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Absiract. A neural network model is developed which captures the results of human
memory expenments on learming lists of items. The psychological experiments on learming
hsts are reviewed Hopficld—Pansi type neural networks are used fo model many of the
sumpler features of order effects mn sepsal recall. The recall of items as a funchion of therr
number, their positon 1 the st and ther~ similanty 15 investigated with simulations. More
complex expenments ivolvirg different caiegores of items are modelled using correlated
patterns of activity. Insight into how the models work is gamned by consideration of the
distributton of weights and ~ignai-fo-noise ratio arguments.

1. Introduction

Since the resurgence of neural networks, there has been much inferest in the macro-
scopic behaviowr of simple mathematical models of memory. The Hopfield modei
[1] in particular has been widely used to capture some features of human memory,
such as content-addressability and error tolerance. Other neural network models have
been proposed to madel icatures of human memory [2,3,4] as well. The properties
of many such models have been extensively studied in their own right, but how good
are they as models of human memory?

The answer to this question lies in comparisons between the psychological data
on the behaviour of human memory and the behaviour of the models. Although
the motivation for constructing heural network models of memory comes from the
microscopic level of neurobiology, their utility lies in the similarity of the macroscopic
properties they exhibit. As most neural networks are crude idealizations of neuro-
physiology at best, it seems crucial that they capture the phenomena correctly,. A
number of researchers have studied neural network models in a variety of psycholog-
ical domains, including Virasoro [5], Amit et af [6], Nadal er af [7], Grossberg [2] and
many others (see section 3).

One of the simplest and most widely used memory tasks is that of list learning.
Data has been collected on performance under an extremely wide range of conditions.
In particular there is detailed information on the relative likelihood of errors occurring
at different positions ir a list. We attempt to model these experiments using Hopfield-
type netwerks and to compare the errors made (as a function of position) with the
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psychological data. We also consider the mechkanisms responsible for the behaviour
of the model and briefly review some of the explanations of the psychological data.

The task of kearing or seeing and then recalling a list of items involves processing
on many levels and by many different systems. However, storage of the interpal
representations of presented items is one of the most fundamental steps involved in
these experiments. This is what we model here. At the present state of knowledge, it
is not possible to produce 2 more complete theory that is even approximately accurate
at all levels of complexity. To model high-level brain functions such as memory we
must make gross approximations at the neurobiological level. The construction of
even very crude models of memory from such simplified building blocks presumes
that the macroscopic behaviour shown is not crucially dependent on the microscopic
details.

Of course, as more detailed neurobiological information on the relevant structures
of the brain become available, models and explanations of psychological phenomena
become more constrained. There has been much progress in this direction, see
Motris [8].

2. Review of list learning experiments

2.1. Simple (homogeneous) lists

The basic elements of a list learning experiment are as follows. The subject is
presented with a list of items, such as words, one by one, and is then ashed to recall
them either immediately or after doing some other task. Recall can be free’ in which
items can be recalled in any order, or ‘serial’ in which the items must be recalled in
the order of presentation. The types of items used and the way in which they are
presented can be veried as can their presentation rate.

Our model will try to reproduce the typicai features of a list learning experiment
under free recall. There is a wealth of data on different versions of these experiments.
One reason for this degree of interest is that the free recall task was taken as providing
evidence that human memory consists of at leasi two scparate stores [9] (of which
mere below). An overview of the subject for non-experts can be found in [10]
and [11]. We outline here some of the features of most interest to us.

Figure 1 shows a typical graph of the probability of correctly recalling an item
from a particular position in the list. This is called a serial position curve. When recall
is immediate, this curve—raised at both ends and flat in the middle—occurs under a
very wide range of conditions, This shape s characteristic of the curve irrespective of
whether the items are words or nonsense, presented quickly or slowly or even if the
subject is drunk or sober. The tendencies for items at the beginning or at the end of
a list to be recalled better than the other items are known as primacy and recency
respectively.

Recency typically extends over the last two to five items and is unaffected by
factors like the rate of presentation or the familiarity of the subject with the items
or by the overall length of the list. However, if recall is not immediately after
presentation but after some intervening task like simple arithmetic then the recency
effect is no longer present, although the remainder of the serial postion curve is
unaffected. The rest of the curve, incleding the primacy region, is affected by the
rate of presentation and the number and type of item used. Here recail is better for
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Figure 1. Serial position curves (showing the probability of correct recall versus posiion
in the list) for lists of 10 (full linc), 20 (broken hine), and 30 (dotted hne) words with
immediate free recall. Taken from Postman and Phillips [15].

woids that are well-known or slowly presented and for shorter lists. However, rons
of these factors influence recall in the recency region of the curve.

There are many theories in psychology for the explanation of these eifects which
are dealt with in more detail elsewhere [11,12]. However, the two models to have
received the most attention historically are interference theory and the two-system
model. A very brief outline of these folows,

In the two-system model proposed by Atkinson and Shiffrin [9] items initially go
into a short-term store (sTs) from which they are transfetred into a permanent long-
term store (L1S). A control process of rehearsal can be used to prolong the storage
of an item i STS and hence increase the probability of it begin transferred 10 LTS,
The sTs has a limited capacity; the first item in is the first one out. Thus the recail
of the last few items in the list is boosted by their being in the sTS. This offers an
explanation of recency. The disappearance of recency when recall is not immediate
is explained by subsequent material displacing the last few items from the sTS. The
explanation of primacy in this model is that rehearsal of the memory trace takes place
a8 soon as it has been presented, 50 that earlier patterns tend to be rehearsed more.
Rehearsal could be conscious or subconscious (see discussions of the ‘articulatory
loop® [10,11]); it is thought to be cumulative in that previous items are rehearsed
whenever a new item is rehearsed.

Interference theory maintains that there is but a single memory store. It holds
that forgetting is caused by the memory trace becoming obscured by oihers rather
than simply decaying with time. It was found that the recall of a list of items was
impaired by the learning of a second list before recail [13]. This tendency of a later
list to interfere with the recall of an earlier one is called retroactive interference or
RL The interference of an earlier list with the recal} of a later one is called proactive
interference or PI [14]). In both cases the more similar the contents of the lists are
the greater the effect is. We will look at this more closely in the next section.

