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Derivation of the Poisson distribution

I this note we derive the functional form of the Poisson distribution and investigate some
of its properties. Consider a time ¢ in which some number n of events may oceur. Examples
are the number of photons collected by a telescope or the number of decays of a large sample
of radioactive nuclei. Suppose that the events are independent, 1.e., the occurrence of one
event has no influence on the probahility for the oceurrence of another. Furthermore, suppose
that the probability of a single event in any short time interval &f is

P(1;4t) = Adt, (1)

where A is a constant. In Section 1 we will show that the probability for n events in the time
t 18 miven by
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where the parameter 1 is related to A by
= At. (3)

www.pp.rhul.ac.uk/~cowan/stat/notes/PoissonNote.pdf



Consider the time interval ¢ broken into small subintervals of length &f. If & 15 sufficiently

short then we can neglect the probability that two events will occur in it. 'We will find one
event with probability

P(1;8t) = Adi (6)

and no events with probahbility

P(0;6t) =1 — Adt . (7)

What we want to find is the probability to find n events in £. We can start by finding the
probability to find zero events in ¢, P(0;{) and then generalize this result by induction.



Suppose we knew P(0;£). We could then ask what is the probability to find no events
in the time £ + 8. Since the events are independent, the probability for no events in both

intervals, first none in ¢ and then none in 8¢, 13 given by the product of the two individual
probabilities. That is,

P(0;t + &t) = P(0;t)(1 — Adt) . (8)
Thizs can be rewritten as

P(0;t + at) — P(0;t)
&t -

which in the limit of small & becomes a differential equation,

—AP(D;1) , (9)

aP0t) _ _apo:t) (10)
dt
Integrating to find the solution gives
P(0:t) = Ce™™ . (11)

For a length of time ¢ = (0 we must have zero events, 1.e., we require the boundary condition
P(0;0) = 1. The constant ' must therefore be 1 and we obtain



Pl t) = et . (12)

Mow consider the case where the number of events n is not zero. The probahility of finding
n events in a time t + &f is given by the sum of two terms:

Pin:t + 6t) = P(n:£)(1 — Adt) + P{n — 1:£)Adt . (13)

The first term gives the probability to have all n events in the first subinterval of time £
and then no events in the final 4f. The second term corresponds to having n — 1 events in f

followed by one event in the last 4f. In the limit of small §t this gives a differential equation
for P(n;t):

dP(n;t)
dt

+ AP(n;t) = AP({n — 1;t) . (14)

We can solve equation (14) by finding an integrating factor u(t), i.e., a function which
when multiplied by the left-hand side of the equation results in a total derivative with respect
to t. That is, we want a function p(f) such that

dP(n; d
u(e) [ APt = £ ln(t)P@s )] (15)

We can easily show that the function

plt) = M (16)

has the desired property and therefore we find



%[e’*;ﬂ[n;t}] — MAP(n— 1;t) . (17)
We can use this result, for example, with n = 1 to find

% [E“Pu; t}] = AMP(0;1) = AeMe™M = A, (18)

where we substituted our previous result (12) for P(0; f). Integrating equation (18} gives
MP(1;1) = f.w: — MO, (19)

Now the probability to find one event in zero time must be zero, i.e., P(1;0) = 0 and therefore
C' =10, so we find

P(1:t) = Ate ™™, (20)

We can generalize this result to arbitrary n by induction. We assert that the probability
to find n events in a time { is

P(n;t) = '{:’:if“ g (21)




We have already shown that this 18 true for n = 0 as well as for n = 1. Using the differential
equation (17) with n + 1 on the left-hand side and substituting (21) on the right, we find

a [P+ 1:)] = MAP(n:t) = ;u'[”} _ A MA07 (22)
dt mn!
Integrating equation (22) gives
¢ Y N 6. L .
HP{nH,z}_f:a = o O (23)
Imposing the boundary condition P(n + 1;0) = 0 implies € = 0 and therefore
(A"
P 1;t) = . 24
(n+ 1) = e (24)

Thus the assertion (21) for n also holds for n + 1 and the result is proved by induction.



Poisson processes are (totally) random

* we watch for a period of time...

e ...events occur unpredictably...

X X

e ...but at a constant average rate



look at ‘Distribution’ this generates...

* collect lots of representative samples ('sticks')...
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look at ‘Distribution’ this generates...

x 5
e

* collect lots of sample 'sticks'...
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e ..and group them together according to the
number of events

No. of
events

No. of
'sticks’



The Poisson Distribution

Group
(Hevents)

No. of
'sticks’

O 1 2

ng+ n;+ n,..=N (total number of sticks)
O.n,+1.n;+2.n,..=L (total number of events)
average number of events = L/N = p (say)

Prob[k events] =n,/N = P, (say)

As if L cards were dealt to N players totally at random...

Ny



The Poisson Distribution...

Group
(Hevents)
No. of
'sticks’

...Generated by dealing L cards randomly to N players...

So we won't change the distribution by re-allocating one
card at random

Therefore the chance of taking it off a player in Group k
must equal the chance of giving it to a player in Group (k-1)



Poisson Distribution: re-deal a card

Group
(Hevents)
No. of
'sticks’

* chance of taking it off a player in Group k = total cards held
by Group k players / total cards

=k.n,/L=k(n,/N)/(L/N) = k.Prob[k events] /u = k.P, /.

e the chance of giving it to a player in Group (k-1) = #Group
(k-1) players / total players
= Prob[(k-1) events] = P, ,



Poisson Distribution: re-deal a card

Group
(Hevents)

No. of
'sticks’

* k.Prob[k events] /u = Prob[(k-1) events]
* P= (u/k)-Pk-l

* P, = (uk/k!).P, Note: Sum(P,)=1
. PO = eH

P =e*puk/k!



