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a b s t r a c t

We introduce a large-scale neurocomputational model of spatial cognition called ’Spacecog’, which
integrates recent findings from mechanistic models of visual and spatial perception. As a high-
level cognitive ability, spatial cognition requires the processing of behaviourally relevant features
in complex environments and, importantly, the updating of this information during processes of
eye and body movement. The Spacecog model achieves this by interfacing spatial memory and
imagery with mechanisms of object localisation, saccade execution, and attention through coordinate
transformations in parietal areas of the brain. We evaluate the model in a realistic virtual environment
where our neurocognitive model steers an agent to perform complex visuospatial tasks. Our modelling
approach opens up new possibilities in the assessment of neuropsychological data and human spatial
cognition.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Uncovering the underlying mechanisms of spatial cognition
nvolves a broad spectrum of research ranging from experimental
tudies with animals and humans to neurocomputational mod-
lling. Spatial cognition in its broadest interpretation must solve
arious problems including object detection (Cavanagh, 2011), vi-
ual attention (Carrasco, 2011), eye- and body-movements (Land,
009), as well as spatial memory and navigation (Burgess, 2008).
his combination of tasks requires an intimate coupling between
isual perception and cognition as outlined in the seminal work
f Ballard et al. (1997), which suggests a variable binding of ob-
ects in the world to internal cognitive programs through deictic
‘‘do-it-where-I’m-looking’’) strategies. In visuospatial tasks, the
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issue of spatial reference frames also comes into play: While
visual information is initially processed in a retinal reference
frame, grasping often relies on body or limb centred reference
frames (Pouget & Sejnowski, 1997), and navigation can even
recruit world-centred (allocentric) reference frames (Avraamides
& Kelly, 2008).

We propose that integrating mechanistic models into larger
scale cognitive system models is required to explain such high-
level cognitive functions. An example of this in a related domain
is the Spaun architecture (Eliasmith et al., 2012), which imple-
ments a large-scale spiking network to output physical move-
ments of a virtual robotic arm in a versatile set of cognitive tasks
like digit recognition, serial working memory, or mental arith-
metic. In the context of spatial cognition, previous bio-inspired
models mostly focus on spatial navigation (Becker & Burgess,
2000; Byrne et al., 2007) and a few modelling approaches also
exist in the field of bio-inspired robots, although with varying
biological plausibility (Antonelli et al., 2014; Moulin-Frier et al.,
2018). As overt behaviour is typically the result of a coordi-
nated activation involving many parts of the brain, attempts are
required to not only integrate models, but also to improve the
understanding of function across brain parts, which is limited
when neurocomputational models are only studied in isolation.

A particular aspect we are interested in is the ability of hu-

mans to guide attention by long-term memory. Experimental
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tudies have revealed that the hippocampus, via the parietal
ortex, contributes to object detection (Salsano et al., 2021; Sum-
erfield et al., 2006). However, most experimental studies and
omputational models that study attention and vision typically
irect attention based on visual cues, but not based on long-term
emory. From a conceptual point of view, the necessity for such
n interaction of vision and memory has previously been outlined
y Epstein et al. (2017), who argued that an effective use of a
ognitive map requires to anchor such a map to the world. To
he best of our knowledge, this interplay of memory and vision
n a spatial context is yet to be explored by neurocomputational
odels.
In order to explore this interaction, we introduce the Spacecog

odel as a systems-level approach to spatial cognition and shed
ight on how multiple brain areas might interact with each other
o display key elements of spatial memory and object detec-
ion. Built on the foundation of previous work done under the
uropean research project ‘‘Spatial Cognition’’ (Hamker, 2015),
pacecog builds upon three individual neurocomputational mod-
ls: A model of attention including object recognition and object
etection (Beuth, 2019), a model of perisaccadic space percep-
ion (Bergelt & Hamker, 2019), and a model of spatial memory
nd imagery (Bicanski & Burgess, 2018). Through this integration,
e propose how parietal cortical areas could interface with visual
nd long-term memory areas to form a complex understanding of
he surrounding environment. As visual information is initially
ncoded in a retinocentric reference frame the question arises
ow spatial memory, stored in a world-centred reference frame,
an guide visual perception.
The individual parts of the Spacecog model are anatomically

onstrained and, as shown by the original publications, replicate
xperimental findings of neural mechanisms responsible for vi-
ion, attention, eye movements, and memory recall. By combining
hem into a large-scale neurocomputational model of spatial cog-
ition, we aim to bridge the gap between previously disparate
ines of research and particularly explore the putative role of the
arietal cortex interfacing vision and memory. Acting as a case
tudy for an increased understanding of the integration of brain
reas, we propose how the brain deals with complex tasks in
ur everyday environment. We test the model on a functional
evel in a real-world like virtual environment, in which a neuro-
ognitive agent has the task to successfully locate, encode, recall
nd re-localise objects in a realistic scene.

. Methods

The neurocomputational model has been used to perform
isuospatial computations for a neuro-cognitive agent (Fig. 1a)
hich operates in a virtual environment (Fig. 1b). We next in-
roduce the virtual environment and explain the model and its
unctions.

.1. Virtual environment

The Unity game engine2 was used to create the spatial en-
vironment (a child’s room) and a cognitive agent, which we
will refer to as Felice. Felice is connected to the neural network
through a custom network interface built with Google’s protocol
buffers3. This extra step allows for the computational network
to run on a separate Linux server, while Unity is running on
a Windows computer, distributing the workload. Alternatively,
it is possible to use virtualisation techniques (e.g. the Windows

2 https://unity.com/.
3 https://developers.google.com/protocol-buffers.
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Subsystem for Linux, WSL2) to run the whole model on a single
machine.

Pictured in Fig. 1b;c, the main feature of the environment
is a large desk with several toys placed on top, which can be
recognised, remembered, and recalled by Felice. During simula-
tions, Felice is externally instructed to walk into the vicinity of a
random target object, which is placed among others on her desk.
She first localises and encodes this object into memory, and is
then instructed to walk to a different location. Once arrived, Felice
will use object identity to recall information about the object
location from memory. This subsequently allows Felice to walk
back to the original position and to visually re-localise the object.

By default, objects in the virtual environment are subject to a
perspectival projection, which results from a 3D world being pro-
jected onto a 2D camera plane. This projection, however, results
in artefacts of distorted proportions of objects, especially in the
corners of an image. While the model can tolerate small deforma-
tions and still performs well in such cases, we mitigate any poten-
tial issues by introducing a spherical projection shader to more
closely mimic human vision and to ensure position-invariant
object proportions in the visual field (Fig. 1c).

The visual, perceptual input from the virtual environment
(as 408 × 308p colour images) is processed by the computa-
tional model, which returns commands for specific motor actions
like positional changes (rotation and translation) or eye move-
ments. Therefore, Felice can perceive objects from different angles
and distances, as well as under different lighting. This creates a
challenging, real-world-like environment for her to act in.

2.2. Neurocomputational model

Spatial cognition is a large field of research. We here specif-
ically aim to address the interplay of visuospatial and memory
components. This requires an integration of object memory with
visual perception including eye-centred visual processes, world-
centred information of objects and space in long-term memory,
as well as visual attention and object detection. For this, three
individual models are integrated to form a large-scale neuro-
computational model (Fig. 2). These biologically rooted models
were previously described in detail and have been extensively
validated and compared with human and macaque experimental
data. Even though some of these data are from different species,
the model can be considered being a generic model of processes
that are likely similar among different species.

