces of MNIST digits (bottom row) and the latent space of
their encodings (top row) show more compact clusters for the generative network’s
outputs (d) than for its inputs (c). Pixel and latent spaces are shown projected into
2D with UMAP**¢ and colour-coded by class. e, Examples of boundary extension

and contraction. Top row: the noisy inputimages (from a held-out test set), with
anatypically ‘zoomed out’ or Zoomed in’ view (by 80% and 120% on the left and
right, respectively) for three original images. Bottom row: the predicted images

for each inputimage, which are distorted towards the ‘typical view’in each case.

f, Adapted figure from ref. 92, showing the distribution of boundary extension vs
contraction as a function of the viewpoint of animage. Specifically, the values are
the average of ‘closer’ vs ‘further’ judgements, assigned —1and 1, respectively, of
anidentical stimulus image in comparison with the remembered image (with 900
trials per position). Error bars give the standard error of the mean. Example stimuli
areshown at the bottom. g, In our model, the VAE increases the estimated size of the
central object in atypically ‘zoomed out’ views compared with the training data, and
decreasesitinatypically zoomedin’ views, asinref. 92. Two hundred images are
used ateach ‘zoom level’. See b for a description of boxplot elements.

experience, butthe latent variables themselves could support semantic
retrieval. Thus, when the HF (including the EC) is removed, the model
canstill support retrieval of semantic information (see section ‘Mod-
elling brain damage’ for details). To show this, we trained models to

predictattributes of eachimage fromits latent vector. Figure 3a shows
that semantic ‘decoding accuracy’ increases as training progresses,
reflecting the learning of semantic structure as aby-product of learn-
ingtoreconstructthe sensoryinput patterns (r,(48) =0.997,P<0.001,
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Fig. 5| Retrieval dependence on reconstruction error threshold and replay
inthe extended model. a, The stages of recall are shown from left to right (see
Fig.2d), where each row represents an example scene. Each scene consists

of astandard Shapes3D image with the addition of novel features (several
white squares overlaid on the image with varying opacity). b, Repeating this
process with a higher error threshold for encoding (with the same events and
partial inputs) means fewer poorly predicted sensory features are stored in
the autoassociative MHN, leading to more prototypical recall with increased
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reconstruction error. ¢, Average reconstruction error and number of sensory
features (thatis, pixels) stored in the autoassociative MHN against the error
threshold for encoding. One hundred images are tested and error bars give the
s.e.m.d, Replay in the extended model. The autoassociative network retrieves
memories when random noise is given as input, as shown for three example
inputs (upper row). As above, the square images show the poorly predicted
sensory features and the rectangles below these display the latent variable
representations (lower row).

95% confidence interval (CI) = 0.987,1.000). While semantic memory
is much more complex than simple classification, richer ‘semantic’
outputs such as verbal descriptions can also be decoded from latent
variable representations of images®>*°.

Imagination, episodic future thinking and relational inference
Here we model the generation of events that have not been experienced
fromthe generative network’s latent variables. Events can be generated
either by external specification of latent variables (imagination) or by
transforming the latent variable representations of specific events
(relational inference). The former is simulated by sampling from cat-
egoriesinthelatent space then decoding the results (Fig. 3d). The lat-
ter is simulated by interpolating between the latent representations
of events (Fig. 3¢) or by doing vector arithmetic in the latent space
(Fig. 3b). This illustrates that the model has learnt some conceptual
structure to the data, supporting reasoning tasks of the form ‘what is
toAasBisto C?’, and provides amodel for the flexible recombination
of memories thought to underlie episodic future thinking.

Modelling schema-based distortions
The schema-based distortions observed in human episodic memory
increase over time® and with sleep®, suggesting an association with

consolidation. Recall by the generative network distorts memories
towards prototypical representations. Figure 4a-d shows that hand-
written digits from the MNIST dataset® ‘recalled’ by a VAE become more
prototypical (MNIST is used for this because eachimage has asingle cat-
egory). Recalled pairs from the same class become more similar, that s,
intra-class variation decreases (paired samples ¢-test £(7,839) = 60.523,
P<0.001, Cohen’s d=-0.684, 95% Cl = 0.021, 0.022). The pixel space
of MNIST digits before and after recall and the latent space of their
encodings also show this effect. In summary, recall with a generative
network distorts stimuli towards more prototypical representations
evenwhennoclassinformationis given during training. As reliance on
the generative model increases, so does the level of distortion.
Boundary extension and contraction exemplify this phenom-
enon. Boundary extension is the tendency to remember a wider field
of view than was observed®®, while boundary contraction is the oppo-
site®. Unusually close-up views appear to cause boundary extension,
and unusually far away ones boundary contraction®, although this
is debated’*’'. We modelled this by giving the generative network a
range of new scenes that were artificially ‘zoomed in’ or ‘zoomed out’
compared with those inits training set; its reconstructions are distorted
towards the ‘typical view’ (Fig. 4e), as in human data. Figure 4g shows
the change in the object size in memory quantitatively, mirroring the
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Fig. 6| Schema-based distortions: effects of conceptual contextin the
extended model. a, Adapted figure from ref. 95 showing that recall of an
ambiguous item (stimulus figure, centre) depends onits context at encoding
(word fromlist1, left; or list 2, right), as shown by drawing from memory
(reproduced figure, far left and far right). b, Memory distortions in the extended
model, when the original scene (containing an ambiguous blurred shape) is
encoded with agiven concept (cube, top; sphere, bottom), represented by the
latent variables for that class. Then, a partial input is processed by the generative
network to produce predicted conceptual features and the sensory features

not predicted by the prototype for that concept (in this case, a white square)
forinput to the autoassociative MHN. However, pattern completion in the MHN
reproduces the originally encoded sensory and conceptual features (cube, top;
sphere, bottom), and these are recombined to produce the final output, which is
distorted towards the encoded conceptual context.

findings inref. 92 (Fig. 4f). (Note that the measure of boundary exten-
sion vs contraction used by ref. 92 is produced by averaging ‘closer’
vs ‘further’ judgements of an identical stimulus image in comparison
with theremembered image, rather than the drawing-based measure
we use, but the two measures are significantly correlated®.)

Combining conceptual and unpredictable sensory features

In the extended model, memories stored in the hippocampal autoas-
sociative network combine conceptual features (derived from the gen-
erative network’s latent variables) and unpredictable sensory features
(those with a high reconstruction error during encoding) (Fig. 2). In
these simulations, the conceptual features are simply a one-to-one copy
of latent variable representations. (Since latent variable representa-
tions arenotstable as the generative networklearns, concepts derived
from latent variables seem more likely to be stored than the latent
variables themselves, so this is asimplification; see section ‘Extended
model’ for further details.)

Figure 5a,b shows the stages of recall in the extended model after
encoding with a lower or higher prediction error threshold. After
decomposing theinputintoits predictable (conceptual) and unpre-
dictable (sensory) features, the autoassociative network performs

pattern completion on the combined representation. The prototypi-
cal (thatis, predicted) image corresponding to the retrieved concep-
tual features must then be obtained by decoding the associated latent
variable representationinto an experience viathe return projections
to the sensory neocortex. Next, the predictable and unpredictable
elements are recombined, simply by overwriting the prototypical
prediction with any unpredictable elements, via the connections
from the sensory features to the sensory neocortex. The extended
model is therefore able to exploit the generative network to recon-
struct the predictable aspects of the event from its latent variables,
storing only those sensory details that were poorly predicted in
the autoassociative network. Equally, as the generative network
improves, sensory features stored in the hippocampus may no longer
differ significantly from the initial schematic reconstruction in the
sensory neocortex, signalling that the hippocampal representation
isnolonger needed.

