
A dig into Poisson regression 



1. # phone calls per hour 
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1. # phone calls per hour 

• Can this be modelled using a Poisson distribution? 

 

• Main assumption:   

 

• Mean = 
𝑌
1
+⋯+𝑌𝑁

𝑁
=
0+2+1+⋯+

40
= 1.05 

 

• Variance  = 
(𝑌

1
−μ)2+⋯+ 𝑌

𝑁
−μ 2

𝑁
 

   =
0−1.05 2+ 2−1.05 2+⋯+  1−1.05 2

40
= 0.87 

Units: hours 

mean = variance 
 



2. Incidence of Diabetes 
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2. Incidence of Diabetes 

• Can this be modelled using a Poisson 
distribution? 

 

• Main assumption:  mean = variance 

 

• Mean = 
1+0+1+⋯+1

14.18
=0.28 

 

• We have a problem calculating the variance, as 
some of our units are not whole. 

Units: Person-years 



2. Incidence of Diabetes 

Variance = 
(𝑌1−μ)

2+⋯+ 𝑌𝑁−μ
2

𝑁
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2. Incidence of Diabetes 

• Let Y be the number of incident diabetes 
diagnoses per person-year. 

 

• Suppose we want to test whether Y ~ Po(0.28) 

 

• Let:  
– Yi be the number of incident diabetes diagnoses in 

person i (0/1); 

– Ti be the number of person years followed up. 

 

 Then we’re testing whether Yi ~ Po(0.28*Ti) 



2. Incidence of Diabetes 

• Each person having a different Poisson 
distribution makes it hard to test everyone at 
the same time. 

 

• Somehow need to standardise each person’s 
contribution. 

 

• One way of doing this is to divide by the 
variance: 



2. Incidence of Diabetes 

• Going back to our original criteria: 
 

(Y1− E[Y1])
2+⋯+ YN− E[YN]

2

N
= var[Yi] 

 

(Y1− E[Y1])
2 +⋯+ YN− E[YN]

2

var[Yi] 
= N 

(Y1− E[Y1])
2

var[Yi] 
+⋯+

YN− E[YN]
2

var[Yi]
= N 

 
• If the var[Yi] are now different, our criteria becomes: 
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+⋯+

YN− E[YN]
2

var[YN]
= N 

 



(Y1− E[Y1])
2

var[Y1] 
+⋯+
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2
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GLM Residuals 

 
 
 
 
 
 
 
 
 

• The square-root of each of the individual components of the equation 
below are Pearson residuals, 𝑝𝑖, with the left-hand side,  (𝑝𝑖

2), often 
reported as the Pearson goodness-of-fit (GoF) statistic. 
 

• Turns out the equation below is only valid if E[Yi] > 5, which is unfortunate 
for epi studies where each person only has max value of 1. 
 

• Alternative residuals for GLMs are deviance residuals, 𝑑𝑖, based on 
likelihood ratios: 
 

𝑑𝑖 = ± −2𝑙𝑖 
 

 where 𝑙𝑖 is the contribution of Yi to the log-likelihood 
 

• The sum of deviance residuals squared,  (𝑑𝑖
2), is more commonly 

compared to N to test for model fit. 



Stata example 

• Simulate:  100 men ~ Po(10)  

   100 women ~ Po(5) 

 

• Outcome: diabetes 

 

• Followed up for 10 years or until they get 
diabetes 

 



Stata example 

Overdispersed 



Stata example 2 



Negative Binomial 

• Is basically a Poisson model with an extra 
dispersion parameter, α. 

 

• Rather than assuming the variance is μ, it 
assumes the variance is (𝟏 + α)μ. 

 

• In stata, negative binomial regression output 
will test whether α is significantly different to 
zero. 



Negative Binomial 



Negative Binomial 



More extreme example 

• Simulate:  100 men ~ Po(100)  

   100 women ~ Po(5) 

 

• Outcome: diabetes 

 

• Followed up for 10 years or until they get 
diabetes 

 



More extreme example 



More extreme example 



More extreme example 



More extreme example 



2. Incidence of Diabetes 

We divide each person’s variance-contribution by the 
variance of their hypothesised distribution, add them all 

up, and see if it’s roughly equal to N. 

(Y1− E[Y1])
2

var[Y1] 
+⋯+

YN− E[YN]
2

var[YN]
= N 

 