Our integrated model can operate in two directions corre-
sponding to processes of encoding and mental imagery: (1) In
encoding processes, an object is searched by the agent via means
of feature-based attention which alters the response profile of
object cells in area V4/IT of the visual cortex. At the same time,
this V4/IT information drives the frontal eye fields (FEF) for sac-
cade target selection. Spatial information about this object is
transformed from an eye-centred reference frame into a head-
centred reference frame via the lateral intraparietal cortex (LIP)
and, after being combined with environmental information in the
parietal window (PW), transformed into a world-centred refer-
ence frame via the retrosplenial transformation circuit (RSC/TR).
For long-term memory storage, this combined information of
objects and space is encoded in an attractor network in the
medial temporal lobe (MTL). (2) In processes of mental imagery,
neural patterns from a previous encoding phase are re-instated in
MTL by a cue-based memory retrieval using object identity. The
retrieved patterns contain spatial information of the object and
agent during encoding (their relative location to each other and
their absolute locations relative to the environment). They are
used for spatial navigation (here only the navigational goal) and
furthermore transformed from world-centred into eye-centred
reference frames via RSC and LIP for attentional control in FEF.

https://unity.com/
https://developers.google.com/protocol-buffers


M. Burkhardt, J. Bergelt, L. Gönner et al. Neural Networks 167 (2023) 473–488

i
t
o
t
l
o
m
a

2

j
e
T
i
w
t
v
i
T
c
t
(
c
G
w
(
a
h

r
n
r

Fig. 1. The virtual environment. (a) The virtual environment provides sensory
nformation which is sent to the model. The neural network then evaluates
hese data to form an internal, dynamic representation of the environment and
utputs motor commands to be performed by the agent. (b) The child’s room of
he cognitive agent called Felice. She is able to navigate and shift gaze as well as
ocate, remember, and recall multiple objects in this environment. (c) Example
f a visual image from the viewpoint of the agent. For simplicity, we do not
odel different resolutions of an object with respect to retinal eccentricity and
lso only use monocular vision (single eye camera).

.2.1. Object recognition
To implement the capability of recognising and localising ob-

ects, the visual part of the computational model incorporates key
lements of the ventral stream in the primate brain (Beuth, 2019).
he input to the model is the agent’s current visual field, which
s a monocular RGB-image. Only daylight vision is considered,
hich in primates is represented by L, M, and S cones in the retina
o process long (L), middle (M), and short (S) wavelengths of the
isible light spectrum. For this purpose, the image is processed
n area V1, which includes neurons organised in three channels.
hese channels are arranged in a retinotopic fashion and include
ells for the red–green (L-M) and blue–yellow (LM-S) colour con-
rasts which are commonly found in the lateral geniculate nucleus
LGN) (Gegenfurtner & Kiper, 2003). In addition, the channels
ontain oriented edges which are derived from the image using
abor filters (Jones & Palmer, 1987). Thus, they represent neurons
ith receptive fields commonly found in primary visual cortex
V1) simple cells (Jones & Palmer, 1987). The low level colour
nd orientation features within the field of view are then fed into
igher visual areas for further processing (Fig. 2, red parts).
Object recognition requires more narrowly tuned cells that

espond selectively to an object or parts of it. Hence, V1 features
eed to be combined in higher visual areas by learning useful rep-
esentations of objects. In our model, we simulate a higher visual
475
area (V4/IT; Fig. 2), representing high-level visual cortices such
as the fourth visual cortex (V4) or the inferior temporal cortex
(IT), with cells encoding object views (object-view tuned cells)
as found in the inferior temporal cortex (Logothetis et al., 1995).
V4/IT Layer 4 (V4/IT L4) encodes these object views, which are
created by a convolution of the activities of V1 neurons with pre-
learned weights. These weights were generated through a process
called one-shot learning (Jamalian et al., 2016), which generated
the weight matrix directly from the output of V1 complex cells
in a prior learning phase. For training, only 10 images per object
(five rotations, two sizes) were used to allow for some degree
of invariant recognition. Furthermore, spatial pooling of these
activities takes place in V4/IT Layer 2/3 (V4/IT L2/3). Like Layer 4,
Layer 2/3 neurons have still a spatial organisation being selective
for different parts of the image (Fig. 3). Layer 2/3 neurons are
subject to feature-based attention from the prefrontal cortex
(PFC), enhancing the gain of neurons that respond to the target
object.

This object recognition part is comparatively simple compared
to deep neural networks. Thus, our emphasis is not on recognising
a large number of objects, but to allow object recognition on a
number of pre-selected objects with only a very small amount
of training data (Fig. 3). Technically, as further processing in the
network is not dependent on the specific structure of the V1–
V4/IT path, one could replace the image processing by a deep
neural network to provide our model with a feedforward input
into V4/IT L4, as we did not implement feedback connections back
to V1.

2.2.2. Saccade execution
Activities of object neurons in V4/IT L2/3 are pooled over

objects to elicit spatially distributed neural activations in the
frontal eye fields (FEF; Fig. 2, yellow parts). Neural populations in
FEF are responsible for the processing of spatial information and
the preparation of eye-movements, particularly saccade target
selection. This part is based on a model developed by Zirnsak et al.
(2011).

Our model of the FEF is divided into three parts, namely FEF-
visual (FEFv), FEF-visuomovement (FEFvm) and FEF-movement
(FEFm), inspired by recordings from frontal eye-field neurons
(Schall et al., 2004). From a functional perspective, FEFv indicates
potentially relevant locations by taking the maximum activities
over features in V4/IT L2/3. Feedforward soft-competition, com-
bined with feedback from eye movement preparation in FEFm,
activates FEFvm neurons. Feedforward projections from FEFvm
to FEFm accompanied by strong lateral competitive interactions
lead to the potential target of the upcoming saccade. If FEFm
neurons increase their activation beyond a threshold, a saccade
is executed towards the centre of gravity of the activation profile
at that time. Given the saccade target, the actual movement of
the eyes is then modelled by an extended version of the saccade
generator of Van Wetter and Van Opstal (2008).