Schema-based distortions in the extended model

The schema-based distortions shownin the basic model result from the
generative network and increase with dependence onit, but memory
distortions can also have arapid onset™**. In the extended model, even
immediate recall involves a combination of conceptual and sensory
features, and the presence of conceptual features induces distortions
before consolidation of that specific memory.

In general, recall is biased towards the ‘mean’ of the class soon
after encoding due to the influence of the conceptual representations
(Fig. 5a,b). This is more pronounced when the error threshold for
encoding is high, as there is more reliance on the ‘prototypical’ rep-
resentations, resulting in the recall of fewer novel features. At alower
error threshold, more sensory detail is encoded, that is, the dimen-
sion of the memory trace is higher (r,(3) =-1, P<0.001). This results
in a lower reconstruction error (r(3) =1, P<0.001), indicating lower
distortion but at the expense of efficiency.

External context further distorts memory. Reference ** asked par-
ticipants to reproduce ambiguous sketches. A context was established
by telling the participants that they would see images from a certain
category. After adelay, drawings from memory were distorted to look
more like members of the context category. Figure 6b shows the result
of encoding the same ambiguous image with two different externally
provided concepts (acubeinthetop row, asphereinthebottomrow),
represented by the latent variables for each concept, as opposed to
the latent variables predicted by the image itself as in Fig. 5a,b. Dur-
ing recall, the encoded concept is retrieved in the autoassociative
network, determining the prototypical scene reconstructed by the
generative network. This biases recall towards the class provided as
context, mirroring Fig. 6a.

We also simulate the Deese-Roediger-McDermott (DRM) tas
in the extended model to demonstrate its applicability to non-image
stimuli. In the DRM task, participants are shown lists of words that
are semantically related to ‘lure words’ not present in the list; there
is arobust finding that false recognition and recall of the lure words
occur’”, Inthe extended model, gist-based semantic intrusions arise
as a consequence of learning the co-occurrence statistics of words.
First, the VAE is trained to reconstruct the sets of words in simple sto-
ries’ converted to vectors of word counts, representing background
knowledge. The system then encodes the experimental lists as the com-
bination of an ‘id_n’term capturing unique spatiotemporal context, and
the VAE’s latent representation of each word list (respectively analo-
gous to the stimulus-unique pixels and the VAE’s latent representation
of eachimagein Fig. 5). Asinthe human data, lure words are often but
not always recalled when the system is presented with ‘id_n’ (Fig. 7a),
sincethelatent variable representationsthat generate the wordsinthe
list also tend to generate the lure word. The system also forgets some
words and produces additional semantic intrusions. In addition, the
chance of recalling the lure word is higher for longer lists, asin human
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data from ref. 97, as more related words provide a stronger ‘prior’ for
the lure (Fig. 7b) (r,(10) = 0.998, P < 0.001, 95% CI = 0.982,1.000).

Modelling brain damage

Recent episodic memory is impaired following damage to the HF,
whereas semantic memory, including the semantic content of remote
episodes, appears relatively spared. In the model, the semantic form of
aconsolidated memory survives damage to the HF due to latent vari-
able representations in the mPFC or the alTL (even if those in the EC
arelesioned); Fig. 3a demonstrates how semantic recall performance
improves with the age of amemory, reflecting the temporal gradient of
retrograde amnesia (see section ‘Modelling semantic memory’). How-
ever, these semantic ‘facts’ cannot be used to generate an experience
‘episodically’ without the generative network’s decoder, in agreement
with multiple trace theory.

The extent of retrograde amnesia can vary greatly dependingin
part on which regions of the HF are damaged®®°. The dissociation of
retrograde and anterograde amnesia in some cases suggests that the
circuits for encoding memories and the circuits for recalling them
viathe HF only overlap partially”. For example, if the autoassociative
network is damaged but not the generative network’s decoder, the
generative network can still perform reconstruction of fully consoli-
dated memories. This could explain varying reports of the gradient of
retrograde amnesia when assessing episodic recollection (as opposed
to semantic memory), if the generative network’s decoder isintactin
patients showing spared episodic recollection of early memories®.
Note that the location of damage within the generative network’s
decoder also affects the resulting deficit in our model. In particular,
patients with damage restricted to the hippocampus proper can (re)
construct simple scenes but not more complex ones™.

Ourmodel alsoshows the characteristic anterograde amnesia after
hippocampal damage, asthe hippocampusis required toinitially bind
features together and support off-line training of the generative model.
Anterograde semantic learning would also be impaired by hippocampal
damage (as the generative network s trained by hippocampal replay).
While hippocampal replay need not be the only mechanismfor schema
acquisition, it would probably be much slower without the benefit
of replay. However, semantic learning over short timescales may be
relatively unimpaired, asitis less dependent on extracting regularities
from long-term memory'®.

Insemantic dementia, semantic memory isimpaired, and remote
episodic memory is impaired more than recent episodic memory'".
This would be consistent with lesions to the generative network, as
recent memories can rely more on the hippocampal autoassociative
network. However, the exact effects would depend on the distribu-
tion of damage across the various potential generative networks in
the EC, mPFC and alTL. Of these, the alTL network is associated with
semantic dementia, and the posterior medial network (corresponding
tothe generative network between the sensory areas and the EC) with
Alzheimer’s disease®™.

Finally, neuropsychological evidence suggests a distinction
between familiarity and recollection, and furthermore a partial disso-
ciation between different tests of familiarity; patients with selective hip-
pocampal damage can exhibit recognition memory deficitsinasimple
‘yes/no’ task with similar foils, but notin a ‘forced choice’ variant involv-
ing choosing the more familiar stimulus fromaset'%% Thisis consistent
with the idea that lower prediction error in the neocortical generative
network indicates familiarity, but retrieval of unique details from the
hippocampusiis required for more definitive recognition memory.

Discussion

We have proposed amodel of systems consolidation as the training of a
generative neural network, which learns to support episodic memory,
and also imagination, semantic memory and inference. This occurs
through teacher-studentlearning. The hippocampal ‘teacher’ rapidly
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Fig.7|Modelling the DRM task. a, First, the VAE is trained to reconstruct

simple stories” converted to vectors of word counts, representing background
knowledge. The system then encodes the lists as the combination of an ‘id_n’

term capturing unique spatiotemporal context, and the VAE’s latent variable
representation of the word list. In each plot, recalled stimuli when the system is
presented with ‘id_n’ are shown, with output scores treated as probabilities so that
words withascore >0.5 (above dashed lines) are recalled. Words from the stimulus
listare shown inblue, and lures in red. See Fig.1of Supplementary Information

for results for the remaining DRM lists. b, The chance of recalling the lure word is
higher when longer lists are encoded (blue). Each measurement is averaged across
400 trials (20 random subsets of each of the 20 DRM lists), and error bars give the
s.e.m. This qualitatively resembles human data fromref. 97 (grey).

encodes an event, which may combine unpredictable sensory elements
(with connections to and from the sensory cortex) and predictable
conceptual elements (with connections to and from latent variable
representationsinthe generative network). After exposureto replayed
representations from the ‘teacher’, the generative ‘student’ network
supports reconstruction of events by forming a schematic represen-
tation in the sensory neocortex from latent variables via the HF, with
unpredictable sensory elements added from the hippocampus.