Interference theory can also be used to explain forgetting within a single list of
items, Thus, recency is due to RI between items within a list (as there are fewer
subsequent items to interfere with the later items). Primacy is due to PI between
items within a list (as there are fewer previously learned items to interfere with the
earlier items). When recall is not immediate but follows an intervening task, the
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RI on the last few items is increased and P1 has more time to build up so that the
recency disappears [15).

2.2 Lists of different types of items and release from proactive inhibition

In the above discussion, there was no account of the actual content of the lists, The
items in the lists were taken as being equivalent. This is appropriate when the items
are digits or taken from some other homogeneous list of words. However, a number
of effects have been observed when the items can be more or less similar with the
other items, either similar in sound or similar in meaning.

An interesting piece of evidence for interference theory is the phenomenon of
release from proactive inhibition (RPI) [16]. In this the subject is given a series of
trials involving the recall of semantically similar items. PI builds up rapidly during
the experiment, causing recall to deteriorate after the first trial. However, when the
type of item is changed recall is dramatically improved for the next trial: the recall
has been ‘released’ from the PI by the change to dissimilar items. The effect is more
marked when compared to a control in which the type of item is the same within a
trial, but is always changed on the subsejuent trial. Thus, PI does not have a chance
to build up. An example experiment is shown in figure 2. Here each group is given
three words to remember per trial. For the control (labelled 4A) the category was
changed every trial; for the test group (labelled 4S) the category was changed every
seventh trial. The change in type of item could be between words and digits, or
between words from different semantic categories (e.g. animals, drinks, plants, etc).
The effect was not observed in a ‘final free recall’ at the end of the experiment
of all the items shown [17). This was interpreted as evidence that RPI js a recall
phenomenon rather than a storage phenomenon.
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Figare 2. Release from proactive inhibition. In each trial the subjects had to remember
three words from a taxonomic calegory. For group 4A items were laken alternately
from four categones. For group 45 the category was changed every seventh trial After
Laoess [41].

A related phenomenon that is observed when learning different types of items
is the Von Restorff [18] effcct. This is the obscrvation that a distinci item in an
otherwise homogeneous list will be better recalled than the other items, Green [19]
showed subsequently that this improved recali was not resiricted to an odd one out
in a list but oceurs, more generally, with the first novel item reached in a list. This
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item could be alone or the first item in a block of similar items thus connecting the
Von Restorff effect with RPI within a list.

3, Modelling list learning

In this section, we describe our modei for serial recall of lists. Our model is based on
the Hopfield model, which is a simple model of autoassociative, content-addressable
memorty. Because the Hopfield model is by its nature a model of memory, it has
already been widely used to interpret psychological and neurophysiological memory
phenomena. More computationally powerful models, such as the multilayer percep-
tron, are better suited to more general processing such as language acquisition and
vision. However, a small amount of work has been done on forgetting in multilayer
perceptrons. Hinton and Plaut [20] looked at the role of decay in weights in learn-
ing. Another very detailed model of working memory using multilayer perceptrons
was outlined in [21] The major difference between these models and a Hopﬁeld
appmac;l is that the nupms}u model uses a local Hebb rule which makes p paticm
storage a ‘onc-shot’ event (ie. the network can store a pattern after a single pre-
sentation), Multilayer perceptrons use backpropagation, which learns gradually. The
fast learning of the Hebb rule is appropriate for the rapid and short-term storage in
list learning. In addition, because the Hopfield model has a limited storage capacity,
forgetting in the model described below is due to interference, whereas in Hinton
and Plaut’s model it is due t0 decay.

Another approach which has been widely used to model memory is based on a
model proposed by Grossberg [2] Interesting results have been obtained by a number
of researchers. For example, a model of the interaction between short and long-term
memory in list learning has been developed by Schreter and Pfeifer [4]. A model
for learning sequences has been developed by Houghton [3] within this paradigm.
The major difference between this approach and the Hopﬁeld approach is that in the
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representations are local.

We now review the main features of the Hopfield model. For a detailed introduc-
tion, see Amit [22]. In simplest terms, the Hopficld model is a model of N two-state
units which interact with each other via a set of weights. Patterns are siored in
tiie model via Hebbian learning, and the system functions as a content-addressable,
autoassociative memory. Pattern storage is a ‘one-shot’ event; the network stores a
pattern after one presentation. However, the Hopfield model has a limited capacity,
so it may fail to store a pattern on presentation or forget it later.

‘The units are completely interconnected by the weights, which are denoted J,; 43
this connects the éth unit to the jth one. The Hebbian learning rule stores a pattern by
increasing J;, if units ¢ and j are the same and decrementing J,; if they are different.
The model can store a numher of patterns propornona] to N. The proporuonahty

Nrnokawt

vulislain, &, uupcuua UpoTi ihe ;cmuuublup betweeil ihe pdu.t:rnb, for uncorrelaied
patterns o, =~ 0.14 [23].

If the storage capacity is not exceeded, the model functions as a content-
addressable memory. When a noisy version of one of the stored patterns is input, the
system relaxes to a pattern very close to the stored one: However, when the number
of stored patterns exceeds the strorage capacity, the system relaxes to a degraded
version of the stored pattern. The greater the number of stored patterns, the greater
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is the degradation. For N very large, this transition is very sharp; the system catas-
trophically forgets everything when more than o, N paiterns are stored. However,
for N not very large, the forgetting is gradual,

A number of researchers have modified the Hopfield model to act as a working
memory. In these models, the memory acts as a buffer: it can hold up to o N
memories, ¢ach one stored more or less equally (there is a slight degradation of
the pattern which has been in the buffer longest), and when the storage capacity is
exceeded, the earliest patterns are forgotten compietely. In these models o, is less
than in the Hopfield model, typically o ~ 0.05 [24]. These models show perfect
TECEncy.

There have been two approaches to achieve this. One was proposed in [25] and
{26}, where the Hebb learning rule has a different factor for each pattern (possibly
modelling changes in the attention [7]) of the subject. In this scheme (referred to
as ‘marginalist’ learning) each new pattern learnt causes a change in the connection
weights whose magnitude increases exponentially with the number of patterns learnt.
The other approach was suggested by Hopfield [1]. In this approach, the usual Hebb
learning rule is used, but the magnitude of the synaptic weights is bounded. When
the bound is reached, learning can decrease the magnitude of the weights, but pot
increase it. This model was studied numencally by Parisi {27} and in {253]. It was
solved analytically by van Hemmen et a/ [24]. We refer to this model as the Hopfield—
Parisi model. If the parameters are carefully chosen, this model acts like a buffer
with recency.