2.2.3. Attention
Among other tasks, our model is designed to perform ob-

ject localisation supported by attentive dynamics, most notably
feature-based and spatial attention. This model component is
based on previous models that explain attention as an emergent
result of neural dynamics, rather than postulating brain circuits
that exclusively compute attention (Hamker, 2003, 2005b; Zirn-
sak et al., 2011) and is inspired by biased competition (Desimone
& Duncan, 1995) and feature-similarity (Treue, 2001) frameworks
of attention. The present model is built upon a microcircuit of
attention proposed by Beuth and Hamker (2015), who compared
and fitted their model to electrophysiological data of more than
10 different experiments that studied the mutual influence of
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Fig. 2. The Spacecog neurocomputational model. Different parts of the model strongly interact with each other based on anatomical constraints and functional
purposes. The red and yellow parts of the model cover object detection and saccade planning, respectively. PFC provides a feature-based top-down bias to V4/IT
neurons and information about object identity to PRo neurons, which are part of spatial long-term memory in MTL (blue). Attention emerges by the inherent
reentrant dynamics in this system but is biased by the different top-down directed signals. Information from the saccade plan (CD) is sent to LIP (green) through
XFEF , where it is transformed into a head-centred reference frame with an eye position (EP) signal from the VR. Object location information is also transformed
from an eye-centred to a head-centred reference frame in LIP and stored in a parietal priority map (Xh). This information is further passed to PW, where it is
ransformed into a world-centred reference frame via RSC (green) using head-direction. Object position, object identity, spatial boundaries, and the position of the
gent in the room (place field activity) are encoded into memory in MTL. During memory recall, world-centred information from MTL is fed back to PWo via RSC
nd further into Xh , from where it acts as a spatial attention signal in V4/IT via LIP and FEF. If neural activity in the FEF movement (FEFm) cells exceeds a threshold,
saccade is triggered to the location indicated by the FEFm cells. The shift of the eyes is externally determined by saccade generator affecting the input image that
isually samples the world. On the top-left, a lateral view on the brain areas is given. Not depicted is PW, which is postulated to be located in the precuneus. Brain
mage from Smith Breault (2020). Abbreviations: V1 - primary visual cortex, V4 - fourth visual cortex, IT - intraparietal cortex, PFC - prefrontal cortex, FEF - frontal
ye fields (with visual, visuomovement, movement cell characteristics), LIP - lateral intraparietal cortex, EP - eye position, CD - corollary discharge, Xh - parietal
riority map, PW - parietal window (objects, boundaries), HD - head direction cells, RSC - retrosplenial cortex, TR - transformation circuit (objects, boundaries), MTL
medial temporal lobe, BVC - boundary vector cells, OVC - object vector cells, PR - perirhinal neurons (objects, boundaries), PC - place cells. Solid arrows denote

ully connected neural populations, while dotted arrows show connections which require additional (external) cues.
timuli placed within or near receptive fields in different states
f attention. This is to date the most exhaustive comparison of
model with data recorded from neurons localised in different
isual brain areas modulated by attention.
A top-down signal from PFC amplifies target-feature-specific

ctivities in area V4/IT, independent of the location or size of
eatures in the visual field and allows the selection of specific
bjects (Beuth, 2019). This can be seen in the sum of V4/IT L2/3
ctivity in Fig. 3, where feature-based attention amplifies fea-
ures of the green crane. In parallel, spatial attention emerges
y feedback from FEFvm cells, which link spatial attention to
he eye movement plan (Hamker et al., 2008) and can also ac-
ount for attentional capture, based on the attention-related N2pc
omponent of EEG recordings (Novin et al., 2021).
The here presented integrated model extends spatial attention

ith an additional loop between FEF and LIP. This extension by
he LIP circuit is crucial for aspects of spatial cognition as LIP
onnects visual areas through parietal areas with MTL, where
ong-term information of objects and the environment are stored.
f this information is recalled, LIP can, through coordinate trans-
ormations which are more closely described in the next section,
enerate an additional spatial attention signal to recalled loca-
ions of previously encountered and encoded objects. As this
476
attentional signal does not require a feature-search in the entire
visual field, it acts faster than spatial attention generated in
the V4/IT-FEF loop. Also, this spatial attention signal is updated
during eye movements to ensure that attention is directed to an
object in space regardless of gaze position.

The general role of the LIP circuit in spatial attention has pre-
viously been motivated by Bisley and Goldberg (2003) and Gold-
berg et al. (2006). The computational model of spatial updating
in the parietal cortex was first introduced by Ziesche and Hamker
(2011) and later extended by Bergelt and Hamker (2016, 2019),
Jamalian et al. (2017), Ziesche et al. (2017) and Ziesche and
Hamker (2014). The model has been compared to and motivated
by studies exploring predictive remapping of attention (Rolfs
et al., 2010), lingering of attention after saccades (Golomb et al.,
2010), a combination of both (Jonikaitis et al., 2013), perisaccadic
mislocalisation of briefly flashed stimuli (Van Wetter & Van Op-
stal, 2008), and saccadic suppression of displacement (Deubel
et al., 1996).

2.2.4. Coordinate transformation
Spatial tasks of embodied agents operating in, and interact-

ing with the world require coordinate transformations between
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Fig. 3. Object localisation for the green crane. Area V4/IT L2/3 consists of 30 neuronal layers/planes. Each plane encodes cells representing an object from a particular
iew-point (view-tuned cells). The number of planes is a result of the training procedure, as for each of the three objects weights were calculated for five different
otations and two sizes (here shown for the green crane). Thus, for each object we only use 10 images for training. The sum of neuronal activity in V4/IT L2/3 over
ll planes/objects (left) as well as activity in the individual planes for the green crane (right) are shown. When the agent is searching for the green crane (denoted
y the red square), these planes are subject to feature-based attention from the prefrontal cortex. Their neural activity reflects the match of parts of the encoded
bject with the particular visual image, and the gain via feature-based attention.
h

ifferent reference frames. Generally speaking, we can distin-
uish between egocentric and allocentric (world-centred) refer-
nce frames. Egocentric reference frames include eye-centred or
ead-centred reference frames, while allocentric reference frames
ould relate to cardinal directions or visual landmarks. In our case,
isual information about an object, initially processed in an eye-
entred reference frame, could then be transformed into an allo-
entric reference frame for storage in long-term memory. It has
een proposed that gain fields and radial basis functions (Fig. 4)
an perform these coordinate transformations between eye- and
ead-centred reference frames (Pouget et al., 2002; Pouget &
ejnowski, 1997), and diagonal connection patterns for this trans-
ormation have recently been observed in Drosophila (Lu et al.,
022). In our model, these coordinate transformations are per-
ormed in LIP (Bergelt & Hamker, 2019; Ziesche & Hamker, 2011)
nd RSC (Bicanski & Burgess, 2018) (Fig. 2, green parts).
While the agent is searching for an object, retinal (eye-centred)

nput from area V4/IT is passed to LIP, along with a retinotopic
patial signal from FEF, a proprioceptive eye position (EP) signal
ncoding the eye position in a head-centred reference frame, and
corollary discharge (CD) signal encoding the eye displacement

n an eye-centred reference frame. According to Bergelt and
amker (2019) and Ziesche and Hamker (2011), the retinal signal
rom V4/IT L2/3 is fed into LIP maps, where it is gain-modulated
y the CD signal (LIP CD) as well as the EP signal (LIP EP). This
roduces a combined representation of eye position and object
osition. Reading out the activity in LIP, we receive the perceived
patial position of an object in head-centred coordinates stored
n Xh (Fig. 4; Stimhead). As mentioned above, this process can also
be performed in a top-down fashion to transform a head-centred
signal into an eye-centred signal, which is sent to FEFv to attend
to the retinotopic position of a previously encoded object.

Object location information and the local environmental lay-
out need to be combined with head direction to enable an
unambiguous representation of objects and space. This is con-
ducted in the spatial memory pathway of the model (Bicanski &
Burgess, 2018), which demonstrates how neural representations
of head-centred (egocentric) experiences interface with world-
centred representations in long-term memory. The parietal areas
of the brain, which we call ‘parietal window’ (PW), include head-
centred representations of discrete objects (PWo) and boundaries
477
Fig. 4. Coordinate transformation in a radial basis function network. In this
example, a stimulus position in an eye-centred reference frame gets transformed
into a head-centred reference frame. The eye fixates on a position at 30◦ (EPhead)
and the eye-centred stimulus position is at −10◦ (Stimeye). Thus, the resulting
ead-centred position of the stimulus is at 20◦ (Stimhead). Further, planned gaze

shifts (and not only eye position) are also used for coordinate transformation.
The same principle is also used for transformations between head- and world-
centred reference frames. Importantly, this transformation can also be performed
in the opposite direction (world-centred to head-centred or head-centred to
eye-centred).