In contrast to therelatively veridical initial encoding, the genera-
tive model learns to capture the probability distributions underlying
experiences, or ‘schemas’. This enables not just efficient recall, recon-
structing memories without the need to store them individually, but
also imagination (by sampling from the latent variable distributions)
andinference (by using the learned statistics of experience to predict
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the values of unseen variables). In addition, semantic memory (that
is, factual knowledge) develops as a by-product of learning to predict
sensory experience. As the generative model becomes more accurate,
theneedtostoreandretrieve unpredicted detailsin the hippocampus
decreases (producing a gradient of retrograde amnesia in cases of
hippocampal damage). However, the generative network necessarily
introduces distortion compared to the initial memory system. Multiple
generative networks can be trained in parallel, and we expect this to
include networks with latent variables in the EC, mPFCand alTL.

We now compare the model’s performance to the list of key find-
ings from theintroduction:

1. Gradual consolidation follows one-shot encoding: A memory
is encoded in the hippocampal ‘teacher’ network after a single
exposure, and transferred to the generative ‘student’ network
after being replayed repeatedly (Fig. 1c,d).

2. Semantic memory becomes hippocampus-independent: The
latent variable representations learned by the generative net-
works constitute the ‘key facts’ of an episode, supporting se-
mantic memory (Fig. 3a).

3. Episodic memory remains hippocampus-dependent: Return
projections to the sensory neocortex via the HF are required to
decode the latent variable representations into a sensory expe-
rience (Fig. 1). (EC is required for even simple (re)construction,
while the hippocampus proper helps to generate complex con-
ceptually coherent scenes and retrieves unpredictable details
that are not yet consolidated into the generative network; see
section ‘Neural substrates of the model’.)

4. Shared substrate for episode generation: Generative models are
a common mechanism for episode generation. Familiar scenes
can be reconstructed and new ones can be generated by sam-
pling or transforming existing latent variable representations
(Fig. 3b-d), providing a model for imagination, scene construc-
tion and episodic future thinking.

5. Consolidation promotes inference and generalization: Rela-
tional inference corresponds to vector arithmetic applied to the
generative network’s latent variables (Fig. 3b).

6. Episodic memories are distorted: We show how memory distor-
tions arise from the generative network (Figs. 4, 6 and 7). This
extends the model of ref. 32 to relate memory distortion to
consolidation.

7. Association cortex encodes latent structure: Latent variable
representations in the EC, mPFC, and alTL provide schemas for
episodic recollection and imagination (via HF) and for semantic
retrieval and inference.

8. Prediction error affects memory processing: The generative
network is constantly calculating the reconstruction error of
experiences®*’, Events that are consistent with the existing gen-
erative model require less encoding in the autoassociative hip-
pocampal network (Fig. 5).

9. Episodic memories include conceptual features: When an expe-
rience combines a mixture of familiar and unfamiliar elements,
both concepts and poorly predicted sensory elements are
stored in the hippocampus via association to a specific memory
unit.

Our model canbe seen as an update to the complementary learn-
ing systems (CLS)* framework to better account for points 3 to 9
above, reconciling the development of semantic representations in
the neocortex (as in CLS) with the continued dependence on the hip-
pocampal formation for episodic recall (as in multiple trace theory™).
Furthermore, it provides a unified view of: (1) episode generation, (2)
how episodic memories change over time and exhibit distortions and
(3) how semantic and episodicinformation are combined in memory.
We build on previous work exploring the role of generative networks
in consolidation'", as models of the hippocampal formation® ", as
priors for episodic memory® and as models of spatial cognition?.

Akey aspect of the modelis that multiple generative networks can
betrained concurrently from asingle autoassociative network (Fig. 2a)
and may be optimized for different tasks. Thus, the latent representa-
tions inthe mPFC and the alTL may be more closely linked to value or
language than those in the EC'**'°*, These differences may arise from
differencesin network structure (for example, the degree of compres-
sion) or from additional training objectives that shape their representa-
tions'® (for example, the generative network with latent variables in
the mPFC mightbe trained to predict task-relevant value inadditionto
the EC representations). We expect the generative networks to overlap
closerto their sensoryinputs/outputs, where general-purpose features
are more useful, and diverge as the representations become more
abstract (or task-specificif there are additional training objectives)'°°.
This may involve a primary VAE with latent variables in the EC, with
additional pathways from the higher sensory cortex to the EC routed
vialatent variables in the mPFC or the alTL.

Our model raises some fundamental questions: Does true episodic
memory require event-unique detail, and does this require the hip-
pocampus? Or can prototypical predictions qualify asmemory rather
thanimagination? In the model, event-unique details are initially pro-
vided by the hippocampus but can also be provided by the generative
network. For example, if you know that someone attended your 8th
birthday party and gave you a particular gift, these personal semantic
facts need not be hippocampal-dependent but could generate ascene
with the right event-specific details, which would seem like episodic
memory. The increasingly sophisticated generation of images from
text using generative models'”” suggests that episode construction
from semantic facts is computationally plausible.

Episodic memories are defined by their unique spatiotemporal
context’. In the model, spatial and temporal context correspond to
conceptual features captured by place'*®'% or time"%" cells in the
hippocampus and might be linked to latent variable representations
formed in the EC, such as grid cells in the medial EC, which form an
efficient basis for locations in real®'*'" or cognitive spaces®"**, or
temporal context representationsin the lateral EC"*'™, Events with spe-
cific spatial and temporal context can be generated from these latent
variable representations, as has been modelled in detail for space®* 2.

More generally, this work builds on the spatial cognition litera-
ture, in which place and head direction cells act as latent variables
in a generative model**, allowing the generation of a scene from a
specific viewpoint. References °*> explore how egocentric sensory
representations could be transformed into allocentric latent vari-
ables before storage in the medial temporal lobe and conversely, how
egocentric representations could be reconstructed from allocentric
onestosupportimagery. The latent representations learned through
consolidationin our model correspond loosely to the allocentric rep-
resentations, and the sensory representations produced by HF to the
egocentric ones; only egocentric and sensory representations are
directly experienced, whereas allocentric and semantic representa-
tions are useful abstractions that can also be exploited for efficient
hippocampal encoding.