A similar model was proposed by Nadal e al [25] as ‘learning within bounds’ and
a modification of the ‘marginalist learning’ scheme was presented that is equivalent
to bounding the weights [7] (See also [28] and [29] for related work.) A related
model was develaped by Peretto [30] in which the weights are also bounded but once
the weights reach the bound, they stay there forever. This model shows primacy, but
no recency. A recent model has been produced by Wong et af [31] using weights
that have different probabilities of being strengthened or weakened during learning
in which primacy and recency can be seen.

In order to reproduce the experiments on list learning, we must introduce mech-
anisms for primacy and recency, and a way of producing the similarity effects. The
simplest way to produce primacy in the model is for the input of a new pattern to
cause the magnitude of each weight to be increased in proportion to tself. Thus the
learning of each new pattern is accompanied by a reinforcement of the present state
of each weight (i.e. a reinforcement of the previously stored patterns) which will tend
to cause primacy. The psychological interpretation is of passive cumulative rehearsal
or consolidation.

The source of recency we use is that of the Hopfield—Parisi model; the magnitude
of the weights is bounded. This seems the most natural source of recency, and clearly
makes forgetting of early items an interference phenomena. The alternative is to use
a different learning factor for each pattern to produce virtually any serial position
curve. Of course putting the required behaviour into a model by hand and producing
it again does not seem very productive. We would prefer a model involving a smali
number of parameters which showed plausible emergent behaviour.

We introduce two parameters to control the relative strengths of these two effects.
Let the size of the change of weights due to rew information be ¢. The factor by
which previously stored patterns are reinforced is . If v equais one, there is no
reinforcement of previous patterns and the model is equivalent to the Hopfield—Parisi
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model. If ~ is bigger than one, there is reinforcement; if -y is less than one, there is
actual decay of previous items.

The relative strength of the mechanisms for primacy and recency is conveniently
parametrized by the ratio * = ¢/(y — 1). It is the interplay between the two
mechanisms for primacy and recency which gives rise to much of the rich set of
behaviour described below.

These two effects are expressed mathematically in the updating rule for the
weights. This is the essential equation of the model, and is,

Ji, (24 1) = F(vd,, (1) + €6

)= { v

® if l] <1
sgn(x) otherwise

and vy > 1, ¢ > 0.

The similarity effects are modelled by allowing correlations to occur between
patterns. This is discussed further in section 4.2.

The basic experiment we are modelling is as follows: the subject is ready for
the experiment at + = 0. At each time step (¢ = 1,2,...) the subjcct is presented
with an item (e.g. they hear a word). At time ¢ = p, the experiment ends and the
subject 1s asked to recail the items (in any order). Note that p is the number of
patterns presented to the subject. After several such trials a serial position curve
can be plotted showing the average fraction of items correctly recalled versus their
position in the list.

The model is a fully interconnected network of N units S, taking values +1. The
weights of the connections J,, between units ¢ and j were initially zero (ve. starting
with a so-called tabula rasa; see the discussion in section 5).

Presentation of the list of p items was modelled by setting the units S, to be
successively equal to patterns activity £ for v = 1,... p, that 15, setting;

S5(t=1)=¢! S,t=vy=¢& i=1,...,N vr=1,...p.

These patterns are ‘fearnt’ by updating the weights according to equation (1).
Recall of a pattern 1s modelled purely by testing how well stored it is. The units
are set to a noisy version of the pattern (the amount of noise being the fraction of

units that have changed sign; we take this to be 0.2) and then relax sequentially
under the dynamics:

.= san (30,5, @
&

until a stationary state S* is reached for which equation (2) is true for all . The
recall overlap

v i A W ey
m =HN—ZS'-£‘
3=i

is interpreted as a measure of how well pattern v is remembered. All ‘recall overlaps’
m" subsequently shown have been averaged using ten different noisy versions of the
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pattern to be recalled. This of course assumes much higher-level processing by other
systems, The bare pattern completion/recognition task on the internal representation
&/ (measured by m”) might represent a basic step in recall. We do not, however,
have a detailed model for the mechanism of recall itself, only storage (although such
a mechanism is probably essential to understand all of the phenomena, as we discuss
in the final section).

Here we will study the behaviour of the model in two ways. We will do numerical
simulations to determine the types of behaviour shown by the network. In section
5 we will characterize the behaviour of the model in terms of its parameters by
considering the distribution of the weights using simple arguments.

4. The serial position curves

4.1. Simple lists

In this section we show the serial position curves for our model with varions parameter
values (from numerical simuelations) and explain them descriptively. A more detailed
analysis is given in section 5, and in reference [32].

There are three free parameters in the model, ¢, v, and N. The first controls the
change in the weights when a new pattern is stored. Thus, it is associated with recency.
The second controls the amount which old patterns are seinforced, and is associated
with primacy. The third parameter is N, the number of nodes in the network. This
parameter controls the capacity of the network. The relative importance of € and
is expressed in an additional parameter

2" =ef{v-1).

There are essentially two causes of failure to recall a pattern in this model. Since
the memories are stored in the weights, the model will fail to recall a pattern when
the weights are not sufficiently strongly correlated with that pattern. How the strength
of storage depends wpon order within a list is controlled by the parameters e and
. These two parameters can be adjusted so as to make either the patterns at the
beginning of the list or at the end of the list most influence the weights.

The second mechanism for forgetting is interference with other stored patterns.
This is very well known in Hopfield-type models and is the cause of the finite storage
capacity of the models. The importance of interference is effectively controlled by N,
the size of the network. For example, when the patterns are equally and optimally
stored in the weights, interference causes all patterns to be forgotten when more than
2N patterns are stored [33]. In the large- N limit, this leads to catastrophic forgetting,
ie. the transition from from good recall to total forgetting is abrupt. When N is
finite the forgerting is gradual. The storage capacity, the maximum number of patterns
which the model can store, typically scales with N. It is expressed in terms of o,
which is defined to be the maximum number of patterns stored divided by N, p./N.
This capacity depends upon the storage rule and correlations between the patterns.
In our system, it will be determined via simulations.