(PWb). Here, objects refer to the three potential target objects and
boundaries refer to the four walls of the room.

In addition to object information (PWo), during encoding/
perception, the parietal window is also driven by high-level
(head-centred) visual information of boundaries (PWb). This in-
put is externally provided by the virtual environment and not ex-
plicitly modelled. The resulting activities in PW are fed into RSC,
where the head direction signal (HD) provides gain-modulation
to transform the egocentric representations into a world-centred
reference frame, similar to related mechanisms proposed for the
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osterior parietal cortex (Pouget & Sejnowski, 1997; Whitlock
t al., 2008). This circuit can also further be used in the opposite
irection, which is required for processes of recall. World-centred
nformation about boundaries and objects stored in MTL are then
ransformed back into a head-centred reference frame in PW via
SC.

.2.5. Spatial memory and imagery
After visuospatial information is transformed into a world-

entred reference frame through RSC, the resulting allocentric
epresentations located in the medial temporal lobe (MTL; Fig. 2,
lue parts) can contribute to long-term memory (Bicanski &
urgess, 2018). Information in MTL consists of boundary informa-
ion, which is encoded in so called boundary vector cells (BVCs)
or the external boundaries of the environment (as an allocen-
ric counterpart of PWb cells) and object vector cells (OVCs),
hich encode the position of objects and hippocampal place cells
PCs), which encode an allocentric position of the agent in space
see Bicanski and Burgess (2020) for a more in-depth review of
he properties of vector coding cells in the brain). For a given
patial position encoded by PCs, an explicit subset of BVCs and
VCs are co-active to form a high-level representation of the spa-
ial scene. By connecting co-active populations via Hebbian-like
earning, an allocentric MTL attractor network is formed, which
nables spatial long-term memory. Additionally, since BVCs and
VCs do not distinguish between specific boundaries and objects,
erirhinal neurons (PR), high-level neurons of the ventral stream,
ode for the identity of boundaries (PRb) and objects (PRo). These
llocentric representations can subsequently be used for memory
ecall. Cueing a previously encoded object in MTL enables the re-
nstated neuronal activities to drive the transformation circuit in
he opposite direction, establishing egocentric representations to
e reconstructed from memory and thus enabling spatial imagery
hrough the parietal window. This egocentric information can
hen further be used as attentional input for LIP and FEF.

The basis of stable representations of self-location is the
gent’s perception of boundaries, which drives firing of BVCs.
heir activity, in turn, activates corresponding place cell firing,
n a manner consistent with empirical data (O’Keefe & Burgess,
996) and with established computational models of place field
eneration by BVCs (Barry et al., 2006). This connectivity has
een pre-trained dependent on the perceived layout of the room
nd the agent’s location. Hence the agent treats walls as stable,
hile smaller objects can move. The configuration of BVCs that

s consistent with the given location has synaptic connections
ith a cluster of place cells for that given location (and vice versa

or recall). For the purposes of the integrated model, the spatial
emory component assumes that parts of the visual system can
xtract the distance and egocentric directional information of
oundaries from retinal inputs. This is not explicitly modelled and
elies on cues from the VR (Fig. 2, world information). A network
hat performs these computations could be learned (Lian et al.,
023), but this mechanism is beyond the scope of the present
anuscript.

.2.6. Model specification
Spacecog is built on the foundation of several previously pub-

ished models, and detailed information about the neural models
nd their underlying assumptions can be found in these works as
utlined in the previous sections. As these models have already
een fitted to experimental data, most of the parameters in visual
nd spatial areas remain unchanged. The present model focuses
n more holistic aspects, which allows us to explore more com-
lex and complete tasks through the integration of memory and
ision through parietal areas. This part of the model requires an
478
interaction of visual and spatial neural populations, which oper-
ate in different coordinate systems. While head-centred informa-
tion in both Xh and PWo is two-dimensional, the representation
in PWo changes from a visual field (height and width) to a birds-
eye spatial map (left/right, radial distance) as visible in Fig. 6.
Thus, while other populations in the model are fully connected
on a neural level, this transition requires additional information.
During bottom-up encoding processes, only the horizontal com-
ponent of the Xh signal is used and supplemented with externally
provided depth information from the VR before being used as an
object cue for PWo. In return, this loses the height-dimension of
the visual field, which is stored externally to be used during the
back-transformation in the recall phase.

Further, a sensible balance between feature-based and spatial
attentional mechanisms needs to be found. As feature-based at-
tention originates in PFC and directly modulates V4/IT activities,
the spatial attention pointer during recall originates in OVC and
has to be looped back all the way into visual areas. For this, in
addition to the already established recurrent V4/IT-FEF loop, we
expanded the model by a recurrent V4/IT→LIP→FEFv→FEFvm

V4/IT loop, consistent with the idea that a connection between
hese areas could act as a simple representation of attentional
riority, which is also fed back into visual areas (Bisley & Mirpour,
019). Also the ventral stream model was adapted. Learning was
onducted via the more simple and fast one-shot learning (Ja-
alian et al., 2016), rather than Hebb-type trace learning (Beuth,
019). The pooling inside V1 and the pooling from V1→V4/IT was
dapted, so the receptive fields of a V4/IT neuron are large enough
o fit the relevant objects. Thus, some parameters in the men-
ioned areas were tuned by hand to facilitate such behaviour. As a
esult, the model is able to robustly encode objects into memory
nd to use this knowledge as spatial attentional information to
nhance re-localisations of previously encoded objects. Further,
e will also show that this structure of the model allows for the
bservation of perceptual neglect-like behaviour when a lesion is
ntroduced in the parietal Xh priority map.

.2.7. Model implementation
The neurocomputational model is implemented with ANNar-

hy 4.7.1.1 (Vitay et al., 2015). ANNarchy (Artificial Neural Net-
orks architect) is a neural simulator designed for distributed
ate-coded or spiking neural networks. The user-interface is writ-
en in Python and uses an equation-oriented mathematical de-
cription of the neuron and synapse models. From this descrip-
ion, ANNarchy will generate efficient C++ code to perform the
etwork simulation on parallel hardware.
We provide the complete source code for the model and the

irtual environment, which is publicly accessible through https://
ithub.com/hamkerlab/Burkhardt2023_SpatialCognition. With the
rovided code, the simulations introduced in the present paper
an be replicated and freely modified (limited to the pre-trained
patial environment of the room and the three target objects).
ue to the large size of the model, a complete description of
he network can be found in the supplementary material. This
ncludes the equations for all neural populations as well as all pa-
ameters and connections used. More detailed information about
he neural models and their underlying assumptions can also
e found in the previously published works (Bergelt & Hamker,
019; Beuth, 2019; Bicanski & Burgess, 2018).