Our model simplifies the true nature of mnemonic processingin
severalways. First, the interaction of sensory and conceptual features
inthe hippocampus and latent variables in the EC during retrieval could
be more complex, with each type of representation contributing to
pattern completion of the other asin interactions between items and
contextual representations in the Temporal Context Model"¢, and
might iterate over retrievals from both hippocampal and generative
networks®. Second, our model distinguishes between ‘sensory’ and
‘conceptual’ representationsin the hippocampus, respectively linked
tothesensory neocortex at theinput/output of the generative network
andtothelatentvariablelayerinthe middle. Inreality, agradient of lev-
elsof representation in the hippocampusis more likely, from detailed
sensory representations to coarse-grained conceptual ones, respec-
tively linked to lower or higher neocortical areas™’, and might map onto

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-023-01799-z

the observed functional gradients along the longitudinal axis of the
hippocampus™®. Third, our generative network uses back-propagation
ofthe prediction error between outputandinput patternstolearn. Gen-
erative networks with more plausible (if less efficient) learning rules
exist® *, which have the advantage of producing a prediction error
signal at each layer (between top—down prediction and bottom-up
recognition), potentially allowing learning of concepts and excep-
tions at all levels of description. Fourth, considering consolidation as
a continual lifelong process rather than during encoding of a single
dataset introduces new complexities; these include the instability of
latent representations and the prevention of catastrophic forgetting
of already consolidated memories as new memories are assimilated
intothe generative network. The model could be extended to address
this, for example, by using replay from the generative network as well
as from the hippocampal network, which could reduce catastrophic
forgetting and stabilize latent variable representations in both net-
works®""12° building on previous research on sleep and learning''.
Fifth, we model semantic memory as prediction of categorical infor-
mation for an ‘event’, but future work should model more complex
semantic knowledge, for example, by decoding language from latent
representations of multimodal stimuli®>*. In particular, the relation-
ship between semantic memory for specific ‘events’ and the broader
‘web’ of general knowledge should be considered.

Episodic memories contain important sequential structure not
modelled by our encoding and reconstruction of simple scenes. Future
work could expand the model’s scope to sequential information as fol-
lows. A range of stimuli could be represented as sequences of arbitrary
symbols (including language, spatial trajectories and transitionsona
graph). A heteroassociative variant of an MHN, which is better suited
to sequential data, could be used to store such stimuli. Specifically,
the interpretation of an MHN that we use®* can capture sequential
information if the projections from feature units to memory units
correspond to the current state, but the projections from memory
units back to feature units correspond to the next state so that one
state retrieves the next'>*'**, With certain modifications based on
previous work involving the role of temporal context in memory"¢'%,
asymmetric MHNs can store sequences with complex repetitions and
temporal correlations, such as language. We could thenimplement the
student model as a sequential generative network trained to predict
the nextinput during sequential replay (for example, GPT-2 (ref.126)).
Such networks capture relational structure, developing grid-like latent
representations in spatial tasks™, and learn the gist of narratives. The
sequential model could also be applied to phenomena such as event
segmentation'” and memory distortions in narratives®. (Note that for
more complex sequential data such as videos, pattern completion of
both the current stimulus and the next stimulus would be required,
potentially needing a combination of autoassociative and heteroas-
sociative connectivity in the hippocampal network.)

Our model makes testable predictions. First, if participantslearn
stimuli generated from known latent variables, it predicts that these
specificlatent variable representations should develop inthe associa-
tion cortex over time (and that this representation would support, for
example, vector arithmetic and interpolation). This could be tested
by representational similarity analysis, which should reveal a more
conceptual similarity structure developing in the association cortex
through consolidation, as opposed to a similarity structure reflect-
ing the sensory stimuli in earlier sensory cortices. If the stimuli also
contained slight variation, that is, they were not entirely described
by the latent variables, the development of alatent variable represen-
tation should be correlated with gist-based distortions in memory
and anti-correlated with hippocampal processing of unpredictable
elements.

Second, the model makes multiple predictions about the effects
of brain damage. Just as boundary extension is reduced in patients
with damage to the HF'>® or the vmPFC'?’, we predict that other biases

towards the ‘canonical view would be attenuated in such patients; for
example, healthy controls would distort images with an atypical view-
ing angle towards a more typical angle in memory, but this would be
reducedin, for example, hippocampal patients. Similarly, ambiguous
images such as the duck/rabbit drawing ‘flip’betweeninterpretations
in perception but are stable when held inimagery”?, presumably due
to maintained hippocampal conceptual representations. We predict
that this conceptual stability inimagery would also be reduced insuch
patients. This could also extend to non-scene stimuli: if the ref. 95 task
were tested with both healthy controls and patients with damage to the
generative decoder, we would predict reduced contextual distortionin
thelatter. Furthermore, patients with aninaccurate generative model,
forexample, due to semantic dementia, might rely more on sensory fea-
tures to compensate. (Note that the pattern of deficits would depend on
boththe nature of the priorsencoded in the generative network and the
error threshold for encoding. Insome cases, damage to the generative
network could produce atypical ‘priors’ rather than suppressing them.
Thus, if the generative network is inaccurate but the error threshold
for encodingis high, atypical distortions will be observed rather than
areductionin conceptual distortions.)

Third, the model suggests that the error threshold for encoding
could vary depending ontheimportance of the stimuli or the amount
of attentional resource available. For example, emotional salience
couldlower this threshold, with traumatic memories being encodedin
greater sensory detail and with less contextual coherence™**', Equally,
conditions such as autism spectrum disorder, which are potentially
attributable to hypo-priors', might be associated with alower predic-
tionerror threshold for veridical storage (and thus reduced conceptual
influence on memory and increased sensory detail). In addition, real-
ity monitoring deficits would change the perceived prediction error
relative toreality, leading to atypical memory storage (for example, a
reduced ability to compensate for prediction errors by storing sensory
details).

Fourth, biological intelligence excels at generalizing from only a
small number of examples. The model predicts thatlearning to gener-
alize rapidly benefits from having a generative model that can create
new examples, forexample, by inferring variants (as in Fig. 3b) (see also
ref. 133). Finally, the model suggests a link between latent spaces and
cognitive maps™*. For example, one might predict that the position
ofamemory inlatent spaceisreflected in place and grid cell firing, as
observed for other conceptual representations™>*1%,

In summary, our proposed model takes inspiration from recent
advances in machine learning to capture many of the intriguing phe-
nomenaassociated with episodic memory, its (re)constructive nature,
its relationship to schemas, and consolidation, as well as aspects of
imagination, inference and semantic memory.

Methods

Data

In the simulations, images represent events (except for the DRM”***
task stimuli). The Shapes3D dataset*° was used throughout, except
for the use of MNIST* to explore certain distortions. Note that one
MHN was used per dataset, and one generative model was trained per
dataset from the corresponding MHN’s outputs.

Basic model

In our model, the hippocampus rapidly encodes an event, modelled
as one-shot memorization in an autoassociative network (an MHN).
Then, generative networks are trained on replayed representations
from the autoassociative network, learning to reconstruct memories
by capturing the statistical structure of experienced events.

The generative networks used are variational autoencoders, atype
of autoencoder with special properties such that randomly sampling
values for the latent variables in the model’s ‘bottleneck’ layer gener-
ates valid stimuli®. Figure 3 of Supplementary Information, adapted
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fromref.137, shows how directionsin the latent space can correspond
to meaningful transformations. While most diagrams show the VAE’s
input and output layers in the sensory neocortex as separated (in line
with conventions for visualizing neural networks), it is important to
note that the input and output layers are in fact the same, as shown
in Fig. 1b. There may be considerable overlap between the encoder
and decoder, especially closer to the sensory neocortex, but we did
not model this explicitly. The autoassociative model is an MHN, with
the property that even random input values will retrieve one of the
stored patterns via pattern completion. Specifically, we considered
the biologicalinterpretation of the MHN as feature units and memory
units suggested by ref. 64 (see Supplementary Information for details).

We modelled consolidation as teacher-student learning, where
the autoassociative network s the ‘teacher’ and the generative network
isthe ‘student’ trained onreplayed representations fromthe ‘teacher’.
We gave random noise (consisting of uniformly sampled valuesin each
channel for each pixel) as aninput to the MHN, then used the outputs
ofthe networkto train the VAE. (These outputs represent the high-level
sensory representations activated by hippocampal pattern comple-
tion, via return projections to the sensory cortex.) The noise input to
the autoassociative network could potentially represent randomacti-
vation during sleep™**°, Attributes such as reward salience might also
influence which memories are replayed but were not modelled here'.