In order to understand the relative strength of storage of the patterns in the
weights, consider the distribution of weights P(J; ). Initially all the weights are set
to zero. As each pattern is mput the weights are updated according to equation (1).
The initial distribution P(J;,) is a spike at zero, this broadens as patterns are learnt.
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Figare 3. The distitbution P(J;;) (averaged over 10 sumulations for 90 weights) after
p patterns bave been leamnt, where p = 10 for the full ine, 20 for the broken fine and
30 for the dotted lne. vy =1.05,¢=0.1,2* =20, p{1} =248 and T3 = 6.7

The broadening continues until a significant fraction of weights reach +1 which they
cannot exceed.

The effect of v > 1 in equation (1) is to make P(.J,,) biased towards the
extremes 1. Thus, after sufficient patterns have been presented P(J,,) begins to
build up at +1. Figure 3 shows a numerical simulation of the distribution of weights
after 10, 20 and 30 patterns have been learnt.

Primacy can occur when z* < 1. In this case, after a sufficient number of patterns
have been stored, new patterns have little effect on the weights. This is a consequence
of the dynamics of equation (1). Once the magnitude of a weight |J,, | exceeds z*,
the magnitude of that weight can never decrease; its sign has been determined by
the patterns stored before it ieached +x*. Thus, z* is a point of no return for the
weights. After a considerable fraction of the weights reach this value, no new patterns
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Figare 4. Seria} position curves for 10, 20 and 30 patterns showing permanent primacy.
All serizl position curves are averaged over 10 simulations In each simuwlation recall
15 averaged aver 10 noised-up versions of the pattern 1 which spins are fipped wath a
probability of 0.2. N = 100, v =1.25, ¢ = 0.2, z* = 0.8, and plz*) = 5.2,
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The number of patterns which can be stored depends upon e and «+ in a way
which is discussed in section 5.

A typical serial position curve for =* < 1 is shown in figure 4. Tt shows permanent
primacy (or ‘imprinting’). In fact, there is some storage of recent patterns so long as
the magnitudes of the weights are less than one, In the long-time limit, only the first
n, say, patterns are remembered. For shorter times, more than that number can be
recalled.

Recency can occur when z* > 1. In this case, the sign of a weight can always
be changed by subsequent patterns. However, due to the fact that the weights are
bounded at +1, the weights become decorrelated with the earlier stored patterns.
This is because recent patterns can cause the weighis to change sign. In this regime,
the model shows recency, as in the Hopfield—Parisi model. A typical curve is shown
in figure 3.

h I 7 4

Figure 5. Serial posiion curves for 10, 20 and 30 patterns showing recency The recency
part of the cuive is flat due to saturating at perfect recall although the later patterns

atm stesad o rs ateench; n fhs smeighics Al — 100 2 — 1 NE - o L AE om0
aie S10Ied moic SHOUgly 1n 1nc woignis ¥ — iuv, 77 — 1L.U2, ¢ = U.39, L& = J.4,

p{1)=4.2 aaa T) =2.3.

If N is arbitrarily large while the parameters e and ~ are fixed, then the behaviour
of the model s set solely by *: z* < 1 yields primacy; =™ > 1 gives recency. 1n
this limit interference is negligible (unless N diverges and ~ and e scale with IV in
a suitable way; see section 5). However, if N i sufficiently small, interference can
lead to catastrophic forgetting, and all three behaviours are possible depending upon
the parameters chosen. In this case, patterns are lost when more than the critical
capacity p, (~ 0.05 N from simulations) is input to the system. When fewer patterns
are inpat, primacy or recency is shown as before.

When N is finite and for intermediate times (i.c. intermediate numbers of pat-
terns) the model can show primacy and recency together. This behaviour is most
pronounced near the boundary between primacy and recency. The patterns affected
least by this forgetting are those stored by the most weights. These tend to be the
patterns at the beginning of the list and the patterns at the end of the list. Thus the
serial position curve is raised towards the ends, i.e. showing primacy and recency see
figure 6 (and compare with figure 1).

There is primacy in the serial position curves when the number of patterns stored
is not large. When the first few patterns are presented a large proportion of the
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Figare 6. Serial position curves for 10, 20 and 30 patterns showing pnmacy and recency,
with the amount of primacy decaying. N == 100, v = 1.14, € = 0 3, z* = .14,
p{ly=56and T} =4 6.

weights are nearly zero; these more strongly influence the sign of the weights than
later patterns. As the number of patterns stored increases, the recall of the earlier
patterns (i.e. the primacy) deteriorates as more weights change sign. The recall of the
most recent patterns (i.e. the recency) is not affected by the list length. See figure 5

The duration of the primacy and recency portions of the curves can be adjusted
more or less independently via the parameters. Thus the relative amounts of primacy
and recency are noi determined by the model.

Since time does not appear explicitly in the model, the disappearance of recency
when there is a task before recall can be modelled by the presentation of irrelevant
patterns. It is clear from figure 7 that this will model the lack of recency in exper-
iments in which the subject is given a task between hearing the list and recalling it.
However, it should be noted that this would be accompanied by a slightly greater
decrease in primacy than is observed in human data. This mechanism might be in-
terpreted as the task displacing items from a limited buffer rather than as a build-up
of proactive inhibition.

4.2. Lists of different types of item and correlated patterns

In this section, we describe a2 model in which the items in the lists can be sumilar or
dissimilar to the other items in the lists. We will use this to model the experiments in
which there is proactive interference between similar items in lists, but no interference
between dissimilar items. These experiments were described in section 2.2, and
include the so-called release from protective inhibition Re1 effect and the Von Restoff
effect.

In these experiments, the items to be recalled come from classes; items in the
same class are qm’lﬂm‘ those from different classes are dissimilar, For example

cnma
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of the items could be numbers, others could be the names of flowers, and so forth.
To model similarity of item, we use correlated patterns, whereas dissimilar patterns
are uncorrelated. This assumes that the internal representations of similar items
will themselves be similar. The storage of correlated patterns by Hopfield networks
has received much attention recently: modifications of the Hebb rule have been
proposed that store correlated patterns more efficiently and storage capacities have
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been calculated in the large-network limit [34,35). Here we want to model release
from p1 experiments with a finite size network and a finite number of patterns.

Each category or class of patterns is defined by an ‘ancestor’ (or ‘prototype’)
pattern. The ancestor patterns are unbiased and uncorrelated. The patterns within
each class have correlation » with their class ancestor and correlation ¢ = +? with
each other. Patterns from different classes are uncorrelated. (See section 5 for more
details.)