. Results

To evaluate the performance of our model, the cognitive agent
elice has to perform tasks in the virtual environment, which
ere developed to emulate a real-life situation requiring fea-
ures of spatial cognition such as object localisation, attentive

https://github.com/hamkerlab/Burkhardt2023_SpatialCognition
https://github.com/hamkerlab/Burkhardt2023_SpatialCognition
https://github.com/hamkerlab/Burkhardt2023_SpatialCognition
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ynamics, coordinate transformations, and spatial memory and
magery. We first introduce the general structure of an integrated
ask combining these requirements, and later evaluate it through
ultiple experiments, modifying individual parts of our model
nd tasks.

.1. General task

Let us assume the following scenario: Felice first wants to play
ith one of her toys (e.g. a green toy crane), which she is able
o localise among several other toys on her desk. She then gets
istracted by another task and ends up at a different location
n the room. From there, Felice decides she wants to again play
ith the toy crane, remembers where she initially found the toy
nd subsequently walks back to the location where she initially
potted the crane in order to localise it again. For this, we will
se ego-, and allocentric information as outlined in the model
escription, but not relative information such as ‘‘on the desk’’.
ecisions about ‘when to do what’ are pre-defined, as decision
aking is not a particular focus of this study.
Generally, the task can be divided into an encoding phase

nd a recall phase. In the encoding phase, Felice has to find and
ncode an object into memory, which incorporates the entire pro-
ess of using eye-centred visual information and transforming it
nto allocentric representation of objects and space in long-term
emory. More specifically, starting from an arbitrary position,
elice walks into the vicinity of potential target objects. In this
ase, a random position within a circular area in front of her desk
s assigned as a plausible position (Fig. 5, middle). While Felice
s able to move freely within the boundaries of her room, path
lanning and walking is not part of our model and was achieved
hrough a simple A* search algorithm. Once she arrives in front of
he desk, Felice aims to select one target among other potentially
elevant objects. For simplicity, we here demonstrate this ability
ith three objects: A green and a yellow toy crane, as well as a
reen race car. Finding the target among a combination of these
bjects covers the main challenges for the object localisation,
amely a similarity in shape and/or colour for the distractor ob-
ects. Additionally, features of the room itself can also be regarded
s distractors, as neurons might respond to edges or colour gra-
ients in them. After Felice successfully localises the object, its
osition and identity as well as the position of Felice are stored
n long-term memory in MTL (by learning connections between
lace cells and object vector cells).
Fig. 6 displays the structure and activities of neuronal pop-

lations for the encoding phase. First, the visual field is pre-
rocessed in V1, features are extracted in V4/IT, and spatial atten-
ion emerges from the recurrent V4/IT-FEF loop. In parallel, this
nformation is passed to LIP, where a coordinate transformation
akes place to transform the object position from a retinotopic
nto a head-centred reference frame in Xh. From there, object and
patial boundary information are formed in the parietal window
nd this (head-centred) information is then transformed into an
llocentric reference frame via RSC and encoded into long-term
emory in MTL populations.
Felice then walks to a different position, from where the recall

hase shown in Fig. 7 is triggered. The recall phase consists of Fe-
ice remembering, walking back to, and re-localising a previously
ncoded object. This process starts by applying an externally
rovided cue to the PRo neuron coding for the previously encoded
bject (‘‘I want my green crane!’’), which can be understood as an
‘eyes-closed remembering’’, with no interference from the cur-
ent perceptual input. The resulting memory recall re-establishes
nformation about the position of Felice and the memorised ob-
ect from the time of encoding in the MTL attractor network.
pecifically, Felice is then able to decode her previous position
479
and body orientation from PC and HD activities and walks back
to this recalled position. For this purpose, we read out PC and
HD firing rates after memory recall and use this for external
navigation. Once she arrives at the desk, Felice again searches
for her green crane. The re-localisation of the target object can
take place in three different ways: In the first way, Felice can
use feature-based attention from PFC (as in the encoding phase
shown in Fig. 6) to re-localise the object. This can intuitively be
construed as Felice remembering that she has previously seen the
desired object from a particular position (e.g. close to the table),
but she has no access to its exact location. In the second way,
Felice uses recalled spatial memory information that is looped
back through the PW (Fig. 7) and being used for a spatial atten-
tion pointer generated in Xh. The spatial attention pointer biases
the neural dynamics within the visual system to guide visual
search (without feature-based attention), corresponding to Felice
recalling where the target object is located, without remembering
its exact identity. Third, a combination of both options (feature-
based attention combined with a spatial attention pointer) can
be used, meaning Felice now recalls the location and relative
direction as well as the identity of a previously encoded object.

To test these conditions, we introduce two different experi-
mental settings (normal and cluttered scene), which cover the
integration of vision and memory in slightly different scenar-
ios. As the model operates in a realistic setting, we assess its
behavioural performance through successful trial completions
and the duration needed for each object localisation. The main
purpose of the evaluation is to demonstrate the spatio-cognitive
ability by means of a brain-inspired model. Further, we report and
discuss differences observed in the sketched ways to perform the
task.

3.2. Experiment 1: Spatial memory and object recognition in a nor-
mal scene

Experiment 1 is performed in an environment containing three
potential target objects (Fig. 8). The three possibilities of using
attentional mechanisms for object localisation in the recall phase
described above are used to assess the integration between vi-
sion and spatial memory. A supplementary movie shows how
Felice solves the task, and it includes some of the model’s neural
activation (see the referenced movie and the movie caption).

3.2.1. Experiment 1.1: Spatial memory and object recognition using
feature-based attention

Initially, Felice was asked to walk into the vicinity of potential
target objects, where the first object localisation was performed
randomly for one of the three objects. Thus, our model is run by
setting an activation for the target object in PFC, which allows
feature-based attention to support target localisation. Then, after
shifting gaze to the target object, the integrated model encodes
the object and positional information into long-term memory.
This corresponds to the encoding phase displayed in Fig. 6 and
was performed for total of 100 times. In each trial, a random
target object and a random agent position (within the white circle
displayed in Fig. 5) were chosen, which resulted in a successful
object localisation in 93% of trials (Table 1, first row).

In each trial, Felice then walked to a different position in
the room, from which the encoded object was not visible and
recalled her memory by activating the PRo cell of the previously
encoded object. Part of this memory is her previous position
(encoded by place cells) and the corresponding object location in
the room (Fig. 7). Felice then walked to the recalled position and
performed a re-localisation of the previously encoded object. In
this experiment, she used feature-based attention from PFC, and
subsequently performed a saccade to the selected candidate ob-
ject. If the object was correctly re-localised, the trial was labelled
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Fig. 5. General scenario. The cognitive agent Felice performs a combined task of memory encoding and recall. Illustrated here is the encoding phase, in which Felice
walks into the vicinity of target objects (random position within the white circle shown in the middle image). Depending on her position, body orientation and head
tilt are adjusted to ensure the visibility of all potential target objects (middle, right). Variability in this adjustment results in different random views of the scene
(left). The limiting factor for the positional variability is the spatial resolution of the visual layers V4/IT, and therefore the size of the objects in the visual field,
which was controlled for by the allowed positions for object localisation (white circle).
Table 1
Performance of the model (N = 100).
Task Experiment Attention Success rate Simulation steps (M ± SD)

Encoding 1.1,1.2,1.3 Feature-based 93% 150 ± 57
Recall 1.1 Feature-based 95% 154 ± 59
Recall 1.2 Spatial 83% 172 ± 48
Recall 1.3 Spatial + feature-based 94% 125 ± 10
as successful. We therefore define a successful recall as a correct
completion of the complete task, which includes the encoding
and recall phase. This resulted in a success rate of 95% (Table 1,
second row), which marginally differs from the encoding phase
due to small deviations in Felice’s position during recall.