Duringthe encoding state in our simulations,images were stored
inacontinuous MHN with highinverse temperature, 8, set to 20 (higher
values of B produce attractor states corresponding to individual memo-
ries, while lower values of S make metastable states more likely). Ref-
erence * provides an excellent Python implementation of MHNs that
we used in our code. During the ‘rest’ state, random noise was given
asaninput Ntimes to the MHN, retrieving N attractor states from the
network. (Thedistribution of retrieved attractor states was not tested
but was approximately random, and very few spurious attractors were
observed with sufficiently high inverse temperature.) In the main
simulations, 10,000 items from the Shapes3D dataset were encoded
inthe MHN, and 10,000 replayed states were used to train the VAE (that
is, Nis10,000). (Rather than replaying new samples from the MHN at
each epoch of the VAE’s training, a single set of samples was used for
efficiency and simplicity.)

A VAE was then trained on the ‘replayed’ images from the MHN,
using the Keras API for TensorFlow'*?. The loss function (that is, the
error minimized through training) is the sum of two terms, the recon-
struction error and the Kullback-Leibler divergence®; the former
encourages accurate reconstruction, while the latter (which measures
the divergence between the latent variables and a Gaussian distribu-
tion) encourages alatent space one can sample from. Specifically, the
reconstruction loss in our model is a mean absolute error loss. (Note
that the terms reconstruction error and prediction error are used
interchangeably throughout.)

The stochastic gradient descent method used was the AMSGrad
variant of the Adam optimizer with early stopping enabled, for amaxi-
mum of 50 epochs (where an epoch is a complete pass through the
training set). Alatent variable vector length of 20, learning rate of 0.001
and Kullback-Leibler weighting of 1were used in the main results. The
variational autoencoders were not optimized for performance, as their
purpose is illustrative (more data and hyperparameter tuning would
be likely to improve reconstruction accuracy). Architectural choices
withinthe VAE were not principled but were based on successful archi-
tectures for similar stimuliin theliterature. See Supplementary Infor-
mation for details of the VAE's architecture. The VAEs were trained using
gradient descent and back-propagation as usual; while this method is
biologically implausible due to its non-local nature, more plausible
learning algorithms might be feasible'.

While this was not modelled explicitly, once the generative net-
work’s reconstruction error is sufficiently low, the hippocampal trace is
unnecessary. Asaresult, it could be ‘marked for deletion’ or overwritten

in some way, freeing up capacity for new encodings. However, we did
not simulate decay, deletion or capacity constraints in the autoas-
sociative memory part of the model. In these simulations, the main
cause of forgetting would be interference from new memories in the
generative model.

Note that throughout the simulations, the input to recall was a
noisy version of the encoded stimulus image. Specifically, noise was
addedbyreplacingarandom fraction (0.1 unless stated otherwise) of
valuesin theimage array with zero.

While we used only one modality at atime (imagery for the major-
ity of simulations, text for the DRM task), our model is compatible with
the multimodal nature of experience, as multimodal inputs to VAEs
are possible, which result in a multimodal latent space***. This could
reflect the multimodal nature of concept cells in the hippocampus®’.

Modelling semantic memory

We modelled semantic memory as the ability to decode latent vari-
ables into semantic information without the need to reconstruct the
event episodically.

Decoding accuracy was measured by training a support vector
machineto classify the central object’s shape from the network’s latent
variables, using 200 examples at the end of each epoch and measuring
classificationaccuracy onaheld-out test set. (Notably, there was good
performance with only asmall amount of training data when decoding
the latent variables, compared with decoding alternative representa-
tionssuch as the sensory input or intermediate layer activations, that
is, few-shot learningis possible by making use of compressed ‘semantic’
representations. See Fig. 2 of Supplementary Information.)

Modelling imagination and inference

In the generative network, new items can either be generated from
externally specified (or randomly sampled) latent variables (imagi-
nation), or by transforming the latent variable representations of
specific events (relational inference). The former was simulated by
sampling from categoriesinthe latent space, thendecoding the results
(Fig.3d). Thelatter was simulated by interpolating between the latent
representations of events (Fig. 3¢) or by doing vector arithmeticin the
latent space (Fig. 3b).

Examples of the four different object shapes were generated by
Monte Carlo sampling for simplicity, that is, samples from the latent
space were classified by the semantic decoding classifier, and examples
that activate each category are displayed. (Note that there are many
alternative ways to do this, for example, by extracting the decision
boundaries from the classifier and sampling within the region cor-
responding to each class.) Generating imagined scenes from more
naturalistic inputs, for example, natural language descriptions, would
require amuch more sophisticated text to the latent space model, but
recent machine learning advances suggest that this is possible'®.

To demonstrateinterpolation, each row of Fig. 3c shows items gen-
erated fromlatent variables alongaline in the latent space between two
real items from the training data. To demonstrate vector arithmetic,
each equation in Fig. 3b shows ‘result = vector, + (vector; — vector,)’
(reflecting relational inference problems of the form ‘whatisto A as B
isto C?’), where the result is produced by taking the relation between
vectorzand vector, applying that to vector, and decoding the result. In
otherwords, the threeitems onthe right ofeach equationinFig.3b are
realitems fromthe training data. Their latent variable representations
are combined as vectors according to the equation shown, giving the
latent variable representation from which the first item is generated.
Thus, the pairinbrackets describes arelation thatis applied to thefirst
itemontheright to produce the new item on the left of the equation.

Modelling schema-based distortions
Itemsrecalled by the generative network become more prototypical, a
form of schema-based distortion. This can be shown simply in the basic
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model, using the MNIST digits dataset® to exemplify ten clearly defined
classes ofitems (Fig. 4). To show this quantitatively, we calculated the
intra-class variation, measured as the mean variance per pixel, within
each MNIST class before and after recall, for 5,000 images from the test
set. As expected, the intra-class variation was smaller for the recalled
items than for the original inputs. (See Supplementary Information
for details of the model architecture.)

To visualize this, we projected the pixel and latent spaces before
and after recall (of 2,000 images from the MNIST test set) into two
dimensions (2D) with uniform manifold approximation and projec-
tion (UMAP)™¢, a dimensionality reduction method, and colour-coded
them by class (Fig. 4c,d). The pixel space of MNIST digits (bottom
row) and the latent space of their encodings (top row) showed more
compact clusters for the generative network’s outputs (Fig. 4d) than
foritsinputs (Fig. 4c).

Modelling boundary extension and contraction

Boundary extensionis the tendency toremember a wider field of view
thanwas observed for certain stimuli®®, while boundary contraction is
the tendency to remember a narrower one®’, Whether boundaries are
extended or contracted seemsto depend on the perceived distance of
the central object, with unusually close-up (that is, ‘object-oriented’)
views causing boundary extension, and unusually far away (that is,
‘scene-oriented’) views causing boundary contraction®.

