Front cover from left:

Musical science. Benny Chain and Yasu Takeuchi play Beethoven
Tony Slade, UCL Media Services, Photography

Fire in Windscale Pile 1. Britain’s worst nuclear accident, October 1957.
Mary Evans Picture Library
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Robin Weiss</td>
<td>A renaissance of good medical virology</td>
</tr>
<tr>
<td>22</td>
<td>Mary Collins</td>
<td>Taming the HIV virus</td>
</tr>
<tr>
<td>23</td>
<td>Doug King</td>
<td>Engineering viruses</td>
</tr>
<tr>
<td>24</td>
<td>Richard Jenner</td>
<td>Measuring gene activity</td>
</tr>
<tr>
<td>25</td>
<td>Cyndi Coombes</td>
<td>Cyndi's stores</td>
</tr>
<tr>
<td>26</td>
<td>David Latchman</td>
<td>The Windeyer Institute</td>
</tr>
<tr>
<td>27</td>
<td>Sian Minett</td>
<td>The secret room</td>
</tr>
<tr>
<td>28</td>
<td>Paul Tecklenberg</td>
<td>Bodies and antibodies</td>
</tr>
<tr>
<td>29</td>
<td>Greg Towers</td>
<td>Evolution and the Red Queen hypothesis</td>
</tr>
<tr>
<td>30</td>
<td>Mala Maini</td>
<td>Researching a treatment for hepatitis B</td>
</tr>
<tr>
<td>31</td>
<td>Sharon Said</td>
<td>Food is our passion</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

This souvenir booklet celebrating the remarkable 52-year history of the Windeyer Building was made possible by a number of people. Mary Collins, Dean of Life Sciences and Professor of Immunology, conceived the idea and magically produced the funding. Photographers Mary Hinkley (especially) and Tony Slade took most of the wonderful images commissioned for the project. Additional images and access to the Middlesex Hospital Medical School archives came from Annie Lindsay, Archivist, UCLH NHS Foundation Trust Archives. The twenty people featured in the booklet contributed personal stories and images encompassing the Windeyer’s scientific and social history over the half century of its existence. Their recorded memories and other memorabilia collected during the project will be placed in the UCL and Middlesex Hospital archives as a lasting tribute to them and their work. Other colleagues in the UCL community provided additional information and images. I am particularly grateful to Professor Chris Dean, Cell and Developmental Biology, for the iconic photograph taken through the hole in the roof of the Anatomy Department in 1971 following the bomb blast on the Post Office tower. And to Gloria Charter, Department of Virology, UCLH, for the photographs taken in 1991 showing refurbishment of the NHS Virology Laboratory. The wizardry of Marc Riley and Ellie Atkins turned all these elements into an attractive publication that I hope you will enjoy reading.

Carole Reeves
UCL Centre for the History of Medicine
June 2011

Clockwise from left:
Mary Hinkley on location.
Carole Reeves
Carole Reeves looking ‘bookish’.
Wellcome Library, London
Tony Slade keeping an eye on us.
UCL Media Services
Mary Collins, happy with our efforts!
Tony Slade, UCL Media Services,
Photography
Annie Lindsay, keeper of our history.
Mary Hinkley, UCL Media Services,
Photography
Marc Riley and Ellie Atkins,
42 Square, Creative Communications
Brian Wellingham Windeyer's first post (1929-30) after qualifying in medicine from Sydney University was at the Fondation Curie in Paris where Marie Curie (1867-1934) was working. It was the world’s leading centre of radium research and practice at that time; the atmosphere was inspiring and it directed Windeyer’s future career.

Windeyer was appointed radium officer at the Middlesex Hospital in 1931 when radium and x-ray treatment were carried out by different clinical teams. In Britain, during the 1930s, the National Radium Commission brought the disciplines together as radiotherapy and by 1936 Windeyer had his own department. Later, he was Director of the Hospital’s Meyerstein Institute of Radiology. He helped found and became President of the Faculty of Radiologists (1949-52), was the first professor in charge of patients at the Middlesex (1942), established the first large cobalt unit in Europe (1953), was Chairman of the Radioactive Substances Advisory Committee (1961-70), and the National Radiological Protection Board (1970-78). He was also Consultant Adviser in Radiotherapy to the Ministry of Health, a member of the Grand Council of the British Empire Cancer Campaign, and a prominent member of the Fleck Committee established following the Windscale nuclear accident (1957). For relaxation Windeyer rowed, coached the Middlesex Hospital rugby team, and landscaped the garden of his country cottage in Oxfordshire, to which he escaped with his family after a Saturday morning clinic at Mount Vernon Hospital where he was Director of Radiotherapy.

Windeyer served as Dean of the Middlesex Hospital Medical School from 1954 to 1967 during which time he was knighted (1961) and served on the Todd Commission (1965-68) to review and reform medical education. He retired in 1969 to become Vice-Chancellor of the University of London. By his own admission, Sir Brian, who died at the age of ninety in 1994, had been a poor student, failing his first year exams because of his tours with the university rugby team. Perhaps this accounted for his sympathetic approach to the Middlesex medical students. After learning that one was living in a room behind the stage of the new Edward Lewis Theatre, Sir Brian arrived early one morning to confront the student whom he found sitting on his bed in pyjamas, talking to his pet budgie. No big deal was made of the incident. The student was charged nominal rent and given notice to vacate his cosy bedsit.

Carole Reeves
In December 1954, six months after his appointment as Dean of the Middlesex Hospital Medical School, Professor Brian Windeyer (1904-94) raised the possibility of rebuilding it. Cramped accommodation in outdated buildings would, he argued, disadvantage scientists in the competition to attract the increasingly significant post-war research grants.

HERITAGE

The Medical School's heritage was rooted in the renowned anatomy school in Great Windmill Street, Soho, founded in 1747 by William Hunter (1718-83), the Scottish anatomist and surgeon-midwife to the Middlesex Hospital. In a typical season, William and John Hunter (1728-1793) would deliver over a hundred lectures for seven guineas, embracing anatomy, physiology and pathology as well as courses in operative surgery, midwifery and the preparation of wet and dry specimens. The school was popular because the Hunters could always guarantee a dubiously procured but plentiful supply of cadavers, ensuring that most students had one each, thus augmenting their knowledge of the body and its diseases through dissection with what they learned as apprentices to the physicians and surgeons of the Hospital.

After the Hunters, surgeon-anatomists such as Charles Bell (1774-1842) and Edward Tuson (1802-1865) combined anatomy teaching with hospital duties. Bell took over the Great Windmill Street Anatomy School in 1812, and was instrumental in founding the Middlesex Hospital Medical School twenty-three years later. This came about because Bell had briefly moved to the newly established London University, which in 1828 invited the Middlesex to be the University's hospital. Upon its refusal, London University built its own hospital (now University College Hospital), which left the Middlesex short of students. Funds for establishing the Middlesex Hospital Medical School were raised by subscription and it was built in the northwest corner of the Hospital garden for the teaching of anatomy, biology, chemistry, physiology and physics. The signatures on the foundation document were Sir Charles Bell (knighted 1831), Sir Thomas Watson (1792-1882), Francis Hawkins (1794-1877), James Arnott (1794-1885), Herbert Mayo (1796-1852) and Edward Tuson.
During its early years the Medical School was maintained largely by student fees but in 1896 it amalgamated with the Middlesex Hospital which increased its financial stability. Four years later it became a school of the University of London, and following the establishment, in 1919, of the University Grants Committee (now ‘Commission’, UGC), most of its revenue came from Treasury grants. A scheme to rebuild the School was initiated in the mid-1930s but halted by war, after which there was no money to continue. During the war, however, the Board of Management of the Hospital and School had the foresight to purchase the bomb-damaged Cartwright Estate on a site between the out-patient department and Howland Street, with a view to future development.