Proactive inhibition is observed when a subject undergoes many successive trials
(learning and recaliing a short list) and the type item used is changed every few trials
(see figure 2) To model the experiment in ﬁgure 2 we presented the network with
24 trials. Each trial consisied of iearning and recalling three correlated patterns.
The class from which the correlated patterns were drawn was changed every seventh
trial ‘Thus four different classes of 18 correlated patterns were used. The connection
weights were not reset to zero between lists. The control experiment in figure 2 was also
modelled: changing the class of pattern every trial.

The change of the weights is still governed by equation (1). However, we took
4 = 1 (.e. the straightforward Hopfield-Parisi model) to model these experiments
because the reasons for putting < > 1 in the model of learning a single list (to model
rehearsal or consolidation see the discussion in secticn 6) do not apply to patterns
from previous trials (i.e. those that have already been recalled). We were interested
in modelling the overall change in performance between trials rather than the details
of each trial. (To exactly reproduce the serial position cerves within each trial we
would probably need some reinforcement of the storage of patterns in a list but only

Frr tha dunratinn Af thasr ¢rinl)
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In figure 7 the full line shows the resulis of the simulation of this experiment,
the broken line shows the simulation of a control experiment in which the category
is changed every trial. The recall of a trial was taken to be the average recall of the
three items in a trial.

We modelled the Von Restorff effect by learning a list of ten patterns from
one correlation class and one uncorrelated pattern. Recall occurred after all eleven
patterns had been presented. The recall overlap for the uncorrelated pattern was
(unsurprisingly) better than for the correlated patterns for cases that we tried.

The recall performance of the network is best for the first trial and successively
worse for later ones. There is new primacy cach time a mew class of correlated
patterns is presented. This behaviour does not occur in the control expeniment or in

a final recall test of all the patierns used (this showed only recency). These results
are consistent with the nnw-hnlnulral data, see ﬁtmrp 2. It is lhfPfEQﬂ‘nO’ to note that

the absence of RPI in a ﬁnai free recall of ﬁems is interpreted as ev;dence that RPI
is a recall phenomenon. Our experiment also showed this, but caused by strength of
storage only, as our model has no seperate mechanism of recall.

Essentially the main cause of interference with the storage of a pattern comes from
other patterns in the same category. Thus recall performance deteriprates within a
class, and at the beginning of a set of trials from a new class recall is relatively good
again. The ancestor pattern from each class becomes more strongly stored with the
presentation of each pattern from that class (even though it is never presented itself).
Eventually the ancestor pattern becomes so strongly stored that it dominates all the
mdividual patterns. The basins of attraction for the individual patterns in a class are
slowly lost in the growing basin of atiraction of the ancestor pattern. Finally all that
can be remembered are the common features of a class and none of the detail.
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Figure 7. The average recall overlap of the three patterns i each tnal. The category
from which patierns were taken was changed every seventh tnal (RPI expenment, fult
Iine) or every tmal (contro! expenment, broken ling) Patterns withm a categoty have
correlation (.2, € = 0 2, V = T00, recail noise was 0 13

The fact that that these models remember the common aspects of a set of corre-
lated paiterns, and, in fact, eventually remember the common aspect at the expense
of the patterns which it has actually seen is common to many Hebbian learning rules.
This has lead many investigators to invent other rules which are more efficient at stor-
ing correlated patterns [33,34,35]. However, we note that the same effect has been
observed in humans, see for example Posrer and Keele [36], in which a prototype
visual dot pattern was as well recognized as patterns actually seen. In addition, the
deterioration of the storage of individual patterns in a class compared to the storage
of the common feature of the class has been used to model prosopagnosia [5], which
is a deficit in recognizing individuals while recognition of categories is wnimpaired.

5. Mathematical analysis

In this section, we present a simple analysis which allows prediction of the behaviour
of the model as a function of the parameters. In principle, the techniques of replicas
[6] could be used to calculate the serial position curves described in previous sections.
However, much of the curve comes from finite size effects, which makes such a calcu-
lation difficult. Instead, we rely on simple arguments to explain how the behaviour of
the model deperds on the various parameters. The effects of -y and e are found from
the distribution of the weights P( J,,) and correlations of the weights with stored

patterns. Siorage capacity is found from signal-to-noise analysis or simply from the
the numerical simulations themselves.

5.1. Simnle licts
21, simple [is

Lt

It is useful to define four parameters to characterize the behaviour of the network:
I. 2* = e/(v—1), a measure of the relative strength of the mechanisms for primacy
and recency.

2. p(1), the number of patterns stored before a significant fraction of weights reach
the values =1 from their initial value of zero.
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3. p(z"}, the number of patterns stored before a significant fraction of weights reach
the values +x* (this is only defined for =* < 1).

4. pg, the first passage ‘time’, i.e. the average number of patterns stored before the
value of a weight changes from —1 to +1 (this is only defined for z* > 1).

These are, of course, functions of the three independent parameters «, €, and N.

First, consider the case z* < 1. It is easy to see from equation (1) that when
the magnitude of a weight exceeds =*, the magnitude of that weight cannot decrease.
The sign of that weight is determined at that point. Thus, we argue that the amount
of pattern storage is set by p(z*) so long as the storage capacity is not exceceded. An
intensive number of patterns wili be stored when p_ 3 p(z*), and only the first p(=*)
patterns will be stored in the long-time limit. Time is measured by the number of
patterns input; in this case long time means long compared to p(1). If the number of
patterns input is less than p(z*), all patterns will be stored; il the number of patterns
input is between p(z*) and p(1), then some primacy will be present. Obviously, if
P. € p(z*), then the system will behave like the overloaded Hopfield model and
forget catastropitically. Primacy with an extensive number of patterns stored is also
possible. The storage capacity has been determined in numerical simulations. The
value was found to be close to that of the Hopfield—Parisi model, o, =~ 0.05.