Wetested boundary extension and contractionin the basic model
by giving it a range of artificially ‘zoomed in’ or ‘zoomed out’ images,
adapted from Shapes3D scenes not seen during training, and observing
the outputs. The ‘zoomed in’ view was produced by removing n pixels
from the margin. The ‘zoomed out’ view was produced by extrapolating
the pixels at the margin outwards by n additional pixels. (In both cases,
the new images were then resized to the standard size.) The zoom level
is the ratio of the central object size in the output image to the size in
the originalimage, given as a percentage; for example, animage with a
zoom level of 80% or aratio of 0.8 was produced by adding amarginso
that the object size is 80% of the original size. As the Shapes3D images
are of width and height 64, the number of pixels to add or remove was
calculated as ‘margin = (32/ratio) - 32"

In Fig. 4g, the change in object size between the noisy input and
output was estimated as follows: first the image was converted to afew
colours by k-means clustering of pixels. Then, the colour of the central
object was determined by finding the predominant colourinaparticu-
lar central region of theimage. A1D array of pixels corresponding toa
vertical line at the horizontal midpoint of the image was processed to
identify the fraction of pixels of the central object colour. This enabled
usto calculate the change in object size, which we plotted against the
degree of ‘zoom'. (For this object size estimation approach to work,
we filtered the Shapes3D dataset to images where the object colour
was different from both the wall and floor colour, and additionally to
cubes to minimize shadow.)

Note that the measure of boundary extension vs contraction dis-
playedinFig. 4f, reproduced fromref. 92, was not based on the degree
of distortion, but was produced by averaging ‘closer’ vs ‘further’ judge-
ments of an identical stimulus image in comparison to the remem-
bered image. This differs from our measure in Fig. 4g, which instead
corresponds to the drawing-based measure in ref. 89; however, these
measures have been shown to be correlated®.

Figure 4e shows a few examples of boundary extension and con-
traction. In the left- and right-hand images of each set, the margin n
is chosen such that the central object is 80% and 120% of the original
size, respectively.

Extended model

The extended model was designed to capture the fact that memory
traces in the hippocampus bind together a mixture of sensory and
conceptual elements, with the latter encoded by concept cells®, and

the fact that schemas shape the reconstruction of memories even
before consolidation, as shown by the rapid onset of schema-based
distortions”*,

In the extended model, each scene was initially encoded as the
combination of a predictable and an unpredictable component. The
predictable component consisted of concepts captured by the latent
variables of the generative network, and the unpredictable component
consisted of parts of the stimuli that were poorly predicted by the
generative network. Thus, the MHN model has both conceptual and
sensory feature units, which store the predictable and unpredictable
aspects of memory, respectively. While memories may eventually
become fully dependent on the generative model, consolidation can
beaprolonged process during which the generative network provides
schemas forreconstructionand the autoassociative network supports
new or detailed information not yet captured by schemas. (The VAE
trained in the basic model simulations was used in the extended model
simulations described below.)

How did encoding work in our simulations? For a new image, the
prediction error of each pixel was calculated by the VAE (simply the
magnitude of the difference between the VAE’s input and output).
Those pixels with a reconstruction error above the threshold consti-
tuted the unpredictable component, while the VAE’s latent variables
constituted the predictable component, and these components were
combined into a single vector and encoded in the MHN. Note that
when the threshold is zero, the reconstruction is guaranteed to be
perfect, but as the threshold increases, the reconstruction decreases
inaccuracy.

How did recall work before full consolidation? After decomposing
theinputintoits predictable (conceptual) and unpredictable (sensory)
components, as described above, the autoassociative network could
retrieve amemory. The image corresponding to the conceptual com-
ponent was then obtained by decoding the stored latent variables.
Next, the predictable and unpredictable elements were recombined,
simply by overwriting the initial schematic reconstruction in the sen-
sory neocortex with any stored (that is, non-zero) sensory features in
the hippocampus. Figure 5a,b shows this process. The lower the error
threshold for encoding sensory details, the more information was
stored in the autoassociative network, reducing the reconstruction
error of recall (see also section ‘Modelling schema-based distortions’).

How did replay work? When the autoassociative network was
given random noise, both the unpredictable elements and the corre-
spondinglatent variables wereretrieved. In Fig. 5d, the square images
show the unpredictable elements of MNIST images and the rectangles
below these display the vector of latent variables. (As the generative
model improves, the presence of hippocampal sensory features that
no longer differ from the initial reconstruction indicates that the hip-
pocampal representation is no longer needed, but this was not simu-
lated explicitly.)

We note that thelatent variable representationis not stable as the
generative network learns. If some latent variables are stored in the
autoassociative network while the VAE continues to change, the quality
ofthe VAE's reconstruction will gradually worsen; this is also a feature
of previous models*. Some degree of degradation may reflect forget-
ting, but consolidation can be a prolonged process and hippocampal
representations can persist in this time. Therefore, we think that con-
ceptsderived fromlatent variables are more likely to be stored than the
latent variables themselves, promoting the stability of hippocampal
representations. (For example, in humans, language provides a set
of relatively persistent concepts, stabilized by the need to communi-
cate.) Projections from the latent variables can classify attributes with
only asmallamount oftraining data (see section ‘Modelling semantic
memory’); we suggest that there could be atwo-way mapping between
latent variables and concepts, which supports categorization ofincom-
ing experience as well as semantic memory. However, for simplicity, the
conceptual features were simply a one-to-one copy of latent variable
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representationsin these simulations. It may also be possible to stabilize
thelatent variable representations by reducing catastrophic forgetting
inthe generative network, for example, by using generative as well as
hippocampal replay*"*'?°, with the generative network trained on its
ownself-generated representations in addition to new memories. This
builds on previous research suggesting that certain stages of sleep are
optimized to preserve remote memories, while others consolidate new
ones™., This could reduce interference of new learning with remote
memories in the generative network, as well as make hippocampal
representations in the extended model more stable.

Modelling schema-based distortions in the extended model
Carmichael experiment. We demonstrated the contextual modulation
of memory (as inref. 95) in the extended model by manipulating the
conceptual component of an ‘event’. To model an external conceptual
context being encoded, the original image was stored in the autoas-
sociative network along with activation of a given concept (a cube or
asphere), represented as the latent variables for that class. While in
most simulations the latent variables stored in the MHN were simply
the output of the VAE’s encoder, here an external context activated the
conceptual representation, consistent with activity inthe EC, mPFC or
alTL driven by extrinsic factors.

During recall, a noisy input was processed by the generative net-
work to produce a predicted conceptual feature and the sensory fea-
tures not predicted by the prototype for that concept, for input to the
autoassociative MHN. Pattern completion in the MHN produced the
originally encoded sensory and conceptual features, and these were
recombined to produce the final output.

DRM experiment. The DRM task is a classic way to measure gist-based
memory distortion®***. Here we demonstrated the rapid onset of
semantic intrusions in the extended model, coming about as a con-
sequence of learning the co-occurrence statistics of words in a text
dataset representing ‘background knowledge’. This followed on from
previous work showing that VAEs produce semantic intrusions®.

Inbrief, the DRMtask involved showing participants alist of words
that were semantically related to a ‘lure word’, whichwas not presentin
thelist. There was atendency for both false recognition and false recall
ofthelure word. We focused on modelling the recall task, but the same
model could be extended to recognition (with recognition memory
measured by the reconstruction error of the network).