We found the success in this experiment to be mainly depen-
ent on two factors: First, the visual part of the model performing
correct object localisation and second, the spatial part of the
odel accurately encoding the positional information, enabling
elice to precisely return to the location of the previously en-
oded target object. However, as the second object localisation in
his experiment also only required feature-based attention, the
ositional memory was not required to be extremely accurate.
ll errors in this experiment therefore were a result of the vi-
ual part of the model incorrectly localising the object. We will
onsider this result as a baseline and compare it to results from
xperiment 1.2 and 1.3.

.2.2. Experiment 1.2: Spatial memory and object recognition using
spatial attention pointer from memory
In the second experiment, rather than feature-based atten-

ion, a spatial attention pointer from the memory recall via LIP
as used to perform the second object localisation after Felice
eturned to the previously encoded target object. During recall,
llocentric information of the object position are transformed
hrough RSC into head-centred activity in the parietal window.
fter Felice returns to the place where she encoded the target
bject, this information is subsequently used in Xh and LIP to

generate a retinocentric spatial attention pointer. An advantage of
using spatial attention provided by LIP is that it does not require
extensive visual search to localise the target object.

We observed that without the aid of feature-based attention,
the spatial attention pointer from long-term memory alone could
480
generate a success rate of 83% (Table 1). Compared to Experi-
ment 1.1, this is a slight decrease in performance, which was
mostly caused by two factors: First, even small inaccuracies in
the positional recall of Felice (decoded from PCs) were able to
change the resulting visual field to a degree in which the spatial
attention pointer was slightly misplaced. Second, inaccuracies in
the recalled position due to a limited spatial resolution of neural
populations (each PWo and OVC cell covers a 7◦ bin of the visual
field) could also lead to a small, erroneous shift of the attention
pointer, even though a weighted average approach was used to
decode this information. Despite these limitations, only a few
additional errors occurred, mostly in cases in which two objects
were close to each other (Fig. 8, Experiment 1.2).

3.2.3. Experiment 1.3: Spatial memory and object recognition using
a combination of feature-based attention and a spatial attention
pointer from memory

Experiment 3 combined both information sources about the
object, namely spatial and feature-based attention, in the recall
phase. This increased the performance back to the level of encod-
ing and therefore mitigated errors previously introduced by spa-
tial attention (Fig. 8, Experiment 1.3). Additionally, as the spatial
attention pointer was quickly available to assist during feature
search, the time required for a successful re-localisation was
reduced by 27% (Table 1). Therefore, the spatial attention pointer
was able to guide the object localisation effectively, while feature-
based attention compensated potential ambiguities through inac-
curacies introduced through memory and imagery processes.

3.2.4. Neural dynamics for target selection
As the observed time for target selection varies in Experiments

1.1, 1.2, and 1.3 (Table 1), with the combination of feature-based
and spatial attention being fastest, we analysed the temporal
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Fig. 6. A representative subset of neural activity for the encoding phase of the general task of visual search and object memory (not included: V4/IT L4, FEFv, FEFvm,
PRb). For encoding, the visual field (VF) is processed by V1 neurons and fed into higher visual areas. There, object neurons in V4/IT L2/3 are guided by feature-based
attention from PFC and spatial attention emerges via FEFvm feedback to V4/IT until FEFm triggers a saccade towards the object. Spatial information is transformed
from a retinocentric into a head centred reference frame in area LIP and gives rise to activity in Xh , where it is used as a head-centred input for parietal window
bject neurons (PWo) encoding the spatial position of the object relative to the agent (here ahead-left). This requires externally provided depth information from
he virtual environment, while height information has to be saved for the recall phase. Combined with information of the boundaries of the room (PWb) as well as
ead direction (HD), this information is transformed through RSC, resulting in allocentric representations of the object location (OVC), boundaries (BVC), and agent
osition (PC) being established in MTL, where they are encoded into long-term memory.
ynamics in the model (Fig. 9). Feature-based attention operates
cross the entire visual scene and increases the gain of those
eural responses where visual input and target template matches.
hus, neural activity in V4/IT is enhanced at the target location.
patial attention recalled from memory traverses via Xh and LIP

into the visual system and increases the activation at the target
location if the recall from memory is correct. Recurrent dynamics
lead to an exchange of activity across the whole visual parts,
but they converge in FEF which enforces saccade target selection
from FEFv, FEFvm to FEFm cells. If feature-based attention is used
(Experiment 1.1 and 1.3), V4/IT has a higher activity than in
Experiment 1.2, where only a spatial attention pointer is used for
481
the localisation of the target object. In contrast, a spatial attention
pointer leads to higher input from LIP in Experiment 1.2 and
1.3. Together, this results in the fastest rise of activity in FEFv
for Experiment 1.3 and therefore the earliest initialisation of a
saccade through FEFm among all three experiments.

3.3. Experiment 2: Spatial memory and object recognition in a clut-
tered scene

The previous experiments were all performed in the same
general scene setting, where only the three target objects were
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Fig. 7. A representative subset of neural activity for the recall phase of the general task of visual search and object memory (not included: V4/IT L4, FEFv, FEFvm,
PRb). From a remote position in the room, a recall of the previously encoded object is triggered through PRo activation. This re-establishes activity in the MTL
attractor network (OVC, BVC, PC) as well as in HD populations. Through RSC, this information is transformed into a head-centred reference frame in PWo and
PWb. Information of the object position can then be fed back into Xh , from which a retinocentric spatial attention pointer can be established in area LIP. With this
op-down attention signal being applied on FEFv, the position of the object can then be decoded from the build-up movement neurons in FEFm. Once an activity
hreshold in FEFm is reached, a saccade is performed towards the target object.
resented in both encoding and recall phase as shown in Fig. 8.
xperiment 2 changes this by cluttering the scene between the
emory encoding and the recall phase by placing additional

oys onto the desk hiding the targets (Fig. 10). This results in
much more challenging scenario and thus allows us to gain

urther insight into the interaction of memory and vision. Again,
e distinguish between the three possibilities using attentional
echanisms for the object localisation in the recall phase. The
ummary of the results for this experiment is shown in Table 2.
482
3.3.1. Experiment 2.1: Feature-based attention
As the encoding phase is identical to previous experiments,

we again observe a success rate of 93%. However, in the recall
phase the object localisation now has to be performed in the clut-
tered scene, which dropped the performance to 28%, while the
time required for a successful localisation increased to 231 steps,
combined with a significant higher standard deviation, when only
feature-based attention was used. As no spatial memory was used
to aid the object localisation, the reduction in performance can
solely be attributed to the visual model being unable to rely on
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Fig. 8. Experiment 1. Felice initially encodes the green race car. Small inaccura-
cies in the spatial memory can lead to a slightly different agent position during
recall and therefore also a slight shift in the visual field (the red bars display the
alteration in the visual field between encoding and recall phase, which result
in a shift to the right). Results from the recall phase of all three experiments
are shown (Experiment 1.1 uses only feature-based attention, Experiment 1.2
uses only a spatial attention pointer, and Experiment 1.3 utilises both feature-
based and spatial attention). Shifts in the visual field do not affect feature-based
attention used in Experiment 1.1, but can lead to ambiguous situations in
Experiment 1.2, in which the spatial attention pointer is placed between two
objects. If the spatial attention pointer is however combined with feature-based
attention (Experiment 1.3), these ambiguities can be resolved.

enough features of the target objects, which are now substantially
covered by other objects.