The institutional bond between the Medical School and Hospital was officially severed in 1948 by the establishment of the National Health Service. The Hospital became Crown property and its finances the responsibility of the Minister of Health. The School, through the University of London, was granted its own Charter and could no longer look to the Hospital for financial help.

Tuition fees from students, raised to £60 a year by the mid-1950s (£1000 today), met only a small part of educational costs. Clearly, there was an urgent need to seek funding opportunities beyond the UGC. Supporters of Windeyer’s proposal to rebuild the Medical School suggested the Cartwright Estate, use of which would release the School’s existing accommodation to the Hospital as well as relieving pressure for space at the Courtauld Institute (founded 1928) by transferring its teaching activities. By May 1955, Windeyer could report to his Building Committee that the Chairman of the Middlesex Hospital, Lord Astor of Hever (1886-1971), had made a gift to the project of £400,000 (£6,968,000 today). A further £570,000 (£9,929,400 today) was raised by donations, deeds of covenant and government grants prior to the launch of the public appeal the following year. The total estimated cost of the build was £1.5 million (£26,130,000 today). From the outset the building was planned to comprise the pre-clinical departments. Consideration to include the clinical departments of medicine and surgery was shelved after it was decided that the distance from the wards to the new site was too great.
The architect selected for the project was S.E.T. (Teddy) Cusdin (1908-2005) of the architectural practice, Easton and Robertson, founded in 1919. In addition to the Windeyer, Cusdin was concurrently designing Addenbrooke’s Hospital and the MRC Laboratory of Molecular Biology, Cambridge. All three buildings were completed and opened in 1962. The Medical School’s teaching laboratories and lecture rooms were to be accommodated in a seven-storey block on Cleveland Street whilst the research laboratories and dissecting rooms would be sited in an eight-storey block along Howland Street. Variation in storey heights was made necessary by the London County Council’s planning regulations for the site. Access to the floors at varying levels would be via the principal staircase in the laboratory block. All services to individual floors and rooms would be on separate ring mains or networks and therefore accessible for maintenance without affecting other floors or interrupting the work of a department – an innovative development at the time. Another innovation was use of wide span construction made possible by spanning the full width of the building with steel lattice girders so that there were no internal load-bearing walls. This was intended to make the interior versatile in that it could be re-planned, if necessary, to incorporate new departments or alter space as appropriate.

In addition to Windeyer’s Building Committee there was a Technical Sub-Committee charged with specifying the required scientific and teaching resources. This was chaired by Sir Harold Boldero (1889-1960), a paediatrician who had qualified at the Middlesex (1915), and been the longest serving Dean of the Medical School (1934-1954). Although the relationship between all parties appears to have been cordial, the architect’s admission that the building had been designed from the inside out rather than the other way around suggests that the teaching and scientific staff were very determined to set the parameters for construction. Indeed, they spent days poring over large scale drawings of each room and debating different types of windows, benches, taps, sinks, fume cupboards, floor and wall surfaces.

Away from the technical agenda, Cusdin’s vision, in 1957, was of ‘a building... preserving the dignity and urban character of London, whilst ... by the layout of the courtyard, to create a calm oasis in a noisy part of London which we hope will be conducive to creative thought.’
Emolition of the old houses on the Cartwright estate began on 30 December 1957 with the lighting of a magnificent bonfire. The first phase of the Medical School, at the Cleveland Street end of the site, was opened on 16 December 1959 by Lord Astor who gifted a further £200,000 (£3,060,000 today) to the project. The new building contained the teaching laboratories and lecture theatres including the Edward Lewis Theatre in which the opening ceremony took place.15 This 390-seat auditorium with a stage that could be raised or lowered and backstage dressing rooms, was sponsored by Edward Lewis (1900-1980, knighted 1961), Chairman of the record and gramophone company, Decca. Lewis was also supporting research in the Ferens Institute of Oto-Laryngology. That same evening the medical students’ comedy review group – the Manic Depressives – held the dress rehearsal of their Christmas Concert, Don’t let labour ruin it, on the new stage.16 Although the Edward Lewis Theatre was at first compared unfavourably with the old cosy venue (the students’ restaurant in the Courtauld Institute), it was soon appreciated that its facilities offered the potential for more polished and professional productions than had hitherto been possible.17

Lady Chatterley’s Liver, the 1960 offering, was considered brilliant and included two nurses, Claudia Christopher and Bunty Small, who made their ‘usual successful performances’. But for the last time. Matron thereafter banned nurses from taking part in the Christmas Concerts.18

Over the next three decades, the Edward Lewis Theatre staged many productions by talented groups within the Hospital and Medical School, including Shakespeare’s As you like it (1960), Sheridan’s The Rivals (1963), and Keith Waterhouse’s Billy Liar (1964) by the Middlesex Players; HMS Pinafore (1974), Patience (1963, 1975), and The Mikado (1962, 1978) by the Gilbert and Sullivan Society; Puccini’s La Bohème (1965) by the newly formed United Hospitals Operatic Society, and Arthur Miller’s All my sons (1989) by the University College and Middlesex Drama Society.
FIRST IMPRESSIONS

The Windeyer Building was completed in September 1962 and provided over 7000 square metres of space – double that of the previous accommodation of the Medical School and affording substantial teaching and research facilities for the Departments of Biology as applied to Medicine, Physics as applied to Medicine, Anatomy, Biochemistry, Physiology, Pharmacology and Therapeutics. Only a third of the construction cost had been met by the UGC. Teddy Cusdin, meanwhile, had become a full partner in the architectural practice, now named Easton and Robertson, Cusdin, Preston and Smith. Was he pleased with the building or was there a hint of disappointment, perhaps frustration, in his comment just prior to the opening:

‘The architect lives with his mistakes and the doctor buries his. It would be a miracle if there were no faults, for the one thing we have in common is that neither of our professions is an exact science.’

First impressions of at least one student passing through the Medical School’s swing doors for Sir Brian Windeyer’s inaugural address suggest a cautious negotiation between the post-modernist façade and the activities within: ‘One’s first view of the New School on a grey October morning is hardly a reassurance. The square-set, glass-gleaming honeycomb structure is too redolent by far of the soulless hives of commerce and industry that sprout along Millbank and South Bank.’ Was the author aware that the architectural firm was also responsible for the controversial Shell Building on London’s South Bank? He nevertheless concluded that: ‘First impressions are often a poor yardstick ... the new building, though hideous, is not a cold and depersonalised hive of industry. The lecturers are human after all.’