The generative network was pre-trained on a set of word lists
extracted from simple stories’, representing learning from replayed
memories before the DRM stimuli (although replay was not simulated
explicitly). Words occurring in <0.05% or >10% of documents were
discarded tokeep the vocabulary toa manageable size of 4,206 words
(thismeant that some rarer words in the DRM lists were removed). The
word lists were converted to vectors of word counts of length 4,206,
inwhich the value atindex i of the vector for a given list indicated the
countof wordiinthe document. As these representationsignore word
order, a sequential model was not required (however, this prevented
exploring the effect of list position on recall).

Specifically, the variational autoencoder used for this simulation
consisted ofaninputlayer followed by adropoutlayer' projecting to
300 latent variables (sampled fromrepresentations of the meanand log
variance vectors as usual), and then to an output layer with a sigmoid
activationsothat predictions were between O and 1, with L1 regulariza-
tion to promote sparsity in this layer. As above, this wasimplemented
using the Keras API for the TensorFlow library™**'*$, with the VAE trained
toreconstruct input vectors in the usual way.

Following pre-training of the generative network, the system
encoded the DRM stimuli, with each of the 20 word lists represented
as vectors of word counts. One important detail was the addition of a
term, given by ‘id_n’ for the nth documentin the corpus, representing
the unique spatiotemporal context of each word list. (Note that this

is a highly simplified representation of the spatiotemporal context"
forillustration.) This enabled recall to be modelled by presenting the
network with the ‘id_n’ term, and seeing which terms were retrieved.

In the extended model, the latent representation of the word
list was encoded in the MHN as the conceptual component, while the
unique ‘id_n’terms were encoded veridically (as vectors of word counts
of length 4,226 —the original vocabulary size plus the 20 new ‘id_n’
terms—with1at‘id_n’and O elsewhere). The sparse vector representing
the unexpected ‘id_n’ termis analogous to the sparse arrays of poorly
predicted pixels in the main simulations of the extended model.

When the MHN was given ‘id_n’ as an input, it retrieved the hip-
pocampal trace consisting of ‘id_n’ together with the latent represen-
tation of the word list. The latent representation was then decoded to
produce the outputs shownin Fig. 7a (a dashed line shows the threshold
for recall, interpreting the output as a probability so that words with
an output >0.5 are recalled). As in the human data, lure words were
oftenbut not always recalled. The system also forgot some words and
produced additional semanticintrusions, for example, ‘vet’in the case
of the ‘doctor’ list.

To test the effect of varying the number of associates, asinref. 97,
subsets of the DRM lists were encoded in the way described above. Spe-
cifically, totest the probability of lure recall with nassociates studied, n
items fromeach DRM list were encoded. For eachlist, this was repeated
for 20 randomly sampled combinations of nitems. Once again, recall
was tested by giving the system ‘id_n"as aninput.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The following datasets (all covered by the Creative Commons Attribu-
tion4.0 License) were used in the simulations:

MNIST®: https://www.tensorflow.org/datasets/catalog/mnist
Shapes3D™: https://www.tensorflow.org/datasets/catalog/shapes3d
ROCStories”: https://cs.rochester.edu/nlp/rocstories

Code availability

Code for all simulations can be found at https://github.com/ellie-as/
generative-memory. Some diagrams were created using BioRender.
com.
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A Supplementary information

A.1 Supplementary results

Figure [1] shows results for the 18 remaining Deese-Roediger-McDermott task word lists not shown
in Figure 7. As in the human data, lure words are often but not always recalled when the model
is presented with ‘id_n’. The model also forgets some words, and produces additional semantic
intrusions. See Methods for further details.

Figure 2] shows that latent representations support few-shot learning better than intermediate rep-
resentations extracted from the encoder or the ‘sensory’ image features. Decoding accuracy is
measured by training a support vector machine to classify the central object’s shape, varying the
input features and the amount of data, and evaluating the resulting model on a held-out test
set. The intermediate features tested are the outputs of four convolutional layers in the encoder,
flattened to one-dimensional vectors.

A.2 Further model details

A.2.1 Variational autoencoders

The generative networks used in the model are variational autoencoders. An autoencoder is a
neural network which encodes an input into a shorter vector, and then decodes this compressed
representation back to the original. It learns by minimising the difference between the inputs and
outputs. There is no guarantee that decoding an arbitrary compressed representation produces
a sensible output, so standard autoencoders do not perform well as generative models. In other
words, there are many regions in the vector space of the compressed representations which do not
correspond to anything meaningful. However, one can train an autoencoder with special properties,
such that each latent variable is normally distributed for a given input, which allow one to sample
realistic items. The result is called a variational autoencoder#2 Latent variables can be thought
of as hidden factors behind the observed data, and directions in the latent space can correspond to
meaningful transformations - see Figure 8b for an example from Hou et al*

The VAEs in these simulations use convolutional layers to better encode and decode image features.
Convolutional layers learn sliding windows that scan the image for a relevant feature, outputting a
stack of feature maps® Applying such a layer to the output of a preceding convolutional layer has
the effect of finding higher-level features in the stacked feature maps, i.e. if the first convolutional
layer learns to identify simple features such as lines at different orientations, the second convolutional
layer might learn features consisting of combinations of lines.

A large VAE was used for the Shapes3D dataset (containing RGB images of size 64x64 pixels), and
a small VAE was used for the MNIST dataset (containing greyscale images of size 28x28 pixels).
In the large model’s encoder, four convolutional layers gradually decrease the width and height of
the representation and increase the depth (as is standard when using convolutional neural networks
to encode images), followed by a pooling layer and dense layers to represent the mean and log
variance of the latent representation. In addition, a dropout layer immediately after the input
layer is added to improve the denoising abilities of the model!¥l In the decoder, four convolutional
layers alternate with up-sampling layers to increase the width and height of the representation and
decrease the depth. The smaller VAE used for the MNIST simulations has a latent dimension of 20,
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Figure 2: Latent representations support few-shot category learning. The accuracy of an object shape classifier on
a held-out test set is shown for different amounts of training data, with different layers of the VAE as input features.
The classifier is a simple support vector machine as in Figure 2a.

and a reduced architecture with fewer convolutional layers for efficiency (specifically, there are two
convolutional layers in the encoder and two transposed convolutional layers in the decoder).

The following list describes the sequence of operations within the large VAE’s encoder network,
using the layer names from the TensorFlow Keras API? (see also Figure [3)):

1.
2.

© »®» 3o

10.
11.

Input layer for arrays of shape (n, 64, 64, 3), representing n 64x64 RGB images

Dropout layer with a dropout rate of 0.2 (during training, dropout randomly sets a fraction
of the input units to 0 at each step, reducing overfitting and encouraging robustness)

. Conv2D layer with 32 filters (i.e. convolutional windows, or feature detectors) and kernel size

of 4 (i.e. windows of 4x4 pixels)

Batch normalisation layer (batch normalisation is a common technique which computes the
mean and variance of each feature in a mini-batch and uses them to normalise the activations)

LeakyReLU activation layer (LeakyReLU is an activation function that is a variant of the
Rectified Linear Unit, ReLU)

Conv2D layer with 64 filters and kernel size of 4
Batch normalisation layer

LeakyReLU activation layer

Conv2D layer with 128 filters and kernel size of 4
Batch normalisation layer

LeakyReLU activation layer



12.
13.
14.
15.
16.
17.
18.