We estimate the quantty p(z*) by finding the p such that the second moment of
the weights is equal to z*%. It is straightforward to see (ignoring the effects of the
bounds at +1) that

« _ Inf24/(~y =1)]
! 2n(v)

-

plz

H

This result is derived in the appendix. This equation determines the boundary between
the primacy regime and the forgetting regime. Extensive pattern stcrage is possible
when v scales like

In(N)
alN

T~1+4

and € goes to zero to make x* less than 1.
Likewise, p(1) is estimated by setting the second moment to one. This yields,

Ie[1 + (v - 1)/

PN =~

These two parameters determine the number of patterns stored in the primacy regime.
When the number of patierns seen by the system is much larger than p(1) most of
the weights are pegged at the values £1. The number of patterns stored is p(z") and
no additional patterns can be stored. For example, in figure 4 about five patterns are
stored and p(z*) is 5.3. When the number of patterns is between p(z*) and p(1),
many of the weights are between z* and 1 and there can be some storage of new
items. In this case the number of patterns stored exceeds p{z*). If the number of
patterns input is smaller than p(z*)}, then all patterns are stored. Of course, when
the number of patterns input exceeds the storage capacity ali patterns are lost.

For z* > 1 the sign of a weight J,, can always be changed by subsequent
patterns. However, once a weight has reached a value near to 1 it remains near
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to +1 for several time steps. The average number of patterns learnt before a weight
J,, changes sign from -1 10 +1 is the first passage time, pg,.

The first passage time gives an estimate of how long the system takes to forget.
As a finite fraction of the weights have changed sign within this time, the weights have
become decorrelated with patterns input more than time pg, ago. T put it another
way, the first passage time gives us an indication of th> relatwe amounts of time the
value of a weight spends near to zeto compared to +1. 3ince a pattern can influence
those weights which are near zero, this timescale gives an indication of how much a
pattern will influence the weights.

If we accept the above explanation of forgetting, then the first pa.sage time
as a function of the parameters determines the boundary between the recency and

catastrophic forgetting regimes. Whea pg, < p, the last pg, patterns will be stored;

when pg, > p. no patterns will be stored after many pattems have been input. The
precise evaluation of the first passage time in equation (1) is not trivial. It is tempting
to approxmmate the equation by the Langevin equation

dt

d_a.': dV(:c) + () 3)

and use the well known Arrhenius result [37] for a particle escaping over a barrier
potential V(z) = —3(v—1)z%. However, this is not correct due to the fact that the
noise is bounded. The Arrhenius result assumes Gaussian noise which can surmount
any barrier if one waits long enough. The bounded noise of equation (1) can only
push a particle over barriers smaller than a certain height. This is why if a weight
exceeds z*, it cannot escape. A consequence of this is that the first passage time
diverges as =~ tends to one from above. (It is clear that the first passage time must
diverge at £* = 1 because in that case when a weight gets to £1 it sticks).

For z* > 1 the Arrhenius result is a good approximation to pg,. The Arrhenius
equation gives the time for a particle to surmount 2 barrier due to thermal activation
as proportional to exp(A E/kT) where A E is the height of the barrer, k is Boltz-
mann’s constant, and T is the temperature. This can be derived from equation (3) if
the second moment of the noise # is proportional to k7. (See section 1.6 of [38] for
derivation of the Arrhenius equation from an equation of this form.) For our case,
this gives & first passage time proportional to

Prp x exp(1/(ex")).
As g™ —» 1, we can compute the divergence term by expanding in the possibile
noise configurations which take the particle over the barrier. The leading-order

configuration is one which takes p, steps in the same direction, where p, is the
number of steps required to get from 1 to O:

_ Inla*/(z* = 1)]
PL= In(~) '

Thus, the leading contribution to the divergence is

In2/Iny

m*

Tl = ( * ) )
z* -1
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This is an wpper bound for pg, as in this amount of time, the escape is bound to
OCCHT.

There is a minimal process to surmount the barrier, which is to get to the point
where it takes more than one step to reach +1. This poiat is (1 — €} /~. From this
we find a lower bound for the average first passage time:

r,- (=Dt a:*)"’”’“”.

zt—1

In simulations, the second approximation gave better results; of course they exhibit
the same divergence.

In this regime, p(1) indicates the number of patterns which can be stored at the
beginning of the list with little diminution. The first passage time determines the
amount of patterns stored in recency when the number of patterns input is large
compared to p(1). For example, figure 5 shows storage of about four patterns in
the recency patts of the curve. The approximation T, predicts 2.3 patterns recalled.
Again, this assumes that the storage capacity i8 not exceeded, otherwise no patterns
will be recalled,

it is in the region between the primacy and recency regimes that both can occur
in the same experiment. This area occurs for * very to 1 and pq, very close to p,.
Figure 8 may help to illustrate this. This picture shows the three regimes defined by
what is recalled after a large number of patterns have been input. In this mit, either
only the first patterns can be recalled, the last parterns can be recalled, or no patterns
can be recalled. Because N is finite, the boundaries are not sharp; they sharper as
N grows. The boundary lines are determined by p(z*)/e, and pg,/c,. Figure 8
shows a plot of these parameters as a fonction of z=. They are actually functions of
+ and ¢, but to simplify the picture they are plotied here against the single variable
by keeping < fixed. Thus, the precise shape of the curves will vary with +; these are
examples. The point marked with a star indicates a set of parameters which exhibit
both primacy and recency.

5.2, Correlated patterns and inhomogeneous lists

In section 4 we used the learning -»f correlated patterns to model experiments involv-
ing different types of items. We took 4 = 1, consequently an approximate analyzis of

the dictributinn of weiohic ic relatively cimnle. We can understand the main featnres

IV GISLARUELAAIAE WL VTWILRILT A AWHALAVAAY GIIIV. TP TOH MLUWWICWGELU Ll NG VOIS

of the model in terms of signal-to-noise ratio arguments.
If the network is put into one of the memory states, say pattem {£7} then the
local field on site ¢ in the network after ¢ patterns have been learnt in total is:

N

= Y T, (0.

1=10#

Since the unit at S, obeys the dynamics S,(¢ + 1) = sgn(h,(t)) the ‘signal’ from
pattern £7 for the state of the network to remain at pattern £7 is S, (¢) = (h(£)&]),.
The ‘noise’ in the signal is
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Figure 8. Schematic representation of the behaviour of the model agamnst the parameters
z* and the network size Na.. The regions show what 15 recalied after a very large
number of patterns have been seen. In the primacy regior, only the earliest patierns
are recalled; in the recency region, only the latest patierns are recalled; i the region
labelled catastrophic forgetting, wone of the patterns can be recalled The point marked
with a star 15 an example of parameters which show pnimacy and recency together. The
broken lines do not represent sharp boundanes

The ratio R (f) = S,(1)/A (t) of the signal to the noise indicates the stability of
the stored pattern {£7}.