Happily, staff and students alike soon adapted to their new environment. Spacious bright laboratories stocked with new equipment, comfortable air conditioned teaching and demonstration rooms, a good refectory, staff dining room and subsidised bar facilitated the process of settling in. The students’ bar was initially underused, apparently due to its bleak atmosphere, redolent of a station waiting-room – ‘no dartboard, no bar-billiards, not even shove ha-penny’ – and its 10 pm closing time.

Eventually, it was given a makeover – painted Autumn Gold, strung with speakers pumping out Pink Floyd and Joni Mitchell, and renamed Charcot’s Joint, a condition originally associated with syphilis that medical students of the day might see but rarely in the clinics.
By 1964, the Windeyer Building had a new neighbour. The General Post Office (GPO) constructed a communications tower 190 metres high on the north side of Howland Street to replace the modest steel lattice tower built in the 1940s to provide a television link between London and Birmingham. This structure is visible in the architect’s drawing (1956) of the proposed Medical School. The new tower, described by one of its engineers as a series of ‘cake tins threaded on a pipe’, gave the Windeyer, viewed from certain angles, the appearance of a rocket launcher. The tower included an observation floor, cocktail lounge and revolving restaurant at its top, offering panoramic views from the Thames Estuary to the Chilterns. Built to withstand gales of a hundred miles an hour, nobody anticipated a direct attack on its fabric.

However, at approximately 4 am on Sunday 31 October 1971 a bomb, which had been placed on the observation platform, exploded, blowing out a large segment of the platform enclosure. Much of the debris fell on the Windeyer Building and Astor College, the phase three residential development of the Medical School, comprising 170 study-bedrooms, wardens’ accommodation and recreational facilities.

The room most damaged in Astor College was empty, its occupant having been admitted to the Hospital two days previously with a minor illness. There were nearly two hundred holes in the roof of the Windeyer Building, varying in size from small slits to one over the dissecting room that was eighty centimetres in diameter. Fortunately, damage did not involve the steel framework and repairs were carried out over the following four days.
Sir Brian Windeyer stepped down as Dean of the Medical School in 1967, to be replaced by Professor Eldred Walls (1912-2008), Courtauld Professor of Anatomy, who had served as Academic Sub-Dean for two years and had also been a member of the Medical School Building Committee. Under his deanship (1967-74), the Medical School's clinical facilities were extended, at a cost of £1.4 million (£14,392,000.00 today), with the completion of a School of Pathology and the Sir Jules Thorn Institute of Clinical Science.26 Under the next Dean, Sir Douglas Ranger (1916-1997), the Wolfson Building was completed, and by 1984 when Sir William Slack (b. 1925) was in post, eighty per cent of the teaching and laboratory areas of the School had been built within the previous twenty-five years.27

The Middlesex Hospital Medical School celebrated its 150th anniversary on 15 May 1985 with a visit to the Windeyer by Her Royal Highness The Princess Anne, Chancellor of the University of London, who delivered the Astor Address prophetically entitled ‘Taking a wider view’.28 The Dean proudly declared that the School had qualified some 7500 students since 1835 but went on to announce a new and exciting challenge, namely an amalgamation with University College and the three postgraduate institutes of Orthopaedics, Urology, Laryngology and Otology, to form a new School of Medicine.29

University College and Middlesex School of Medicine was inaugurated on 2 November 1987 by Princess Anne who was presented with a framed print of the Middlesex Hospital.30

Sir William Slack, now Dean of the Faculty of Clinical Sciences, earnestly reassured students and staff that both the physical structure and the heritage of the Middlesex would endure: ‘Do not think that the Middlesex will disappear,’ he said. ‘The Hospital and the Windeyer Building are both absolutely necessary for the health service and for the new Medical School.’31

The Middlesex Hospital closed in December 2005 and was demolished in the spring of 2008, leaving only the Grade II* listed Victorian Gothic chapel. The Windeyer Building was vacated in June 2011 for demolition, and the site will eventually house the new Sainsbury-Wellcome Centre for Neural Circuits and Behaviour.

Carole Reeves
When I first came to the Middlesex Hospital Medical School in 1953 I was working on anti-cancer agents but also followed the fantastic findings of Peter Medawar (1915-87) on neonatal tolerance. My colleague Peter Campbell saw a photograph of a breast cancer in which there were plasma cells – the little factories that make antibodies. We wondered whether these plasma cells were making an antibody to milk made in the breast. We became very good at milking guinea pigs and rats but didn’t get very far when we tried immunizing them with milk proteins. Then we saw an American abstract by researchers who had induced an antibody response in rabbit thyroid, with subsequent histological damage. We were quite taken by this but did nothing until my chance encounter with Deborah in 1956, following which we were able to show that Hashimoto’s patients, who had precipitins against human thyroid, had become immunised against their own thyroid gland. The Lancet was so impressed and so percipient that they published the paper within a week of getting a manuscript and that started off the whole process, I think, of recognising that autoimmunity can be responsible for disease.

The National Institutes of Health offered me a temporary position as leader of immunology but my boss, Sir Charles Dodds (1899-1973), knew that once I went to the US I’d never come back. He was right of course. So the Middlesex created a department of immunology and I stayed here and built it up. We were seventy people in the end and I’ve been a very happy bunny.

Ivan Roitt
Honorary Director
Centre for Investigative & Diagnostic Oncology
Department of Health & Social Sciences
Middlesex University
London
I’ve held the Arthritis Research UK Chair of Rheumatology at UCL for fifteen years. I’m interested in developing assessment systems for patients with complex autoimmune rheumatic diseases – systemic lupus erythematosus (SLE), Sjögren’s syndrome, and myositis. I’m also involved in translational work – taking ideas out of the laboratory and translating them into clinical trials for patients with these conditions. Following the work of a colleague, Jo Edwards, in rheumatoid arthritis, we were the first in the world to treat lupus patients with rituximab, a drug developed for non-Hodgkin’s lymphoma. Rituximab blocks CD20-positive B cells, which play a critical role in the pathogenesis of SLE, and it is now used in many centres around the world. Another drug, tocilizumab, was recently approved by NICE (National Institute for Health and Clinical Excellence) for the treatment of rheumatoid arthritis. It blocks an important inflammatory mediator called the interleukin-6 receptor. This was first researched here and published in a collaborative study with Guy’s Hospital (2002). I am Chair of the British Isles Lupus Assessment Group and for five years (1998-2003) chaired the Systemic Lupus International Collaborating Clinics group (SLICC). Last year I was the recipient of the Evelyn Hess Prize from the Lupus Foundation of America, which is awarded for contributions to teaching, research and the treatment of patients.

We’ve been in the Windeyer for just over ten years, and it’s been good. We have lots of space and lots of collaborations with other colleagues. I’ve enjoyed working here a very great deal. When I started at University College Hospital as a registrar in 1979 there were two rheumatology consultants, and the rheumatology research department then was effectively me! Now we have around sixteen rheumatology consultants, including paediatric and adolescent consultants, and we have a research group forty strong. So I guess I must have done something right.

