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Bias Reduction of Maximum Likelihood
Estimates: D. Firth; Biometrika (1993)

L&)
U*(8)

AN

o* i
=h(6)

Fig. 1. Modification of the unbiased score function.
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U*(8) = U(8)—i(8)b(8)

i(@) is the Fisher information matrix.



derivatives are denoted by
U(8)=al/ag", U,(8)=d"l/ad"ae’,
and so on, where 8 =(8",..., #") is the parameter vector. The joint null cumulants are
k.. =n "E{UU}, k.. =n "E{UUU}, kK. o=n "E{UU,},

and so on. We note here the well-known relationships

Kps T8y e =0, Keyt Kpset Koo T Kyps T Kp g =0, (2-2)

Consider now a fairly general modification of the score function, of the form
U¥(8)= U (0)+A,(0),

in which A, is allowed to depend on the data and is 0,(1) as n— co. Suppose that 6 and
A* satisfy U(8)=0 and U™(8%)=0, and write 3 =n*(#*—@). Then, by an argument
closely following that of McCullagh (1987, p.209), based on an expansion of U*(8%)
about the true value 6, the bias of 6% is

E(n” .i",.") = n-lxm{_’cn“(“s,r,u'k"":s.-,ru}fz"'ﬂ!,}-l- D(n_j"rz:.’

where k" denotes the inverse of the Fisher information matrix ., a, denotes the null
expectation of A,, and the summation convention applies. The term

—n" 'k r’"(‘":s,r,;.u + -"‘s,m}:'llz = H_Ib:{ﬂ)

is the first-order bias of é, for example Cox & Snell (1968). The modification A, therefore
removes the first-order term if it satisfies

k", =—b{+0(n7?),
the solution to which is
a, = —k,bj+0(n").
In matrix notation, then, the vector A should be such that
E(A)=—i(8)b,(08)/n+0(n?).

Obvious candidates for a bias-reducing choice of A are therefore A'"'=—i(8)b,(8)/n
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If 6 is the canonical parameter of an exponential family model, «,,, =0 for all r, s and
t. Therefore the rth element of A'®'(8), or equivalently of A'®(8), is given by

£.0 i

a,=—nk. bi/n=r, k""" K /2= K"K o/2= K"K 2,

using the identities (2:2). In matrix notation, this may be written as

1 J.foi\|_9d |1 :
E,.—Etr{l (ﬂﬂr)}—aﬂr{zlughiﬂﬂ}.

Solution of U¥= U, + a, =0 therefore locates a stationary point of
I*(0)=1(0)+3log|i(8)]
or, equivalently, of the penalized likelihood function
L*(0)=L(0)|i(0)].




Solution for Logistic Regression

penalized likelihood function
L*(6)=L(0)|i(e)]*

The simplest of all logistic models is that for a single binomial observation, the target
parameter being 8 =log {#7/(1 = 7)}. The information is proportional to 7(1— ), so that
the penalized likelihood is simply

L¥= T_,..'FH“ _ W}M-H%_

Maximization of L* yields

shrinks estimates towards =0




Logistic Regression: Separation Problem

/ 111{ pn]:BD+BIX =

l1-p

7 p=1/(1+exp(-n)

if X predicts outcome perfectly,
its regression coefficient => oo




Bayesian inference: Jeffries Prior

penalized likelihood function

L*(6)=L(0)|i(e)]*

Posterior = Likelihood * Prior

Binomial distribution; 6 = prob. success

b |

Jeffries Prior: 7;(0) = 1(6)z7 <6~ 2(1 —6)"z

Note on notation: theta in the top equation is the canonical variable, and theta in the bottom equation is the binary probability of success (p).



