GEE News Publication
A A A

Gee Research Blog

Competitive Generosity Drives Charitable Donations

Fri, 17 Apr 2015 12:09:46 +0000

Unconditional generosity is a characteristic of humans on which we pride ourselves, and billions of dollars is donated to hundreds of thousands of charitable organisations every year. But look at it from an evolutionary perspective, and this trait seems difficult to explain. In some situations, giving may have evolved to advertise positive characteristics of the […]

The post Competitive Generosity Drives Charitable Donations appeared first on GEE Research.

Read more...

Annoucing the Winners of the Write About Research Competition

Fri, 10 Apr 2015 13:49:07 +0000

Thanks to everyone who entered our Write About Research competition. We received some great entries from GEE students and postdocs, covering a broad range of topics from conservation to genetics. The entries will be posted here over the coming months, so watch this space! The Winners are… Drum roll please … WINNER: David Curnick – […]

The post Annoucing the Winners of the Write About Research Competition appeared first on GEE Research.

Read more...

Male Promiscuity Boosts Role of Chance in Sex Chromosome Evolution

Thu, 19 Mar 2015 15:02:31 +0000

Humans, like all mammals and birds, determine sex with chromosomes. Whether a fertilised egg develops into a male or female depends on what chromosomes it carries Scientists have long recognised that genes evolve a little differently on the sex chromosomes, and recent research in GEE suggests this may be due to differing patterns of inheritance […]

The post Male Promiscuity Boosts Role of Chance in Sex Chromosome Evolution appeared first on GEE Research.

Read more...

Sloths Move Slow, Evolve Fast

Wed, 11 Mar 2015 18:20:41 +0000

Sloths might be notorious for their leisurely pace of life, but research published last year shows they are no slow coaches when it comes to evolution. Sloths, as we know and love them, are small, slow-moving creatures found in the trees of tropical rainforests. But modern sloths are pretty odd compared to their extinct relatives. […]

The post Sloths Move Slow, Evolve Fast appeared first on GEE Research.

Read more...

Write About Research – A GEE Research Blog Competition

Tue, 03 Mar 2015 15:28:43 +0000

The GEE Research blog communicates UCL science with a wider, non-specialist audience, by providing short summaries of recent research in the department of UCL Genetics, Evolution and Environment. This provides an opportunity to engage with a broad audience, including other academics, students, members of the public, and even businesses and policy-makers. It is a great […]

The post Write About Research – A GEE Research Blog Competition appeared first on GEE Research.

Read more...

Dr Michal Malecki (Bahler Group) awarded prestigious Newton International Fellowship

15 January 2014

Michal Malecki

Dr Michal Malecki has recently secured a prestigious Newton International Fellowship which is jointly run by The British Academy and the Royal Society. This postdoctoral fellowship is to work on the function of cytoplasmic non-canonical RNA polymerases in fission yeast.

Non-canonical RNA polymerases (ncPAPs) modify RNA molecules by adding nucleotides to their 3’-ends without the need of a starter or template. Modifications catalyzed by ncPAPs have different consequences on RNA fate: they can destabilize and rapidly degrade transcripts, but they can also stabilize transripts, facilitate processing steps, or regulate translation ability. The ability to modify pre-existing RNAs makes ncPAPs ideal candidates for shaping the transcriptome at a post-transcriptional level.


The role of ncPAPs in RNA metabolism has recently started to be investigated. There are still many unsolved questions, most notably concerning the function of ncPAPs in the cytoplasm. In humans, cytoplasmic ncPAPs investigated so far affect cellular differentiation, senescence, synaptic plasticity, aging, and may be important in tumor suppression. The human genome codes for seven potential ncPAPs, with functions in both the cytoplasm and nucleus. The genome of fission yeast (Schizosaccharomyces pombe) encodes six potential ncPAPs, which makes it a highly attractive organism to investigate the functions of these intriguing proteins.


Four out of six S. pombe ncPAPs localise in the cytoplasm or both in the nucleus and cytoplasm. To study the function of these four cytoplasmic ncPAPs, we will apply multiple genetic, genomic and biochemical approaches, and then integrate the resulting data for insight into general biological principles.

Page last modified on 15 jan 14 14:28