3.3.2. Experiment 2.2: Spatial attention from memory
In comparison to Experiment 1.2, this study uses only a spatial

ttention pointer from memory to perform the object localisation
n the recall phase. This results in a further drop in performance
o 14% and an increased localisation time of 239 steps. In addition
o features of the target objects being covered by the distractor
bjects, small inaccuracies in the position of the spatial attention
ointer further contribute to the reduction in performance like
n Experiment 1.2. It is to note that, while previous unsuccessful
rials of object localisation almost always meant the selection of
n incorrect object, in this experiment 84% of errors result from
483
a timeout (FEFm activity not reaching a saccade threshold after
600 simulation steps). This is a direct limitation introduced by the
small codebook of the visual model, which only includes three
pre-trained objects, and therefore has no knowledge about the
identity of the additional distractor objects. As V4/IT feeds the
FEF, not much activity is transmitted across this pathway, which
leads to an overall lesser activity in the visual system including
FEFm. An additional putative method of compensation would
be stronger self-excitation parameters in the saccade system to
enforce saccade targets even into weakly activated areas. How-
ever, we kept all parameters unchanged to directly compare the
different experiments.

3.3.3. Experiment 2.3: Combination of feature-based and spatial at-
tention from memory

This simulation combines the attentional mechanisms of
feature-based attention and the spatial attention pointer from
memory during recall in a cluttered scene. The performance in
this simulation increases to 48% while the average time required
for a successful object localisation is reduced to 194 simulation
steps. The main novelty of this simulation can be seen in compar-
ison to Experiment 1, where the combination of both attentional
mechanisms in Experiment 1.3 only recovered the reduction in
performance back to the baseline level. This increase in perfor-
mance for Experiment 2.3 further underscores the advantages of
integrating spatial memory with vision, especially in challenging
environments.

3.4. Experiment 3: Visual neglect

This simulation aims to further highlight the biological plausi-
bility of our model by demonstrating that a simple impairment in
a parietal area leads to similar behaviour as observed in patients
with visual neglect.

Visual neglect is one of the most notable impairments result-
ing from damage to parietal areas of the brain, and is known
to cause impairments in directional processes of attention and
localisation of objects, resulting in a lack of responses to stimuli
in parts of the visual field (Bartolomeo, 2007). This is thought to
correspond to damage in a parietal priority map, which integrates
goal and stimulus related signals for spatial selection (Bays et al.,
2010). In our model, we can observe similar effects by introducing
an impairment to Xh neurons corresponding to the left half of
the visual field. This is implemented by removing all connections
between LIP and the left half of Xh neurons, generating visual
perceptual neglect.

Fig. 11 depicts a simulation with two identical objects. Since
feature-based attention favours both objects, the model con-
verges on one of the cranes, depending on the exact spatial
arrangement (position of agent and objects). In the depicted
scenario, the left crane is chosen as the preferred stimulus, which
is mostly visible in FEFm and Xh population activity (Fig. 11, top).
Consequently, a saccade is made to the left crane (visualised by
the red dot in Fig. 11, top right)

Introducing left visual neglect in an identical simulation re-
sults in only the right crane being active in the Xh priority
map, which then leads to a reduced response of the left crane
in LIP. Subsequently, through the recurrent LIP-FEF loop, this
also creates a bias in FEF (Fig. 11, bottom). There, bottom-up
visual input is modulated by attentional input from LIP, which
leads to a saccade directed to the crane on the right (red dot
in Fig. 11, bottom right). Thus, although object recognition and
initial spatial attention via FEF are unaffected by the impairment,
a bias emerges in the additional recurrent LIP-FEF loop, which
results in behaviour similar to visual neglect. Additionally, as Xh
forms a bridge between visual and spatial areas, only the position
of the right object will be passed to the parietal window and is
encoded into memory. Visual neglect is therefore also present in
memory and imagery.
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Fig. 9. Analysis of temporal dynamics that lead to different reaction times across experiments. Plotted traces reflect the activation at the target location in different
parts of the model. In conditions where visual search recruits feature-based attention, V4/IT activity increases due to the match of the visual input with the target
template. In conditions where a spatial attention pointer from memory is recalled, the activation of LIP cells at the target location is increased. As FEFv cells collect
information from those different parts of the model and pass it to FEFm to enforce a final decision about the saccade target, they reflect both biases in their activation.
A saccade can be initialised fastest, if both feature-based attention and a spatial attention pointer are used. Shown are feature independent, pooled firing rates of
V4/IT, Layer 2/3 (top left), and firing rates of LIP (top right) representing the target location, which both serve as input to FEFv (bottom left), as well as the firing
rates of FEFm (bottom right), which trigger the saccade. Activation of a typical trial in each of the three Experiments 1.1 (red), 1.2 (green), 1.3 (blue) are plotted
over time. The period of the saccade is marked for each experiment.
Table 2
Performance in cluttered scenes (N = 100).
Task Experiment Attention Success rate Simulation steps (M ± SD)

Encoding 2.1,2.2,2.3 Feature-based 93% 150 ± 57
Recall 2.1 Feature-based 28% 231 ± 73
Recall 2.2 Spatial 14% 239 ± 99
Recall 2.3 Spatial + feature-based 48% 194 ± 69
4. Discussion

We have introduced the Spacecog model, a biologically moti-
ated, large-scale neurocomputational model of spatial cognition,
hich we tested and evaluated in a real-world-like virtual envi-
onment. Via a coherent processing stream incorporating percep-
ual vision processes, attentive dynamics, and spatial memory and
magery, Spacecog is able to display key traits of spatial cognition.
he underlying individual models were previously verified on
heir own and are motivated and grounded by anatomical, be-
avioural, and physiological data. While aspects specific to these
ndividual components have already been described in previous
ublications, we here focused on the integration and interplay
etween memory and vision through parietal areas.
In three experiments, interactions between visual and spatial

reas were evaluated and it was shown how the integration
nables the agent to successfully perform tasks of object lo-
alisation and imagery. In all experiments, the agent was able
o robustly detect and memorise objects. The introduction of
spatial attention pointer from memory by itself was able to
enerate a high success-rate during recall, but also introduced an
ncrease in the time required for localisation due to the interplay
f model components (Experiment 1.2). An integrated use of
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spatial and feature-based attention combined the advantages of
a quick availability of the spatial attention signal from memory
with the accuracy of feature-based attention to allow for a faster
and robust re-localisation of objects (Experiment 1.3). Additional
advantages of integrating spatial memory with vision were fur-
ther explored in a cluttered environment, which showed that this
integration is crucial for an adequate performance in even more
challenging tasks (Experiment 2).

