

Introduction to Disease Modelling and some advanced techniques

Fabian Sailer (f.sailer@ucl.ac.uk)Department of Primary Care & Population Health7th April 2017

Acknowledgements

This presentation presents independent research funded by the National Institute for Health Research School for Primary Care Research (NIHR SPCR).

The views expressed are those of the author(s) and not necessarily those of the NIHR, the NHS or the Department of Health.

School for Primary Care Research The National Institute for Health Research School for Primary Care Research (NIHR SPCR) is a partnership between the Universities of Bristol, Cambridge, Keele, Manchester, Newcastle, Nottingham, Oxford, Southampton and University College London.

Funded by NHS National Institute for Health Research

What am I going to talk about?

Why?

- Inform public health interventions
 - Examine Cost-effectiveness
- Test "what if" scenarios

Doing a trial without actually conducting it

• Predicting the future

How to?

- Software
 - TreeAge
 - WinBUGS
 - Arena

. . .

- DIY
 - MS Excel (or similar)
 - R

Structure

- Decision node
- Chance node
- Outcome node

Decision Trees Example

Treatment B

Decision Trees Detailed Example

Kraut-Becher, J., et al. (2004). "Costeffectiveness of universal screening for chlamydia and gonorrhea in US jails." <u>Journal</u> <u>of Urban Health-Bulletin of the New York</u> <u>Academy of Medicine **81**(3): 453-471.</u>

Field of Application

- Comparison of distinctive (but similar) interventions
- "Either or" decisions
- Once-only interventions
- No time component

Advantages

- Fast calculations
- Easy to understand/ set-up

Disadvantages/ Limitations

- We need estimates for the whole tree
- Complicated diseases
- Recurrences
- Time

SIR Models

- Individual-based vs aggregated
- Compartmental model
 - Susceptible Infectious Recovered
 - More sophisticated versions possible

SIR Models Structure

- Health States
- Transitions

11 13 15 17 19 21 23 25 27 29 31 33 35

■ susceptible ■ infected ■ recovered

1

3

5

7

9

To compare interventions we would need to run the model twice with different input (e.g. different a for vaccination strategies)

SIR Models Detailed example

HIV progression is divided into three stages of acute, chronic, and advanced, while HSV-2 infection is depicted by the three stages of primary infection, latent infection, and reactivation. Dual infection is characterized by nine stages according to each of HIV and HSV-2 stages.

> Abu-Raddad LJ, Magaret AS, Celum C, Wald A, Longini IM Jr et al. (2008) Genital Herpes Has Played a More Important Role than Any Other Sexually Transmitted Infection in Driving HIV Prevalence in Africa. PLoS ONE 3(5): e2230. doi:10.1371/journal.pone.0002230

SIR Models Detailed example

HIV and HSV-2 dually infected populations $Z_{\alpha,\beta}(i)$

$$\begin{aligned} \frac{dZ_{1,1}(i)}{dt} &= g_{1,1} A_{BSV-2}^{Y_{1}(i)} + h_{1,1} A_{BVV}^{I_{1}(i)} - \mu Z_{1,1}(i) - \mu Z_{1,1}(i) - \sigma_{Z_{1,2}} Z_{1,1}(i) - \pi_{Z_{1,2}} Z_{1,1}(i) \\ \frac{dZ_{1,2}(i)}{dt} &= h_{1,2} A_{BVV}^{I_{1,0}(i)} - \mu Z_{1,1}(i) - \mu Z_{1,2}(i) - \sigma_{Z_{1,2}} Z_{1,2}(i) - \pi_{Z_{1,2}} Z_{1,2}(i) + \pi_{Z_{1,3}} Z_{1,3}(i) \\ \frac{dZ_{1,2}(i)}{dt} &= h_{1,2} A_{BVV}^{I_{1,0}(i)} I_{1}(i) + \pi_{Z_{1,2}} Z_{1,2}(i) - \mu Z_{1,2}(i) - \sigma_{Z_{1,2}} Z_{1,2}(i) - \pi_{Z_{1,3}} Z_{1,3}(i) \\ \frac{dZ_{1,3}(i)}{dt} &= h_{1,3} A_{BVV}^{I_{1,0}(i)} I_{1}(i) + \pi_{Z_{1,3}} Z_{1,2}(i) - \mu Z_{1,3}(i) - \sigma_{Z_{1,3}} Z_{1,3}(i) - \pi_{Z_{1,3}} Z_{1,3}(i) \\ \frac{dZ_{2,1}(i)}{dt} &= g_{1,2} A_{BVV-2}^{Y_{2,0}(i)} - \mu Z_{2,1}(i) - \mu Z_{2,1}(i) - \sigma_{Z_{2,3}} Z_{2,1}(i) - \pi_{Z_{2,3}} Z_{2,1}(i) \\ \frac{dZ_{2,2}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{1,3}(i) - \mu Z_{2,2}(i) - \sigma_{Z_{2,3}} Z_{2,2}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{2,1}(i) - \mu Z_{2,2}(i) - \sigma_{Z_{2,3}} Z_{2,2}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{2,1}(i) - \mu Z_{2,3}(i) - \sigma_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{2,1}(i) - \mu Z_{2,3}(i) - \sigma_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{2,3}(i) - \mu Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{2,3}(i) - \mu Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{1,3}(i) + \pi_{Z_{2,3}} Z_{2,1}(i) - \mu Z_{2,3}(i) - \sigma_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{1,3}} Z_{2,3}(i) + \pi_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{2,3}} Z_{2,3}(i) + \pi_{Z_{2,3}} Z_{2,1}(i) - \mu Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) - \pi_{Z_{2,3}} Z_{2,3}(i) \\ \frac{dZ_{2,3}(i)}{dt} &= g_{Z_{2,3}} Z_{2,2}(i) + \pi_{Z_{2,3}} Z_{2,1}(i) - \mu Z_{2,3}(i) - \pi_{$$