Bar tha ITanfiald ma~dal /2 iIf tha amishts wara anhnnndad anceacnandinag ¢n tha
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small-¢ limit in our model) we can calculate the signal-to-noise ratio directly.

We will do this for the RP1 experiment described in section 4.2,

As described in section 4.2 the patterns learnt: {£/%, i =1,...,N,r =
1,...,np = 1,...n,} are from correlation classes of n, patterns generated from
n, unbiased ancestor patterns: {£¥,:=1,...,N,» =1,...,n.}. They have cor-
relations: (€, ”E,‘""'), = §,,(c+{(1—-¢)}é,,). We will calcalate the signal-to-noise
ratio R, (1) for patiern £? at the moment that it is recalled.

In the RPI experiment recall of the previous three patterns occurred after the
learning of every third pattern (i.e. at the end of each ‘trial’ of three paiterns). The
Correlation class of each pattern is changed every », patterns. Suppose that &9
is recalled at time ¢ (potice that ¢ must be a multiple of three). The { patterns
learnt at time ¢ include (s — 1)n, pattemns from different correlation classes and
t—(s-1)n, =1, patterns from the same class as £? (2, = q,q+1 or g+ 2). We
will denote the sum over the ¢ learnt patterns {£;*}, (v,u) = (1,1),...,(s,9),
by

s—1 mp
Z T3 45,,3
Vi p v=1p=1 p=1

Then the signal from pattern £]7 is given by
8og(t) = (b, (1)E7),

= e(E Yo erregig

JEr vy
=e(N-1)(14(t, 1)6-’)
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and the square of the noise is given by
AL (2) = ((h, (D)), = 57,(%)

= ¥ Y e g 1) - sk
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= (N - 1){(N —2)[1 +3(¢, ~ 1) + (¢, — 1)(¢, — 2)c]

+(s—1)(n, + n,(n, — 1))
+t, +1,(t, — 1)c21} — (N - 1)1 + (¢, - 1))%

Thus

R, () =vVN 1]t + (¢, — 1){(t, - D[+ (¢, - 2)c® — (¢, — 1)*|(N - 1}
+(t, =D+, ~3)e (8, —2)e ]+ (s Diiny +n,(n, ~1)eT} 2.

The signal-to-noise ratio R,(t) of an ancestor pattern £ can be calculated smilarly
as:

R,(t) = vN -1t
* [teeQ =) N -1)+ 2, (1 - )+ (s - 1)(n, + n,(n, - 1)c?)]

1/2°

In the control experiment the correlation class from which the patterns are taken
is changed every trial. Thus the signal-to-noise ratio in the control experiment R (1)
is given by:

RS (1) = VN =11+ (¢, - 1) ((t_s —D)[+(t, -2y —(t, - ) (N=-1)

e ~172
+(t, - 1)[1+(t, - 3)c* - (¢, —2)%] + Z[t, +1,(t, - 1)c2])

vES

where {,, is the number of patterns learnt from the correlation class of £¥.

Figure 9 shows the signal-to-noise ratio for each trial in the RPI experiment at the
time of its recall. The signal-to-noise ratio is the same for the three patterns in a trial
(as ¢, is the same for each trial). Each trial is represented by one point to facilitate
companson between figures 8 and 9. The full line shows the szg"\al -to-noise ratio

R,,(t) for each pattern in the experiment (i.c. {€%s=1,...,4,¢=1,...,18)
at the time it was recalled. The broken line shows the s1gnal-t0-n01se ratlo R ~(1)
for the relevant ancestor pattern at each recall. The dotted line shows R (1) for
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Figure 9. The signal-to-noise ratio for the patterns (fulf Line) and ancestor pattern (broken
hine) n a tnal The correlation class from which patterns were taken was changed every
seventh irial (every trial for the control experiment—dotted hine) Patterns within a class
have corretation 020. N = 700.

the patterns 1n the control experiment—where the correlation class of the pattern is
changed after every trial.

We can see that for the first trial (i.e. the first three patterns) the signal-to-noise
ratio for a pattern is quite high; this will be well recalled. For the sccond trial
the signal-to-noise ratio for a pattem is relatively low (although higher than for an
ancestor pattern). By the third trial the ancestor pattern is as well stored as the
individual patterns.

Looking at the simulations of the model in an RPI experiment (figure 8) we see
that the recall overlap is good during the first trial from a class, much worse for
the second trial and slightly better again for all subsequent trials from that class.
However, the recall overlap for trials three to six in a class is = /ex (the overlap
of patterns with their ancestor) indicating that the finai state m each recaii is the
ancestor pattern (which we have verified). Thus the above analysis does seem to
paint the correct qualitative picture for the behaviour of the model (one obvious
difference is that the signal to noise ratio at the end of the experiment 15 the same
for all patterns—it does not show the recency obscrved in simulations which is due
to using bounded weights). It also highlights the need for a more explicit model of
recall which can interpret the recall overlaps in a neural network in terms of a seral
position curve (per cent eorrect versus temporal position).

The signal-to-noise ratio for patterns in 3 Von Restorff effect experiment (one
pattern from one class in a list of patterns all from another class) also indicate that
the one distinct pattern will be better recalled than the others. This was also seen in
simujations of the model (see section 4.2).

When the ]eaming rule of sectior 4.2 is used (i.e using bounded weights) it is not

ORI, P PRPUL, PN JE I, PR [ o T

50 easy to calculate the signai to noise ratio. The weights J, U } (and aiso the quantity

J,, (t)£;7€;7) perform random walks on [1,1], and the chstnbut:on P(J,,(%)) can
be ca]culated’f (see [29] for P(J,,) for uncorrelated patterns). However, for many

t The random walks of different J,;, will be correlated—isking any one J,,(2) to represent {J,,()},, 18

only valid in the limit of asymmeinic “dilation’ (ehmination of connections) where these correlations are
neghgible.
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classes of correlated patterns the expressions get too cumbersome to be of use in
caleulating {J,,(¢)£,7¢7%), and {(J,,(£)£€,7)%), .

6. Evaluation and discussion

The model of simple list learning in this paper produces serial recall curves which
show four kinds of behaviour:

(a) permanent primacy or ‘imprinting’ for z* < 1;

(b) primacy which disappears as the number of paiterns increases for «* > 1 and
Py > 0.05;

(c) prmacy and recency where the primacy disappears as the number of patterns
increases but the recency is unaffected for z* > 1 and pg, ~ 0.05N;

(d) recency only for =* > 1 and pg, < 0.05N.