The
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Conv2D layer with 256 filters and kernel size of 4

Batch normalisation layer

LeakyReLU activation layer

Global average pooling 2D layer

Dense layer to produce the mean of the latent vector

Dense layer to produce the log variance of the latent vector (in parallel with the layer above)

Custom sampling layer that samples from the latent space, with the mean and log variance
layers as inputs

same information for the decoder network is as follows:

. Input layer for arrays of shape (n, latent_dimension), where latent_dimension is 20 in these

results, representing n latent vectors

Dense layer that expands the latent space to a size of 4096
Reshape layer to reshape the input to a 4x4x256 tensor
Upsampling2D layer with a 2x2 upsampling factor
Conv2D layer with 128 filters and kernel size of 3

Batch normalisation layer

LeakyReLU activation layer

Upsampling2D layer with a 2x2 upsampling factor
Conv2D layer with 64 filters and kernel size of 3

. Batch normalisation layer

. LeakyReLU activation layer

. Upsampling2D layer with a 2x2 upsampling factor
. Conv2D layer with 32 filters and kernel size of 3

. Batch normalisation layer

. LeakyReLU activation layer

. Upsampling2D layer with a 2x2 upsampling factor
17.

Conv2D layer with 3 filters and kernel size of 3

2 Modern Hopfield networks

A Hopfield network uses a simple Hebbian learning rule to memorise patterns after a single expos-

ure.8

However one issue is their limited capacity; a Hopfield network can only recall approximately

0.14d states, where d is the dimension of the input data.? It therefore seems unlikely that classical
Hopfield networks are a good model of hippocampal memory encoding — even if we assume that



a) Schematic of network:

Input image (64, 64, 3)
l Dropout
Convolutional layer (31, 31, 32)
l Batch normalisation
Convolutional layer (14, 14, 64)
l Batch normalisation
Convolutional layer (6, 6, 128)
l Batch normalisation
Convolutional layer (2, 2, 256)

/\‘Batch normalisation, pooling
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Latent vector (20)

l

Dense layer (4096)
l Reshaping, up-sampling
Convolutional layer (8, 8, 128)
l Batch normalisation, up-sampling
Convolutional layer (16, 16, 64)
l Batch normalisation, up-sampling
Convolutional layer (32, 32, 32)
l Batch normalisation, up-sampling

Convolutional layer (64, 64, 3)
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Figure 3: Additional model details. a) Variational autoencoder architecture. Trainable layers (plus the input,
output, and sampled latent vector) are shown in boxes, along with the dimensions of their outputs, and non-
trainable operations such as activation functions, batch normalisation, and upsampling are shown as annotations.
See the SI for more details. b) Figure adapted from Hou et al with permission, showing the effect of adding and

subtracting a proportion « of various different vectors in the latent space of their VAE. (Diagrams were created using
BioRender.com.)



only a temporary store is required until consolidation occurs. In addition, they frequently recall
incorrect memories, as the energy function can get ‘stuck’ in a local minimum.

However, recent research has shown that the storage capacity of a Hopfield network can be increased
in several ways. Krotov and Hopfield! devise a new energy function involving a polynomial func-
tion, and a corresponding update rule to minimise this; the activation of a node flips from -1 to 1
or vice versa if the energy is lower in the flipped state. Ref™ develops this idea further, increasing
the capacity from approximately 0.14d to 242 with the use of an exponential energy function.
Ramsauer et al? extend this to memories involving continuous variables and further amend the
energy function, enabling the recall of much more complex data. (For example, whilst classical
Hopfield networks can only recall black and white images, the modern variant can recall greyscale
ones.)

However, understanding these new variants of Hopfield networks in terms of neural networks is less
straightforward. To recap, Equation (1) gives the energy of a standard Hopfield Network.2? During
recall, a node’s value is updated to the sign of the weighted sum of its inputs; in other words, a
node’s value is flipped if it decreases the energy. The matrix T gives the weights of the network,
and the calculation of T is simply Hebbian learning. (In these equations, o gives the state of the
network as a vector, and £ gives a stored pattern.)

N K

1 L "

(1) E=-3 > aiTijo;,  Ty=» &t
p=1

ij=1

Equation (2) gives the energy of a dense Hopfield network*? In this example F(x) is 23, but it
can be any polynomial function. As above, at recall time a node’s value flips if it decreases the
energy. When F(x) is 22, Equation (2) reduces to Equation (1) for a standard Hopfield network. In
any other case, the tensor T has more than two indices, and can no longer be thought of a matrix
produced by Hebbian learning. This means the energy is no longer a function of weights and
activations in a neural network. Modern Hopfield networks'? suffer from the same problem.

(2) E=- ZF(meaz‘) = - ZTiijinUk

.3,k

Krotov and Hopfield!? suggest a way to overcome this problem by using hidden units (which they
call ‘memory units’) in addition to the ‘feature units’ which represent the input. As a result, a
modern Hopfield network can be understood as a neural network, like its predecessor. The authors
provide two equations for the evolution of the feature neurons and hidden neurons over time. Rather
than using discrete time steps as in a classical Hopfield network, time is modelled as continuous.
They therefore give a pair of differential equations, in which change to each set of currents is
driven by the weighted sum of currents in the other layer. They then define an energy function,
chosen ‘so that the energy function decreases on the dynamical trajectory’. The energy function
has three terms: energy in the feature neurons, energy in the hidden neurons, and energy from the
interaction between the two groups. Importantly, the interaction term can be described in terms
of two-body synapses, so once again the energy is a function of weights and activations in a neural
network.



The authors state that ‘the memory patterns ... can be interpreted as the strengths of the synapses
connecting feature and memory neurons’. To understand the intuition behind this, suppose we set
the weights connecting a particular hidden node with the feature neurons to the values of the
pattern to be memorised. Then activating the hidden node results in the pattern being reinstated
in the feature neurons. In other words, each hidden node represents a memory, and each memory
could be encoded using Hebbian learning. The key point is that the energy does not require a
matrix of stored patterns, unlike in earlier formulations of modern Hopfield networks — the patterns
are encoded in the weights, and the energy is a function of weights and activations as explained
above.

Krotov and Hopfield™? show that under different circumstances, their formulation can be simplified
to dense associative memory ! or modern Hopfield networks Having established that modern
Hopfield networks increase memory performance and are biologically plausible (in the sense that
they involve only ‘two-body synapses’, and that memories can be stored as weights), we use them
to model the initial learning in the hippocampus.

An important question is how the memories get encoded as the weights of a bipartite graph in the
ref22 formulation of a modern Hopfield network. Each memory is bound together by a single node,
which connects the features that comprise that memory. The weights between a given memory node
and the feature nodes are simply the values of the features for that memory; these weights can be
learned by Hebbian learning. Therefore encoding in a modern Hopfield network is similar to previous
models of the hippocampus as ‘indexing’, or binding together, a set of memory components™ The
innovative aspect of modern Hopfield networks is the update rule, which is cleverly designed to
guarantee the desired properties. The equation below gives the new state pattern £”¢* in terms of
the previous state &, stored patterns X7, and inverse temperature 3

(3) £ = Xsoftmax(BX7TE)

In modern Hopfield networks, the inverse temperature parameter 5 determines whether individual
attractors or metastable states (superpositions of stored attractors) are retrieved. In our simulations
we set 8 very high in order to ensure that only individual ‘memories’ are recalled.

It should be noted that the modern Hopfield network could be swapped out for other computational
models of associative memory, providing they i) are high capacity, ii) can retrieve memories from
noise, and iii) are capable of one-shot memorisation.
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