David Isenberg
Academic Director & Arthritis Research UK Professor of Rheumatology, UCL
was appointed Professor of Biology as Applied to Medicine at the Middlesex Hospital Medical School in 1966. I was only thirty-six and considering that I had changed career from soil mechanics to cell mechanics this was pretty amazing. I didn’t interact much with other groups in the Windeyer but our group was just magic and we were so happy there. I had wonderful students and post-docs. I don’t think anything in my teaching was that impressive. It was the science we turned out and the number of people we trained. But it was easy to get grants in those days – from the Wellcome Trust, the Medical Research Council, the Nuffield Foundation, etc. I’m best known for the French flag theory, published in the Journal of Theoretical Biology (1969). The French flag represents the effect of a morphogen or signalling molecule on cell differentiation, the various concentrations of which activate genes to produce blue, white or red. During early development, morphogen gradients generate different cell types in distinct spatial order – positional information. I’m quite good as a theoretician but I’m a very bad experimentalist so for thirty years my colleague, Amata Hornbruch, acted as ‘my hands’. Maureen Maloney was my secretary and I still speak to her every day. What is very painful for me is the premature death of three of my PhD students – Dennis Summerbell (1947-2005) who married Amata, David Gingell, and Nigel Holder (1953-98) who became Professor of Anatomy and Developmental Biology at UCL. I became very involved in the public understanding of science but I still don’t know the best way to do it. Just talking to the public – big public lectures – is not the way to do it. Science is really quite, quite complicated.

Lewis Wolpert

Emeritus Professor

Department of Cell and Developmental Biology, UCL
The Wolpert World was on the sixth floor in a large hut built on the roof that you reached by a mysterious flight of stairs. The ante-room held the plant for the whole building and there was a large chick incubator churning away. It was a small scruffy sort of place, not the sort of place you’d imagine produced all these fantastic experiments.

I started my PhD with Lewis Wolpert in October 1976. It was about chick limb development and the zone of polarising activity – the special region at the posterior part of the limb bud that produced a substance (morphogen), the concentration of which determined how fingers formed – positional information. I was one of a ‘gang of four’ students, the others being Nigel Holder, John McLaglan and Geoff Sheelswell. We were all following up ideas that Lewis had seeded. It was a place brimming with intellectual excitement and we worked unbelievably hard. I’d get in at 8 am and leave at midnight. Larry Honig, an American post-doc, blagged a key to the fire escape and that’s how we’d leave the building. Occasionally we’d go onto the roof and throw bread at the cars passing below in the hope that the seagulls would swoop down and catch it before it hit the cars. If there was an open top car so much the better! I remember being enormously impressed when Geoff Sheelswell and Cheryll Tickle, a post-doctoral researcher, performed a simple experiment involving embryonic mouse tissue grafted to chick limb bud, and discovered that it induced the growth of extra digits in the chick wing. That was an immediate publication in *Nature*.

I was appointed to the National Institute for Medical Research in 1984 and determined to discover the inducing factors that could change the fate of embryonic stem cells. I found that a molecule called activin did this, and showed by gene expression that it directed cell differentiation in a particular concentration-dependent fashion. It proved that Lewis’s ideas were right and he very kindly put me up for Fellowship of the Royal Society. I’ve always had cause to be grateful to Lewis.

Jim Smith
Director
MRC National Institute for Medical Research
London
came to London from Glasgow on 1st May 1965 and walked into the Middlesex Hospital to see if they needed temps. By September I had a permanent position in the Department of Biology, and Lewis (Wolpert) was appointed professor the following April. I became his PA. It was a very happy place and we all felt like family. We also felt that we were somehow ahead of the rest, and people liked to visit us. Prof was very charismatic and drew in research money so we were always expanding. I think he trusted and depended on me. He became editor of *The Journal of Theoretical Biology* and asked me to do the secretarial work. He said, ‘I’ll pay you a pound a week!’ The theme of his research was positional information. Sometimes we’d spot a paper in *Nature* and I’d say, ‘These guys are working on the same thing as you. Hurry up and get another paper out.’ I broke the news to Prof, in 1980, that he’d been elected a Fellow of the Royal Society. Prof was in California when Sir Peter Medawar rang. We had a lovely champagne reception to celebrate.

We weren’t supposed to be in the Windeyer Building after 10.30pm but sometimes we were still there at midnight. Then we’d walk through the underground tunnels to the hospital and out through the Casualty Department. We’d occasionally bribe the receptionist with a bottle of wine. The Manic Depressives’ Christmas Concert always took off a professor. One year it was Prof and the scene opened with a typist – her hair in a bun with two sticks through it and this dreadful Scottish accent, ‘Halloo.’ And I thought, ‘God, that’s not me.’

I loved Prof. We all did. If you’ve got to work for somebody you might as well work for the best and Lewis certainly was that.

Maureen Maloney
PA to Professor Lewis Wolpert
Anatomy & Biology as Applied to Medicine
Middlesex Hospital Medical School
was a student from 1971 to 1977 because I took the first MB, having previously been an electrical engineer. All the London medical schools had idiosyncratic reputations. St Thomas’s was said to be for snobs, St Mary’s for rugby, but the Middlesex was renowned for its friendliness. My moral tutor during pre-clinical years was Lewis Wolpert who was very approachable. Eldred Walls, who was Dean and Professor of Anatomy, was a good lecturer and produced very accurate anatomical drawings. Professor Eric Neil (1918-90) who taught neuro-physiology was a character. I remember his ability to chalk detailed spinal cord diagrams on the blackboard, using both hands at once. The ratio of male to female students was about 60:40 but in the 1970s there were very few foreign students. I was the top student in my first MB but then failed the second and third year exams. I found the transition from engineering to medicine problematic although once I’d found my feet I went on to become honorary secretary of the Middlesex Hospital Medical Society (founded 1774) and won the Royal Society of Medicine’s first history of medicine prize. After qualifying, I became a GP in Croydon, South London.

For several years as a student I was responsible for advertisements in the Middlesex Hospital Journal. I once sold advertising space to the famous Greek restaurant, ‘Anemos’, in Charlotte Street – the slogan was ‘Anemos loves The Middlesex’. I remember one curry house giving me a free meal in return for rustling up custom! I was never talented enough to take part in the famous Medical School Christmas concerts but I was runner-up in the 1973 Miss Middlesex beauty contest.

Nicholas Cambridge
President, Hunterian Society
Chairman, Erasmus Darwin Foundation

As medical students we had an annual treasure hunt, the objective being to bring to the Windeyer as many items on a given list as possible. The most exotic were awarded the highest points. We were always able to ‘find’ policemen, strippers and hot dog vans but one year we managed to install a Mini and two sheep in the refectory.

