Regression, Correlation and Geometry

stats methodologists meeting
February 2016

a problem in Correlation

- $\rho(X, Y)=$ correlation between X and Y
- (suppose) $\rho(X, Y)=0.7$ and $\rho(Y, Z)=0.7$
- Q: what is the least possible value for

$$
\rho(X, Z)
$$

Correlation

$$
\rho=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

graphical representation of Regression

Correlation (variables centred)

$$
\rho=\frac{\sum_{i=1}^{n} \mathrm{X}_{i} \mathrm{Y}_{i}}{\sqrt{\sum_{i=1}^{n} \mathrm{X}_{i}^{2} \sum_{i=1}^{n} \mathrm{Y}_{i}^{2}}}
$$

$$
X_{i}=\left(x_{i}-\bar{x}\right)
$$

$$
Y_{i}=\left(y_{i}-\bar{y}\right)
$$

a problem in Geometry

3. Find x.
 $$
\text { Here it is } \mathrm{X}
$$

representation of (all) the values of a (centred) variable

representation of X with a regression coefficient: b.X fitted values
representation of X with a regression coefficient: $b . X \quad b<1$

$$
\begin{aligned}
& X_{i}=\left(x_{i}-\bar{x}\right) \\
& i=1 \ldots n
\end{aligned}
$$

representation of X with a regression coefficient: b.X b>1

$$
\begin{aligned}
& X_{i}=\left(x_{i}-\bar{x}\right) \\
& i=1 \ldots n
\end{aligned} \underbrace{\substack{\mathbf{2}}}_{\mathbf{x}_{1}}
$$

Sum of Squares (variance) $=$ Length 2

$$
\begin{aligned}
& X_{i}=\left(x_{i}-\bar{x}\right) \\
& i=1 \ldots n
\end{aligned} \underbrace{\substack{2 \\
\mathbf{x}_{1}}}_{\mathbf{0}}
$$

X and Y together...

$$
\begin{aligned}
& Y_{i}=\left(y_{i}-\bar{y}\right) \\
& i=1 \ldots n
\end{aligned} \mathbf{x}_{\mathbf{2}}
$$

X and Y together, with fitted values...

X and Y together, with fitted values,

 and residuals...

X and Y together, with fitted values,

 and residuals...

X and Y together, with fitted values,

 and residuals...
...on their own 2-dimensional 'slice'

$$
\begin{aligned}
& |Y|^{2}=\sum_{i=1}^{n} Y_{i}^{2} \\
& |b X|^{2}=\sum_{i=1}^{n}\left(b X_{i}\right)^{2}
\end{aligned}
$$

0

least-squares linear regression

regression line placed to minimize sum of squares of the $\uparrow \downarrow$ differences between y and the fitted values

least-squares fitting

Correlation and Angle

$\rho(X, Y)=$ $\cos (\theta)$

0

Correlation (variables centred)

$$
\rho=\frac{\sum_{i=1}^{n} \mathrm{X}_{i} \mathrm{Y}_{i}}{\sqrt{\sum_{i=1}^{n} \mathrm{X}_{i}^{2} \sum_{i=1}^{n} \mathrm{Y}_{i}^{2}}}
$$

$$
X_{i}=\left(x_{i}-\bar{x}\right)
$$

$$
Y_{i}=\left(y_{i}-\bar{y}\right)
$$

Correlation and Angle

$\rho(X, Y)=$ $\cos (\theta)$

$$
\begin{aligned}
& \theta=0 \\
& \cos (\theta)=1
\end{aligned}
$$

$\theta=90^{\circ}$
$\cos (\theta)=0$

0

a Problem in Correlation

- $\rho(X, Y)=$ correlation between X and Y
- (suppose) $\rho(X, Y)=0.7$ and $\rho(Y, Z)=0.7$
- Q: what is the least possible value for

$$
\rho(X, Z)
$$

Representation

0

Geometric Solution

0

Geometric Solution

Formulae