Notably, in conditions with only feature-based attention (Ex-
periment 1.1/2.1), the agent was already successful in localising
the target object. It therefore is important to clarify that the
conditions for search with only feature-based attention were
chosen to be optimal, as it was ensured that the agent was in
close proximity to the objects, and the target object was ensured
to be in her field of view. Without this, under normal conditions, a
more extensive visual search including overt orienting responses
would have been necessary. This also implies that during phases
of recall, the recalled position and head direction are always used
to guide the agent back to the target object, even when no direct
interface between memory and vision through PW and LIP was
established (Experiment 1.1/2.1). The good performance in only
feature-based attention was also based on the fact that we did not
use heavily cluttered scenes, and feature-based attention was still
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Fig. 10. Experiment 2. In this condition, the scene is cluttered in the recall phase
ith additional distractor objects which cover the original target objects to a

arge degree. This creates a highly challenging task. In Experiment 2.1, the model
s not able to re-localise the yellow crane, as most of its features are hidden
ehind the teddy bear. Experiment 2.2 with only spatial attention also fails
espite a correct spatial attention pointer as no FEFm activity is formed due to
lack of V4/IT activity. Only in experiment 2.3 a successful re-localisation of the
ellow crane is performed due to the combined application of feature-based and
patial attention. The red bars indicate the alteration in the visual field during
ecall, which in this case is the result of Felice recalling a position slightly closer
o the table compared to the encoding phase. Here, this deviation is negligible
nd does not result in a misplacement of the spatial attention pointer.

ffective in guiding attention to the target. If we were to use more
ifficult search scenes, the search process would require multiple
accades, and thus the benefit of spatial memory would be more
bvious. In such cases, the model would require an additional
ircuit to implement inhibition of return (Hamker, 2005a).
However, the main novelty is not the use of spatial or feature-

ased signals for object recognition, but the ability to establish
patial and object memory and to use this memory to guide vi-
ion. If agents are able to recall and use information about spatial
roximity, gaze direction, feature-based attention, and spatial at-
ention, they can accurately and efficiently re-localise previously
ncoded objects. This is a combination which has not yet been
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demonstrated in previous biologically motivated models. We un-
derlined the robustness of this ability by allowing variability in
the encoding process, resulting in different views of the scene.
Furthermore, consistent with the idea that neglect results from
damage in a parietal priority map (Bays et al., 2010), it was also
shown that parietal lesions in our model can produce neglect-
like behaviour (Experiment 3). Our integrated model therefore
extends the mechanisms by which previous models accounted for
spatial representational neglect (Bicanski & Burgess, 2018; Byrne
et al., 2007) to neglect in the visual field.

The present model underlines the importance of the parietal
cortex as an interface between vision and memory. Early con-
cepts of the parietal cortex have already emphasised its role in
providing ‘where’ information about the object (Mishkin et al.,
1983), but were later extended with respect to actions towards
objects (Milner & Goodale, 1995) and visual attention (Colby &
Goldberg, 1999; Gottlieb, 2007), and more recently also with
its role in episodic memory retrieval (Becker & Burgess, 2000;
Cabeza et al., 2008; Connor & Knierim, 2017; Sestieri et al., 2017).

Further, the present model can be compared with experi-
ments on human spatial cognition that show that long term
spatial memory interacts with visual attention behaviourally, and
reflects parieto-prefrontal activity related to attention and hip-
pocampal and parahippocampal activity related to the benefit
from long term memory (Summerfield et al., 2006). Our model
can address the behavioural advantage for memory-cued loca-
tions (Experiment 1.3 and 2.3) and also its relation to the activ-
ity in different regions. A prediction from our model might be
that hippocampal and retrosplenial activity correlate with perfor-
mance more strongly when the target was previously seen in lo-
cation from a different viewpoint, so that purely visual memories
cannot give an advantage. Additionally, behavioural hypotheses
could further be tested in identical virtual environments, as gaze
behaviour in the context of locomotion was recently shown to be
highly similar in virtual environments and the real world (Drewes
et al., 2021).

Even though the complexity of the parietal and temporal cor-
tex is much beyond what we cover with our model, our account
proposes a framework of how memory recall can directly guide
visual perception by means of transformation from allocentric
to egocentric reference frames and visual attention. Thus, our
Spacecog model demonstrates for the first time an integrated
account of memory and vision.

Despite the model already covering some aspects of spatial
cognition, it is by no means complete. Felice only uses monocular
vision and we do not extract any depth information from the
image by stereo vision or optic flow. Thus, despite her ability to
recall and visit her recalled position in space, her understanding
of space is limited due to missing depth information. Hence, in
the present model, boundary information (the walls of the room)
is supplemented by the VR and not the result of visual perception.
The Spacecog model on which she operates also does have only
a limited form of scene memory, while humans can store a
large number of scene representations in visual long-term mem-
ory (Konkle et al., 2010), which may support self-localisation and
allow to locate objects as part of the scene context (Hollingworth,
2007).

A further limiting factor of the model is computational com-
plexity, which is most visible in the interaction of spatial and
visual areas. Due to limits in the spatial accuracy of neural popu-
lations, small inaccuracies can occur during encoding and recall,
which can lead to shifts in the position of the agent and its
visual field, or in the placement of spatial attention. Increasing
neural populations to more realistic numbers would be an ob-
vious solution in this regard, however a performance-accuracy

trade-off has to be made. Further, the development of biologically
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Fig. 11. Visual neglect. In the top row, a typical simulation is shown, which results in the left crane being selected for a potential saccade (FEFm). When left side
visual neglect is introduced in Xh , activities for the right object are projected back into FEF via LIP, while reentrant processing between LIP and FEF is weakened in
the left visual field (bottom row), and as a result, the right object is selected as the saccade target.
b/
plausible but still efficient methods of object recognition is still an
active research domain (Teichmann et al., 2021), while machine
learning methods that rely on supervised learning are presently
more powerful.

With respect to attention, it has been shown that the best
possible search template are not necessarily the features of the to
be searched object, but those features which best discriminate the
target from distractor objects (Maith et al., 2021; Navalpakkam &
Itti, 2007). Our present version of this model does not make use of
learning a suitable top-down feature-based attention signal, given
the context of a scene.

Finally, an important area of present and future research is
the general flexibility of the agent. As outlined in the general
task, the structure of the task is fairly fixed and Felice by herself
is not given the ability to decide about her goals, plans and
the outcomes of her actions. Thus, our model does not include
reinforcement learning or other means of action selection. Al-
though Felice is performing well in the specified task, this relies
mostly on externally provided cues of where to initially walk and
which object to attend to. Desired objects in encoding and recall
are externally cued in the corresponding neural population and
no intrinsic goal-directed behaviour is shown, as the required
cognitive structures are not currently part of the model.

4.1. Conclusion

The combination of visual, attentional and spatial components
successfully bridges a gap between previously disparate areas of
neurocomputational modelling. By introducing parietal areas as
an interface between spatial and visual areas, this most notably
creates the novelty of memory guided visual attention, which at
this level has so far only been addressed by the presented model.
In addition to the questions explored above, spatial information
of previously encoded objects can now be used to explore atten-
tional processes across eye movements. This can open up many
new avenues concerning the interpretation of neuropsychological
data in complex tasks of spatial memory and attention. The
integrated model therefore also provides a unified framework for
visuospatial tasks and can further be used as a powerful tool
for the assessment of a broad spectrum of biologically rooted
hypotheses concerning human spatial cognition.
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