FROM ANATOMY TO BEAUTY CONTESTS: THE MIDDLESEX WAY

was a student from 1971 to 1977 because I took the first MB, having previously been an electrical engineer. All the London medical schools had idiosyncratic reputations. St Thomas’s was said to be for snobs, St Mary’s for rugby, but the Middlesex was renowned for its friendliness. My moral tutor during pre-clinical years was Lewis Wolpert who was very approachable. Eldred Walls, who was Dean and Professor of Anatomy, was a good lecturer and produced very accurate anatomical drawings. Professor Eric Neil (1918-90) who taught neuro-physiology was a character. I remember his ability to chalk detailed spinal cord diagrams on the blackboard, using both hands at once. The ratio of male to female students was about 60:40 but in the 1970s there were very few foreign students. I was the top student in my first MB but then failed the second and third year exams. I found the transition from engineering to medicine problematic although once I’d found my feet I went on to become honorary secretary of the Middlesex Hospital Medical Society (founded 1774) and won the Royal Society of Medicine’s first history of medicine prize. After qualifying, I became a GP in Croydon, South London.

For several years as a student I was responsible for advertisements in the Middlesex Hospital Journal. I once sold advertising space to the famous Greek restaurant, ‘Anemos’, in Charlotte Street – the slogan was ‘Anemos loves The Middlesex’. I remember one curry house giving me a free meal in return for rustling up custom! I was never talented enough to take part in the famous Medical School Christmas concerts but I was runner-up in the 1973 Miss Middlesex beauty contest.

Nicholas Cambridge
President, Hunterian Society
Chairman, Erasmus Darwin Foundation

FROM ANATOMY TO BEAUTY CONTESTS: THE MIDDLESEX WAY

As medical students we had an annual treasure hunt, the objective being to bring to the Windeyer as many items on a given list as possible. The most exotic were awarded the highest points. We were always able to ‘find’ policemen, strippers and hot dog vans but one year we managed to install a Mini and two sheep in the refectory.

was a student from 1971 to 1977 because I took the first MB, having previously been an electrical engineer. All the London medical schools had idiosyncratic reputations. St Thomas’s was said to be for snobs, St Mary’s for rugby, but the Middlesex was renowned for its friendliness. My moral tutor during pre-clinical years was Lewis Wolpert who was very approachable. Eldred Walls, who was Dean and Professor of Anatomy, was a good lecturer and produced very accurate anatomical drawings. Professor Eric Neil (1918-90) who taught neuro-physiology was a character. I remember his ability to chalk detailed spinal cord diagrams on the blackboard, using both hands at once. The ratio of male to female students was about 60:40 but in the 1970s there were very few foreign students. I was the top student in my first MB but then failed the second and third year exams. I found the transition from engineering to medicine problematic although once I’d found my feet I went on to become honorary secretary of the Middlesex Hospital Medical Society (founded 1774) and won the Royal Society of Medicine’s first history of medicine prize. After qualifying, I became a GP in Croydon, South London.

For several years as a student I was responsible for advertisements in the Middlesex Hospital Journal. I once sold advertising space to the famous Greek restaurant, ‘Anemos’, in Charlotte Street – the slogan was ‘Anemos loves The Middlesex’. I remember one curry house giving me a free meal in return for rustling up custom! I was never talented enough to take part in the famous Medical School Christmas concerts but I was runner-up in the 1973 Miss Middlesex beauty contest.

Nicholas Cambridge
President, Hunterian Society
Chairman, Erasmus Darwin Foundation

FROM ANATOMY TO BEAUTY CONTESTS: THE MIDDLESEX WAY

As medical students we had an annual treasure hunt, the objective being to bring to the Windeyer as many items on a given list as possible. The most exotic were awarded the highest points. We were always able to ‘find’ policemen, strippers and hot dog vans but one year we managed to install a Mini and two sheep in the refectory.
here has been a King and Queen on this site since the 1740s when the Middlesex Hospital was founded – it’s always been very much a hospital pub and an important player in the Fitzrovia scene. The Chartist movement, which briefly campaigned for electoral and social reform, was supposedly founded in an upstairs meeting room in 1837 and the pub is certainly mentioned in histories of the Chartists. Maybe the King and Queen had a reputation for being sympathetic to socialist causes because Karl Marx (1818-83) drank here after he was exiled to London in the late 1840s. German and Russian radio and television companies come here to record the atmosphere on the anniversary of his birthday. Not that it’s the same pub. The King and Queen that we see now was rebuilt in about 1875, and originally had five entrances and four bars – a public bar, private bar, snug bar and saloon bar. The bar itself was horseshoe-shaped, wooden and very ornate, and remained intact until 1980 when the previous owner ripped it out, even though it was listed.

My family have owned the King and Queen since 1985. It’s now a Grade II listed building. Even the lavatories are listed because the tiles were made by Lambert and Doulton, so even if we wanted to modernise, we can’t. It also has an enormous cellar with an intriguing bricked-up doorway, which once led directly into the nurses’ home! The pub has hosted many events from Comic Relief with David Walliams and Matt Lucas to the Crop Circle Gatherers! We even sponsored a row across the English Channel where most of those who took part worked in the Windeyer Building.

These lyrics in Don McLean’s song, ‘American Pie’, refer to Bob Dylan (the jester) whose first London gig was at the King and Queen in December 1962. The pub, at that time, had a thriving folk club, which I’m pleased to say was reconvened some twenty years ago and regularly meets here.

Bob Dylan sings in the King & Queen, his first gig in London, December 1962.
Brian Shuel/Collections Picture Library
Colin and Maria in the pub described as the ‘exam results waiting room’.
Mary Hinkley, UCL Media Services, Photography
Pub sign.
Mary Hinkley, UCL Media Services, Photography

THE JESTER SANG FOR THE KING AND QUEEN
We made a dummy with a face mask that looked like Captain Scarlet. One day I sat it at the foreman fitter’s desk. The fire officer Mr Bell came down, took out some papers and started chatting. ‘Look at this Denis,’ he began, and stopped. He looked around to see if anyone had been watching, picked up his case and walked out. He never mentioned it and neither did we.

I came here as a plumber in March 1977, one of thirteen maintenance staff for the Middlesex Hospital Medical School (the Hospital had its own maintenance team). Everyone had his own seat in the mess room and you dare not sit in anyone else’s seat. When I took over as plumbing supervisor in 1981, we serviced about twelve buildings but when the Medical School joined with UCL in 1987, the buildings started to diminish as did the maintenance staff. Eventually only my colleague Len and I remained. Len married a girl who worked in the kitchen – we had a busy refectory and bar in those days – but I brought them together because he was too shy to ask her out. That was over thirty years ago and I’m godparent to one of their three children. I organised the annual parties for Halloween and Valentine’s Day, plus all the retirement parties. When Professor Peter Campbell (1921-2005) retired in 1988, after many years at the Middlesex, I wanted to do something special because he was such a character. Professor Campbell hated seeing litter and would pick the litter off Cleveland Street before he started work in the mornings. I asked the engineers to make a swordstick out of an umbrella, which I presented to him on behalf of the maintenance team. Apparently he was also obsessed with keeping his laboratory clean and tidy.

I’m now part of the UCL maintenance team but I continue to maintain the plumbing in the Windeyer Building and service two large boilers on the sixth floor. I’m the only person left of the original Middlesex Hospital Medical School maintenance team. I stayed on after I retired and I’ve had a really good time.