Fully susceptible population

$$\frac{dS(i)}{dt} = \mu N_0(i) - \mu S(i) - \Lambda_{HIV}^{S(i)} S(i) - \Lambda_{HSV-2}^{S(i)} S(i)$$

HIV infected but HSV-2 susceptible populations $Y_{\alpha}(i)$

Africa. PLoS ONE 3(5): e2230. doi:10.1371/journal.pone.0002230

SIR Models Field of Application

- Epidemic modelling
- Vaccination impact
- Overview vs. Detailled analyses

SIR Models Advantages

- Broad fields of application
- Time component
- Existing frameworks

SIR Models

Disadvantages/ Limitations

- Input
 - Backfitting might be neccessary
- Not very intuitive
 - Mathematical

Markov Models

- Compartmental model
- Markov property/ memorylessness

Markov Models Structure

- Health States
- Transitions
- Time sliced (= cycles)

Markov Models Example

		"to" state					
		healthy	ill	dead			
"from" state	healthy	0.8	0.15	0.05			
	ill	0.25	0.6	0.15			
	dead	0	0	1			

Initital distribution:

- Healthy: 100%
- III: 0%
- Dead:0%

UCL

Markov Models Detailed Example

parameter

subgroup weight absolute size

relative size

health state

50,00 55.00 60.00 initial age [years] Male Male Female gender duration of diabetes [years] 5.00 7.00 7.00 Yes No No smoker HbA1c [%] 8,50 9.00 8.50 blood pressure (systolic) [mmHg] 140,00 135.00 130,00 blood pressure (diastolic) [mmHg] 85.00 80.00 90.00 97,50 blood pressure (MAP) [mmHg] 96,40 96,70 BMI [kg/m²] 25,00 30,00 31.00 anti-hypertensive treatment Yes No No ACE inhibitors / ARB therapy No Yes No initial population 0.64 0.75 0.93 no nephropathy [%] 0,36 0,07 0,15 microalbuminuria [%] macroalbuminuria [%] 0.00 0.00 0,10 0,00 acute renal disease [%] 0,00 0,00 therapy effects 0,00 0.00 0.00 0.00 HbA1c [%] 0.00 0.00 0.00 blood pressure (systolic) [mmHg] 0.00 0.00 blood pressure (diastolic) [mmHg] 0.00 0.00 0.00 blood pressure (MAP) [mmHg] 0.00 0.00 0.00 0.00

10

0.25

10

0.25

10

0.25

Unifying the Applications and Foundations of Biomedical and Health InformaticsJ. Mantas et al. (Eds.)IOS Press, 2016© 2016 The authors and IOS Press. All rights reserved.doi:10.3233/978-1-61499-664-4-115 Academic paper (PDF): PROSIT Open Source Disease Models for Diabetes Mellitus.

UC

Markov Models

Fields of Application

- Non-infectious diseases
 - Diabetes
 - Cancer
- Time-dependencies

Markov Models Advantages

- Easy to set up
 Excel
- Existing frameworks
- Many models to learn from

Markov Models

Disadvantages/ Limitations

- Markov property
- Timesteps of fixed length
- Indivdual differences not regarded

Markov Models Monte Carlo

Deterministic vs stochastic

- Individuals instead of parts of cohort

	healthy	ill	dead	Healthy
healthy	0.8	0.15	0.05	
ill	0.25	0.6	0.15	
dead	0	0	1	Dead
nT –	ransitior	n proba	bilities	instead of
prop	portion o	of popu	lation r	naking transition

Disease modelling glossarry

- Fixed cohort vs open cohort
 - Fixed cohort: observe 10k individulas over a certain time
 - Open cohort: new individuals can enter the model
- Warm-up period
 - Necessary to get a valid initial state before starting to model

Discrete Event simulation

- Calendar-based vs event-based
 - Time not in slices of fixed length
- Used for pathway analyses
 Optimize ressource allocation
- Agent based modelling

Discrete Event Simulation Agents

- Described by attributes
 - Age
 - Male/ Female
- Attributes can be fix, or change over time
 Sex vs. Age
- Agents can interact

Discrete Event Simulation Events

- Affect single or multiple agents
 - Death
 - Disease Transmission
- Changes attribute(s) of agents

Discrete Event Simulation Example – Flu

- Person (25yo) is healthy
 - Only one event in event queue

Year 80 - Death

Discrete Event Simulation Example – Flu

- Person (25yo) is healthy
 Only one event in event queue
- Person gets infected
 - "Death" event gets updated
 - "Curation" event is added

Event Queue

Year 26 – Death Year 25 - Cure

Discrete Event Simulation Example – Flu

- Person (25yo) is healthy
 Only one event in event queue
- Person gets infected
 - "Death" event gets updated
 - "Curation" event is added
- Person cures
 - "Death" updated again

Event Queue

Year 80 - Death

Discrete Event Simulation My PhD thesis

- Problem:
 - Many possible updates
 - Time consuming and often unneccesary
- Solution:

What is missing?

- Clinical pathway analyses
- Sexual/ Infectious network analyses
- combined approaches

Evaluation

- Replicate the past
- Sensitivity analyses

Conclusion

"Everything should be made as simple as possible, but no simpler."

