Affordable technology for monitoring remote volcanoes

Christopher Kilburn1, Stephen Hailes2, Lara Smale1, Maria Pedone3, Alessandro Fedele3, Stefano Carlino1, Renato Somma3, Claudia Troise3, Giuseppe De Natale3.

1UCL Hazard Centre, Department of Earth Science & 2Department of Computer Sciences, University College London, UK.
2INGV-Osservatorio Vesuviano, Naples, Italy.

We are seeking partners to develop and deploy integrated low-cost geochemical and geophysical monitoring networks. For more information, please see the contact details below.

Summary. Pilot low-cost gas sensors have been field tested for CO2 emissions across the Campi Flegrei volcano, west of Naples in southern Italy. The results agree well with contemporaneous measurements from conventional instruments. The pilot sensors will next be adapted for global deployment as part of affordable networks for the long-term monitoring of volcanoes in remote locations.

1. Monitoring remote volcanoes

Most active volcanoes are not regularly monitored or not monitored at all. The majority also occur in nations that have limited economic resources for the long-term monitoring of volcanoes. Project Volcalarm is a new Anglo-Italian initiative for developing low-cost sensors for the real-time acquisition of geochemical and geophysical signals of volcanic unrest. Here we present preliminary results for CO2 sensors tested against conventional methods for monitoring degassing at the Campi Flegrei volcano in southern Italy.

2. Affordable gas sensors

The miniaturized sensors consist of a commercial detector that measures CO2 concentrations by non-dispersive infrared spectroscopy (www.CO2Meter.com). Bespoke components designed at UCL convert gas concentrations into digital data. For the feasibility study, the data were stored locally on a microSD card, but this can be substituted with a wireless transmission system for relaying signals to remote locations. The detector has a total detection range from 0 to 10,000 ppm and notional lifetime of at least 15 years.

3. Why Campi Flegrei?

The active volcanic district of Campi Flegrei covers 100 km2 by the western suburbs of Naples. Surface degassing has been recorded since at least Roman times and is today regularly monitored from Solfatara, near the eastern coast of the volcano. Gas emissions are monitored using a MultiGAS sensor and GasFinder 2.0 tunable diode laser absorption spectroscopy [1,2]. The data provide an ideal reference for testing the accuracy and reliability of low-cost gas sensors.

4. Results

The Bocca Nuova fumarole is degassing at vent temperatures of 160°C. Conventional monitoring yields typical CO2 concentrations of c. 400 ppm for the ambient atmosphere and 600-1,200 ppm in the plume, becoming larger closer to the vent [1,2]. The corresponding values from repeated measurements with the low-cost sensors yielded c. 800 ppm in the ambient atmosphere and plume.

The plume values are consistent with conventional measurements. The ambient values were higher than expected, possibly due to contamination from the plume. Within the vent itself, CO2 concentrations exceeded the saturation values for the sensors.

4. Future development

Our preliminary studies show that low-cost CO2 sensors yield gas concentrations comparable to values obtained from conventional, high-cost instruments. They are not suitable for measurements at high-temperatures within fumarolic vents. However, such locations do not predominate gas monitoring networks, so that the low-cost sensors remain attractive for long-term and continuous, real-time monitoring.

Unit costs are expected to be one-tenth of those for conventional instruments. Future developments include incorporating:

- robust housings for extreme environments;
- low-maintenance, long-duration power supplies (e.g., solar-powered batteries);
- transmission systems for relaying data directly to monitoring observatories;
- thermal switches to protect sensors against surges in gas temperature.

References

Photo: (left) Stefano Carlino, (centre) Alessandro Fedele and (right) Maria Pedone (29/3/2013) taking the CO2 sensors on the Bocca Nuova fumarole in Solfatara. (Photo: Lara Smale)