Terry Harding
Maintenance, UCL Estates
Sealed crypts containing over two hundred naturally mummified bodies buried from 1731-1838, were discovered in 1994 beneath the Dominican Church in Vác, Hungary. Contemporary archives identified individuals and families, their occupations and cause of death. The Natural History Museum in Budapest said, ‘Would you be interested in looking at them?’

I came to UCL in 1980 as an oral microbiologist in the Dental School but when it closed I was redeployed in Medical Microbiology where much of the research was on Mycobacterium tuberculosis (MTB) that causes tuberculosis (TB) and Mycobacterium leprae – the cause of leprosy. TB was then thought to be under control but we were aware of its resurgence associated with HIV/AIDS. TB caused up to one in four European deaths during the 17th-19th centuries so not surprisingly we found MTB DNA in sixty-seven per cent of the 232 Vác mummies examined, with active or latent disease. The preservation was good enough to identify the genetic lineages of the MTB strain that caused the infection. A mother had a different strain of MTB from her two daughters, for example, and that’s evidence of community spread rather than within the family. The remains from Vác have helped inform our understanding of the history and evolution of tuberculosis by characterising changes in MTB strains from the pre-antibiotic era, and up to two hundred years before its first laboratory cultivation in the 1890s.

Links between TB and leprosy are interesting. Gerhard Hansen (1841-1912), who discovered M leprae, stated that the greatest cause of death of his leprosy patients in Oslo was tuberculosis. I discovered that thirty to forty per cent of human remains in which I had found leprosy were co-infected with MTB. My colleagues and I postulated, therefore, that leprosy died out in Europe in the late Middle Ages because of the increase in TB. A person with leprosy was more likely to die of tuberculosis before passing on M leprae, which is caught only after prolonged contact. Indeed, the decrease in leprosy threatened the viability of leprosaria and the livelihoods of those caring for the inmates. This decrease created a trade in lepers who for the first time in history found themselves valued.

Helen Donoghue
Senior Lecturer
Research Department of Infection
Clinical Microbiology, UCL
One of our strengths at the Windeyer in terms of HIV/AIDS has been our ability to do clinical work and diagnostics alongside clinically relevant research such as drug resistance. We’ve been able to look at all kinds of HIV strains because London has as many varieties as the Congo. London is a great place to go on safari for HIV.

was working at the Institute of Cancer Research when I collaborated with Richard Tedder at the Middlesex to devise the first HIV diagnostic test used in the UK and the British Commonwealth. That was in 1984, the same year we showed that Slim disease in Africa was AIDS and that the cell surface receptor, CD4, was the molecule used by the HIV virus to dock onto cells and infect them. I moved my lab to the Windeyer in 1999 and brought in several talented people including Chris Boshoff, now head of the UCL Cancer Institute, who was working on a herpes virus that causes Kaposi’s sarcoma, and Paul Kellam who established the Bio-informatics Unit. He’s now head of Virology at the Sanger Institute, Cambridge. Richard Tedder, then the Professor of Virology, was running a large NHS virus diagnostic laboratory so I think my coming helped to seed a renaissance of good medical virology at the basic level of studying how these viruses work. Unlike many labs around the world which investigate HIV control through T-cell immunity, we’re looking at B-cell immunity. B-cells or lymphocytes produce antibodies and we’re hoping that will be relevant to vaccines. One of our niche studies, in collaboration with the University of Utrecht, relates to llamas, which make unusual antibodies from which we can clone tiny antibody fragments that do the same job of blocking the virus. If these proteins can be introduced into the vagina, for example, they would soak up any HIV that’s introduced and block infection. The idea would be to produce industrial scale amounts that could be rolled out across Africa.

Nevertheless, the motivation to do something great for the world is not enough to keep going in a scientific lab. It’s a great bonus but you’ve got to be curious and you’ve got to be really interested to find out how things work.

Robin Weiss
Professor of Viral Oncology
Division of Infection and Immunity, UCL
I came to the Windeyer in 1997 with my research group to build up immunology. We’ve had an absolute ball doing that. One of the turning points was when Robin Weiss and his team moved here from the Chester Beatty labs and between us we’ve created an immunology / virology strand within the building. People who are now very big shots in UCL started as PhD students here or in nearby labs – Greg Towers, Chris Boshoff, Richard Jenner, Mala Maini. It’s been nice to see people develop and there is a real community here. People publish together, there are no real barriers between labs and we have a very active seminar series – you’re in bad trouble if you don’t go to the seminars! I’ve never worked anywhere where the link between research and support staff has been so efficient. It’s not a lavish support system but it really does work and we’re all very sad to be losing that. One of the things we’ve done is bring in a range of people working on different aspects of HIV – from basic research on the virus to clinical applications. This is now a national centre for HIV research and I’m proud of being part of that. Techniques of genetic engineering allow us to disable the replication mechanisms of the HIV virus and insert material such as flu proteins to be carried directly to T-cells and thereby stimulate defences against influenza, or whatever. We have to find ways of scaling up production of these vaccine viruses so that eventually they could be used clinically. I’m trying to work out something that might, even in my lifetime, contribute to a new therapy.

Mary Collins
Professor of Immunology
Immunology
Department, UCL

We work with a modified HIV virus to test ideas about how we can exploit it to create preventative vaccines against influenza, for example, as well as therapeutic vaccines to treat not only HIV but perhaps hepatitis B and C, and autoimmune diseases such as arthritis. HIV allows us to get into T-cells, which direct the body’s immune system.
If we need to engineer certain types of viruses like HIV, SARS, rabies or the H5N1 avian influenza virus, or modify microorganisms in any way, we have to apply for permission from the Health and Safety Executive. That is very tightly controlled.

came to the Windeyer in 2006 as the containment level 3 facilities manager. There are several suites of laboratories in the building where researchers and technicians handle high level pathogens – those that might cause significant morbidity or mortality. So we have to conduct ourselves in a manner appropriate to the risks involved. Over time my role has extended to include the management of all the labs and office space, biological safety, genetic modification of microorganisms, radiation protection and other health and safety issues. I liaise with all the principle investigators and researchers on a daily basis to ensure they are safe, adhering to all the legal frameworks and not breaching any licenses. I previously worked at the Institute of Child Health on the immune reconstitution gene therapy project, whereby children with x-linked SCID (severe combined immunodeficiency) who inherit a gene defect preventing them developing working immune systems, are ‘infected’ with an engineered virus carrying the correct sequences. These become integrated into their stem cells enabling them to fight infections and live normal lives. That project links directly to the work that researchers like Mary Collins are pursuing here. We are part of UCL genomics and use high-end microarray technology, which allows the measurement of gene expression on hundreds or thousands of genes at once. Researchers from the UCL scientific community and outsiders such as the Medical Research Council and the Royal Veterinary College can use our microarray scanners to look at their own work or we will do it for them. We try to foster collaboration to push the research forward.

You can definitely see that the Windeyer is no architectural beauty and there are missing ceiling tiles and other unsightly blemishes but it’s very collaborative and that makes for a really nice working environment.
The Windeyer has always been a very sociable building. I have fond memories of meeting with colleagues for a drink after work in the courtyard – before it became completely derelict! There certainly must have been something about the place because my wife and I, and two other couples met whilst working in the Wohl Virion Centre.