The primacy m the model is a result of two things having v > 1 and setting the

ttmnhfnt he 20 haf th tant f tha th foliils 3
cignts {0 be zEro belore the start of the UAPVIJIII.UI.II. \1\4 utaluﬂg with abulz rasa. .J

Recency is & natural consequence of using bounded weights as it is in the Hopficld—
Parisi model. It is the interplay of these two features that makes the behaviour of
the model so flexible.

The plausibility of beginning learning with tebula rasa has been questioned, see
the discussion in [39]. The start of a learning experiment must be represented by
some change in the model. Setting the initial state of the weights to be Zzero presumes
some decay mechanism on 2 scale longer than the duration of the experiment. The
presence of primacy seems to indicate such a decay mechanism although an alternative
is indicated by the RpI experiment. The beginning of an experiment could be marked
by a change in the type of input patterns,

The initial state of the weights also raises the question of whether the network
should have any previous knowledge built in. To start with tabula rase implies that
either the subject’s vocabulary is stored in a different system (affecting the pre- and
post-processing assumed in our maodel) or that we are modelling the learning of
previously unseen items. Learning experiments in lists of gobbledegook also show the
usual bowed serial position curve [40].

6.1. Free recall and delayed free recall

Comparison of figures 1 and 7 shows that our model is consistent with the typical
serial position curves from free recall experiments in psychology. Performance of a
task before recall (which causes the disappearance of recency) is modelled by the
network learning redundant patterns. However, this model is not entirely accurate
because learning redundant patterns at the end of the presentation of the list also
decreases performance (slightly) on the earlier part of the list. In the psychological
data only the recency part of the serial position curve shows noticeable deterioration
of recail.

Using redundant learning to modei the disappearance of recency is more reminis-
cent of a two-system model explanation (where the most recent items are held in a
short-term buffer) than an interference theory explanation. In our modei the recency
part of a serial position curve has a fixed capacity from which items are displaced;
this is a possible interpretation of the idea of a short-term buffer in the two system
model.
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In more complex delay experiments we could pot successfully model pauses by
redundant activity, as we could for delayed free recall, see section 4.1. Since the model
does not include time explicitly it cannot be used to model trace decay theories of
memory or the effect of changing presentation rates. The modelling of presentation
rates, delays between items and explicit rehearsal phenomena will require an active
mechanism for rehearsal (taking v > 1 to achieve primacy could be considered as
passive cumulative rehearsal).

We attempted to model the learning of lists composed of different groups of items by
using correlated patterns of activity. The results (section 4.2} show good agreement
with the data on release from proactive inhibiiion experiments (and also for the von
RestorfT effect). The approximate signal-to-noise analysis in section 5 gives an ade-
quate qualitative description of the behaviour of the model. That the network behaves
in such a similar way to the experimensal data suggests (i) that internal repesentations
of presented items could be stored in an analogous way in the brain, and (i) that
internal representations of similar items are themselves similar, However, this model
raises many questions of the pre- and post-processing of internal representations that
we have assumed. We will address some of these below.

It should be noticed that learning patterns of activity from scratch when they
are presented corresponds to the learning of previously unseen items rather than to
the recognition of known items. The more complicated psychological experiments
involving different types of item show the strongest effects where groups of words are
differentiated by their meaning. Two similar (i.e. correlated) patterns of activity in our
model correspond to items with similar internal representations. We have assumed
only that similar items will have similar internal representations. We cannot address
the question: in which way were the items similar?

The network often relaxes to the ancestor pattern of a category during recall.
The interpretation of this purely in terms of a release from proactive inhibition
experiments is difficult. We woeuld like the output of the model to be actual patterns
or mistakes, not categories (otherwise we must assume even more about the post-
processing in recall: for example, we might assume that a pattern 1s picked at random

from the category). This could perhaps be achieved with another layer of processing
as described m [34],

A related problem is that of comparing the ‘recall overlap’ in the network with psy-
chological data which shows the percentage of correctly recalled items. The likelihood
of correctly recalling an item must depend on the how well its internal representation
has been stored. However, an explicit model of recall, based on current psycholog-
ical knowledge of recall, would be more satisfactory. In this respect the model of
Sternberg fast scanning [6] is particularly instructive, although a differen, mechanism
is required for the experiments described here.

What we have considered in this paper is a model of the crude features of list
learning, ignoring the mechanisms for input and cutput of data and concentrating only
on the storage of the internal representations of jtems. It is an interference model in
that forgetting occurs due to the learning of other items. The mechanism for primacy

(¥ > 1 in equation (1)) is an implementation of passive comulative rehearsal and the
recency part of the serial pnsitinn_ curves acts like a shart-term huffer
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However, these models differ from the conceptual models of psychology in that
their neurobiological implementation is conceivable. They are on a lower level of
abstraction.

We feel that more detailed comparison of the mechanisms responsible for the
behavicur of all the models mentioned in this paper with the conceptual models
proposed in psychology would be profitable. It would be particularly interesting if
models of memory got to the stage where more detailed implementation of psycho-
logical theoiies was possible.
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Appendix

In this appendix, the estimate for p{z*) which was used in the discussion in section
5.1 is derived. This is done by determining the number of patterns required to make
the average second moment of the weights equal to z*2,

The dynamlcal equation for a typ;ca] welght J, ignoring the effect of the bound,
is

T+ 1) = 7J(1) + en(2).

This cquatian is similar to equation (1), excepi the effect of the bound is ignored,
50 there is no function f in the above. For Sifr‘lpllcii.y, the indices ¢, have been
dropped and 7 is a random variable which takes values £1. The pattern stored at
time ¢ determines n.

The solution to this equation is

-1

J(t) = EZ‘)"T](t —i—1) 4+ J(0).
=0

Assuming tabula rasa, J(0) = 0, the average of J(t) is zero, and the second moment
is gven by

i=1
HOLETD IS
=0
The sum is a simple geometric progression; the result is

2!_1
J() = 30— .
(()) 672_1
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The estimate for p(x*) is found by finding the number of pattems p which makes
the second moment of JJ equal to *, i.e. solve for p in

(J(p)}) = =2

The solution is

_ In[24/(y-1)]
T 2n(vy)

This is the estimate of p{z*) used.
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