Shear Banding in Entangled Carbon Nanotube Networks

Erik K. Hobbie NIST Polymers Division

Euromech 2007 – Shear Banding in Entangled Systems

Generalized Definition of Shear Banding

Shear-induced separation into two or more macroscopic regions of different strain rate

Sheared Carbon Nanotube Suspensions

Nanotubes are in closed periodic Jeffery orbits

Orbit period scales inversely with shear rate

Sheared Carbon Nanotube Suspensions

Width of image = 200 micrometers

Small-Angle Light Scattering from MWNT Suspensions

E. K. Hobbie et al, RSI 74, 1244 (2003)

SWNTs and MWNTs are optically active, so 'depolarized' light scattering is needed polarization and absorption are *both* anisotropic along and normal to the symmetry axis of the tube

Good MWNT dispersion

Shear-Induced Orientation in Suspensions -Scaling of SALS in the Semi-dilute Regime

Scaling of depolarized light scattering data corroborates the scaling observed in the dichroism and the birefringence, and a zeroth-order fitting scheme describes all of the data with only one adjustable parameter, a small back ground in a Gaussian ODF, $p(\theta)$. Fitting trends consistent with modest to minimal tube deformation.

D. Fry, et. al. Phys. Rev. Lett. 95, 0383304 (2005)

Orientation in Sheared Suspensions -Scaling of Birefringence and Dichroism

$$\Delta n' \approx \frac{1}{2n_s} \phi(\alpha'_{\parallel} - \alpha'_{\perp})S + \dots$$

$$\Delta n'' \approx \frac{1}{2n_s} \phi(\alpha''_{\parallel} - \alpha''_{\perp})S + \dots$$

$$S = \frac{1}{2} (3\langle \cos^2 \theta \rangle - 1)$$

$$Pe = \frac{\dot{\gamma}}{D} \quad \text{(rotational Peclet number)}$$

$$D = D_o = \frac{3k_B T[\ln(L/d) - 0.8]}{\pi \eta L^3} \quad \text{(dilute)}$$

$$D \propto D_o \phi^{-2} \quad \text{(semi-dilute - Doi and Edwards)}$$

 $S \propto \mathrm{Pe}^{0.16} \propto \phi^{1/3}$

NIS

D. Fry, et. al. Phys. Rev. Lett. 95, 0383304 (2005)

Flow-Induced Aggregation - Banding in Weak Shear?

MWNTs $d \approx 50 \text{ nm}$ $L \approx 10 \ \mu \text{m}$ dispersed in PIB $(M_n = 800)$ $\eta = 10 \text{ Pa-s at } 25 \text{ °C}$ 0.17 wt. % MWNT $nL^3 \approx 54$ $nL^2d \approx 0.23$

S. Lin-Gibson *et al*, *Phys. Rev. Lett.* 92, 048302 (2004)
Schmid & Klingenberg, *Phys. Rev. Lett.* 84, 290-293 (2000)

Shear-Induced Aggregation and Coarsening

S. Lin-Gibson et al, Phys. Rev. Lett. 92, 048302 (2004)

Many Other Systems ...

Clay gels under simple shear flow

Pignon, Magnin, & Piau, Phys. Rev. Lett. 79, 4689 (1997)

Macroscopic Voriticty Rolls (0.1 s⁻¹ – sped up x10)

Banding Movie (vorticityrolls.avi)

Width of image = 1 mm

A Simple Cartoon of a Flow Induced Instability

A number of vastly different systems exhibit the same shear-induced pattern because they each represent *elastic* droplets suspended in a viscous fluid

Montesi, Pena, & Pasquali

Bird, Armstrong, & Hassager

Generic phase diagram for shear-induced aggregation in semi-dilute non-Brownian MWNT suspensions

 ω (rad/s)

Unusual Rheological Signal

 $N_1 = \sigma_{xx} - \sigma_{yy} \qquad N = \sigma_{xx} - \sigma_{zz}$ [J. M. Dealy, J. Rheol. **39**, 253 (1995)]

Growth Cycle

Negative normal stress Large intrinsic viscosity Decreasing ϕ Confinement effects Vorticity elongation $Re \approx 10^{-5}, Wi \approx 10$

Dissolution Cycle

Flow orientation Positive normal stress Multi-step process $Re \approx 10^{-3}, Wi < 1$

S. Lin-Gibson et al, Phys. Rev. Lett. 92, 048302 (2004)

Rheology of Semi-Dilute to Concentrated Suspensions

Controlled-Strain

 ω (rad/s)

Scaling of Linear Viscoelasticity with Concentration

E. K. Hobbie and D. J. Fry, *Phys. Rev. Lett.* **97**, 036101 (2006)

Network Yield Stress

Controlled Strain

E. K. Hobbie and D. J. Fry, J. Chem. Phys. 126, 124907 (2007)

Relating Shear Modulus and Yield Stress to Network Morphology

W.-H. Shih et al., *Phys. Rev. A* 42, 4772 (1990).

E. K. Hobbie and D. J. Fry, *Phys. Rev. Lett.* 97, 036101 (2006)
E. K. Hobbie and D. J. Fry, *J. Chem. Phys.* 126, 124907 (2007)

Processing Phase Diagram

Morphology as a function of concentration, confinement, and strain rate for MWNTs in 500 PIB - controlled strain measurements:

Universal Phase Diagram – Critical Parameters

 $\delta R_0 / \delta \phi \propto R_0$ $S = \left\langle P_2(\cos\theta) \right\rangle$ $\delta S / \delta \dot{\gamma} \propto \tau \propto \dot{\gamma}^{-1}$ $\sigma / \sigma_c = \exp[a(S - S_0) / S_0]$ $R_0 \sim \phi^{-1/3}$ X $\left|\leftarrow\right.$ $S \propto rac{\langle \mathcal{E}
angle}{R_0} \propto \phi^{1/3}$

E. K. Hobbie and D. J. Fry, *Phys. Rev. Lett.* 97, 036101 (2006)

Thanks!!

D. Fry (NIST – NRC now at JPL)
H. Wang (NIST – now at SUNY)
B. Langhorst (SURF)
S. Lin-Gibson (NIST),
J. Pathak (NIST, now at NRL)
H. Kim (Kyunghee U)
E. Grulke (U Kentucky)
S. Hudson (NIST)