I first came to the Windeyer in May 1999 having chosen to study for my PhD in molecular biology with Paul Kellam and Chris Bosshoff. The human genome was being sequenced and scientists were discovering how that information could be useful for understanding disease. My PhD concerned the virus KSHV, which is responsible for Kaposi's sarcoma and two B cell lymphomas that occur predominantly in HIV-infected individuals. Our research showed that primary effusion lymphoma (PEL) is essentially a plasma cell tumour and from this work we identified a class of drug that could stop the cancer cells growing in the lab. This work benefited from our early usage of DNA microarrays with which we could measure the activity of most virus and human genes simultaneously.

After I completed my PhD, I moved to Boston in the US to take up a post-doctoral research position. My work developed into investigating how changes in gene activity underlie the immune response and the control of development. After four years I was awarded an MRC Fellowship to come back to the UK and to the Windeyer. During this second period in the building, my lab has mapped the binding sites of master regulators for two different types of human CD4+ T-cells responsible for protection against viruses (Th1 cells) and extracellular parasites (Th2 cells). Human T-cell immune responses define individual outcomes in a wide range of conditions including infectious, autoimmune and allergic diseases, so identification of target genes offers the prospect of creating rational therapies. We have also been working to understand how the differing identities of specialised cell types are maintained by a class of chromatin regulators called polycomb proteins. We shall be continuing this work in our new home in the UCL Cancer Institute.

Richard Jenner
MRC Fellow
Division of Infection & Immunity, UCL
ight months after I arrived, the Middlesex Hospital Medical School merged with University College. I was employed to wash the laboratory glassware and autoclave equipment for the Department of Molecular Biology. I was twenty and got the job because I was the only one who turned up for the interview! I was also the youngest person working in the building. The work was easy (I don’t know how the person before me had kept busy all day) so I kept volunteering for more and eventually serviced a number of labs throughout the building and also made up media and other preparations. I also made use of the first computer cluster room in the Windeyer to learn how to use a computer and signed up for a course at my local college. I was promoted to head of stores in 2001, at which time the Central Services Laboratory, which cleans lab equipment for the entire building, was moved adjacent to the stores and I manage that as well. I stock consumables like gloves, lab coats, plastics and glassware and also have a range of fridges and freezers supplied and replenished by leading biotech companies.

One day in April 2007, I was making up an order when I heard what sounded like gunfire. Outside the building, men in balaclavas with submachine guns were running around, while inside, people were diving under their desks. Eventually, we learned that a production company was filming a documentary about the Moscow theatre siege by Chechen rebels (2002). They’d chosen the Windeyer because it looked like a 1960s communist block.

Cyndi Coombes
Stores and Central Services Manager
Windeyer Building, UCL
The Windeyer Institute of Medical Sciences was launched in 1996 to help regenerate a building that had largely been abandoned by UCL following its merger with the Middlesex Hospital Medical School. The ideal then would have been to move everything onto the main UCL campus but there were several units, mine included, for which no one could find room.

I transferred from UCL’s Zoology Department in 1988 to become head of Medical Molecular Biology in the Windeyer. This was a centre of expertise that had existed in the Middlesex Hospital Medical School, enabling clinicians who wanted to do molecular biology to collaborate with an academic. My own research was partly about how genes are switched on and off in different organs, and partly about virus vectors and gene therapy. Dr Robert Coffin and I worked on a treatment for Parkinson’s disease using a genetically engineered herpes simplex virus to deliver genes into the nervous system. We created a spin-out biotechnology company, BioVex. The Windeyer wasn’t a happy place in the late 1980s because it was semi-derelict whereas the hospital was expanding and every so often they’d come along to find extra bits to seize. Even my own office was under threat. Over the next few years, working with the then Vice Provost, John Pattison, we managed to convince UCL that the Windeyer could be used to house a major centre for medically-related research. Indeed, the virtue of the building was its openness to clinicians. It was ahead of its time in translational research, and I enjoyed that transition enormously. From being a place where researchers were put as a sort of interim measure, it became UCL’s flagship centre for the study of infection and immunity. By the end of the 1990s, Robin Weiss and Mary Collins had brought in new and exciting research teams.

In launching the Windeyer Institute we also wanted to show the Middlesex Hospital alumni that the legacy of their medical school, which provided the setting for a number of scientific discoveries in immunology, endocrinology and virology, continued in the building.

Professor David Latchman CBE
Master, Birkbeck College
University of London
I heard about a mysterious locked room so Mary Collins and I went to investigate. We discovered a deserted office that had clearly been set up in the 1960s. Rusty cans of Special Brew sat in a fridge alongside chemicals. No computer, but science books dating back to 1700 and cabinets full of valuable coins. It looked like a piece of installation art.

I came to what was then the Windeyer Institute of Medical Sciences in 1999 as administrator and building manager. David Latchman’s vision as Director was to set up a shared support infrastructure for the building. I established a core finance and purchasing team for the departments – Immunology, Molecular Pathology, Bacteriology and Virology – and my team transformed the stores. I hope that as a result the Windeyer Building became a better place for the researchers. Security in the building was an ongoing issue: you would find vagrants asleep in a common room or people who no longer worked for us sneaking in the back door. Neither had the fabric of the building been particularly well maintained as there was already a question mark over its future when I arrived. Leaks were a major problem. I once arrived at work to see water running down the stairs and when I got to the third floor a cleaner in her flip-flops was mopping up a flood in the corridor. I had to pull the cleaners out as I had no idea what the brown liquid was. Despite the Windeyer’s quirks, I was very happy there. Part of my role now is closing it and I’m very sad about having to do that. The scientists who work in the building are hugely committed and supported by a great team of dedicated professional services staff.

And what of the secret room? We discovered that it had once belonged to Professor Stanley Holt (1918-2008), appointed to the Middlesex Hospital Medical School in 1948 and who became one of the leading scientists in cell biology.

Sian Minett
Divisional Manager,
Infection & Immunity (1999- 2008)
Director of Administration,
Faculty of Biomedical Sciences (2008-2011), UCL
Bodies and Antibodies

Images in this series involve slicing, cutting, staining and dyeing samples found in the domestic environment. Some consist of placing domestic objects onto photographic paper to imitate bacteria clusters or microbes.

I was a postgraduate student at the Slade School of Fine Art, UCL (1997-99), and remember taking photographs for the Windeyer Institute. The job was very interesting and I was inspired by the techniques employed by lab technicians to extrapolate images from samples. I persuaded British Telecom to give me access to the Windeyer building from above to make it look like a microscopic image. After leaving the Slade, I went on to make a body of work that resembled dark field images but made from things you would find in the bathroom cabinet or kitchen cupboard. Other images in this series involve magnifying samples in a photographic enlarger to imitate the images made by lab technicians with microscopes. The distortion of scale allows for the images to be read as high-resolution details or skin or tissue samples, bacteria, abstract images, cells and viruses.

