Regression, Correlation and Geometry

stats methodologists meeting February 2016

a problem in Correlation

- $\rho(X,Y)$ = correlation between X and Y
- (suppose) $\rho(X,Y) = 0.7$ and $\rho(Y,Z) = 0.7$
- Q: what is the *least* possible value for $\rho(X,Z)$

Correlation

$$\rho = \frac{\sum_{i=1}^{n} (x_i - x)(y_i - y)}{\sqrt{\sum_{i=1}^{n} (x_i - x)^2 \sum_{i=1}^{n} (y_i - y)^2}}$$

graphical representation of Regression

Correlation (variables centred)

$$\rho = \frac{\sum_{i=1}^{n} X_i Y_i}{\sqrt{\sum_{i=1}^{n} X_i^2 \sum_{i=1}^{n} Y_i^2}}$$

$$X_i = \left(x_i - \overline{x}\right)$$

$$Y_i = \left(y_i - \overline{y}\right)$$

a problem in Geometry

representation of (all) the values of a (centred) variable

representation of X with a regression coefficient: b.X fitted values

representation of X with a regression coefficient: b.X b<1

representation of X with a regression coefficient: b.X b>1

Sum of Squares (variance) = Length²

X and Y together...

X and Y together, with fitted values...

X and Y together, with fitted values, and residuals...

X and Y together, with fitted values, and residuals...

X and Y together, with fitted values, and residuals...

...on their own 2-dimensional 'slice'

$$|Y|^2 = \sum_{i=1}^n Y_i^2$$

$$|bX|^2 = \sum_{i=1}^{n} (bX_i)^2$$

least-squares linear regression

regression line placed to minimize sum of squares of the \differences between y and the fitted values

length² = total SS (for Y)

" %var. acct.

for " = ρ^2

= FSS/TSS

 $= \cos^2(\theta)$

Correlation and Angle

$$ρ(X,Y) =$$
 $cos(θ)$

Correlation (variables centred)

$$\rho = \frac{\sum_{i=1}^{n} X_i Y_i}{\sqrt{\sum_{i=1}^{n} X_i^2 \sum_{i=1}^{n} Y_i^2}}$$

$$X_i = \left(x_i - \overline{x}\right)$$

$$Y_i = \left(y_i - \overline{y}\right)$$

Correlation and Angle

$$ρ(X,Y) = cos(θ)$$

$$\theta = 0$$
 $\cos(\theta) = 1$

$$\theta = 90^{\circ}$$
 $\cos(\theta) = 0$

a Problem in Correlation

- $\rho(X,Y)$ = correlation between X and Y
- (suppose) $\rho(X,Y) = 0.7$ and $\rho(Y,Z) = 0.7$
- Q: what is the *least* possible value for $\rho(X,Z)$

Representation

Geometric Solution

Geometric Solution

Formulae

$$\rho(X,Y) = \cos(\theta) = 0.7$$

$$\rho(Y,Z) = \cos(\theta) = 0.7$$

$$\rho(X,Z) = \cos(2\theta)$$

$$\cos(2\theta) = 2\cos^2(\theta) - 1$$

$$\min[\rho(X,Z)] = 2\rho^2 - 1$$