The x-ray series made for Bodies and Antibodies was influenced by the first whole body x-ray, taken in 1907, of a lady, fully dressed with rings, necklace and whalebone corset. The image exposed and displayed her most intimate self at a time when nudity was only publicly accepted in the domain of the peep show and artist’s model. Photograms and x-rays are similar insofar as they are both photographic negatives that capture the density of the object revealing hidden details. Because of this, they can overlay innocuous objects with sinister and dark overtones. These images contain elements of erotica, beauty, birth, growth, decay, renewal, disease, sexuality and innocence blended with a premonition of death – the skeleton. This series reflects the fragility of the human condition that teeters on the edge of decay and renewal, life and death.

Paul Tecklenberg
www.paultecklenberg.com
came here in 1991 to do a collaborative PhD with the Institute of Cancer Research in South Kensington. At that time the Windeyer was significantly more derelict than it is now and I spent most of my time in the Chester Beatty’s high tech labs. By the time I returned in 1999 the building had been refurbished and completely transformed but I think, with so many infrastructural problems, it has come to the end of its life. My research group works on how viruses like HIV interact on a molecular level with the people they infect. HIV, like any virus, is made up of gene-encoded proteins that use host proteins (co-factors) to continue its life cycle. By identifying these host proteins it might be possible to produce a drug which blocks them and thus inhibits the virus. However, in addition to proteins used by the virus to gain access to the host, we have also discovered host proteins which attack the virus and prevent infection. For HIV to replicate in people it has to bypass the defensive proteins or make specific proteins to take them out. Our aim is to understand the details of how these interactions work and the structure of the proteins involved. We then make changes in the host and the virus genes, put them together and see what happens. The more we understand about how viruses interact with their hosts, the better we’re able to design novel therapeutics.

The Red Queen hypothesis applied to viral infection maintains that there is an alternate gain and loss of the advantage between virus and host. We can show how viruses evolved to escape defensive host proteins and how defensive proteins have changed through primate evolution. This is the metaphor of an evolutionary arms race.

In Lewis Carroll’s *Through the Looking-Glass*, the Red Queen said to Alice, ‘You have to keep running as fast as you can to stay in the same place.’ We’re very focused on the Red Queen’s hypothesis. For a virus to maintain a relationship with a host, both host and virus are constantly evolving because if one stops the other will gain the advantage.
RESEARCHING A TREATMENT FOR HEPATITIS B

My group’s research is centred on hepatitis B immunology. Hepatitis B is one of the world’s top ten killers due to complications from liver cirrhosis and liver cancer, and some 400 million people are infected with the virus. We work directly with patients, correlating what we find in their immune response with what they’re experiencing clinically, which is really important.

I’ve been at the Windeyer since 2002, funded initially by a Medical Research Council clinician scientist fellowship. I’m medically trained but did a PhD in immunology (1995-98) and am now working towards developing a new immunotherapeutic approach to treating hepatitis B. All the disease that we see in hepatitis B is caused not by the virus but by the body’s immune response fighting the virus. We are concentrating on CD8 T-cells, which are normally good at controlling viruses. In patients who have chronic hepatitis B infection, however, T-cell response becomes exhausted and we’re trying to understand the pathways of that exhaustion in the hope that we can rejuvenate the cells and kick them back into action whilst ensuring they don’t further damage the liver. In collaboration with UCL colleagues, Mary Collins and William Rosenberg, we’re researching a lentiviral vector vaccine approach to recovering a T-cell response and maybe we’ll have a vaccine that we could try within three to five years. We’re also collaborating with Antonio Bertoletti at A * Star (Agency for Science, Technology and Research) in Singapore and with Hans Stauss (UCL) to develop T-cell receptor gene transfer. This would allow us to take the T-cell receptor from a good T-cell response and transfer it into the failed T-cells in patients with chronic hepatitis B. This technique is already being used in the clinics to treat cancers.

I like interacting with patients and their problems and being grounded in what we should be aiming to achieve with our research, and then actually bringing that perspective into the lab and trying to do something really useful. I think that is a great combination.

Mala Maini
Professor of Viral Immunology
Consultant Physician
Division of Infection & Immunity, UCL
All our food is home cooked and we love looking after people. A cup of tea, a hot meal and a hug changes everything when you’ve been working long hours or when you’re a foreign student and a long way from home.

My husband, Abdou, and I opened Ishta’s Café nineteen years ago. We’ve known all the students and lecturers in the Windeyer and many in the Middlesex Hospital. I’m Australian and Abdou is from Alexandria in Egypt. He’s a genius with food. I studied alternative medicines so between us we try to focus on healthy eating, with a bias towards middle-eastern food. Today, for example, we have vegetable moussaka, falafels, pasta, and a popular Panini with roasted aubergines and fetta cheese drizzled with homemade chilli and sesame sauce. We serve freshly squeezed fruit juices and the finest coffee in London – according to a Guardian critic! The same food that you eat here goes home to our teenage sons so it’s only the best and I think people appreciate that. Mary Collins lives in the area and her children come here for their breakfast before school.

I can remember the first day we opened. We were all smiles and greetings – ‘Hello, how are you?’ The customers stepped back from the counter, wondering what was going on because they weren’t quite used to such up-front friendliness. But we just love people and we love looking after them. Now, after nearly twenty years, I think people come over here because it’s rather comfortable and they feel at home. Students who have graduated and left the area come back for a specially remembered meal and to tell us their news, even after fifteen years or so, and we have regular customers from UCL. We were very sad when the Middlesex Hospital closed because that was the heart of the community, and now we’re going to lose the Windeyer – we’re going to miss everybody but there’ll always be a welcome for old friends.

Sharon Said
Ishta’s Café
61 Cleveland Street
London W1T 4JH
WINDEYER – HISTORY OF A BUILDING

REFERENCES

2 | Ibid., 145.

4 | Anon, ‘The founders of the Medical School: history of the Middlesex Hospital and Medical School,’ *Middlesex Hospital Journal* 79 (1979): 5.

5 | Anon, *The Middlesex Hospital Medical School Rebuilding*, Appeal booklet (c.1956) with a foreword by Col. The Rt. Hon. The Lord Astor of Hever, Chairman of the Middlesex Hospital and Chairman of the Medical School Council.

6 | Anon, ‘The founders of the Medical School,’ 5.

7 | Ranger, *The Middlesex Hospital Medical School*, 145.

8 | Ibid., 146.

9 | Anon, Appeal booklet.

11 | Anon, Appeal booklet.

12 | Ranger, *The Middlesex Hospital Medical School*, 147.

14 | Ibid.

16 | Ibid., 149.

18 | Ibid.

19 Ranger, *The Middlesex Hospital Medical School*, 149.

25 | Ranger, *The Middlesex Hospital Medical School*, 156-7

27 | Ranger, *The Middlesex Hospital Medical School*, 146.

31 | W.W. Slack, ‘The Dean’s column’, 5.
‘Skarm X’, the world’s deadliest ‘virus’. Created by school children in the Windeyer labs.
Greg Towers, permission Claudia Aquilina

Going viral. School children create their own viruses in the Windeyer labs.
Greg Towers, permission Claudia Aquilina

Future scientists. School children visit the Windeyer labs.
Greg Towers, permission Claudia Aquilina