Biomarker trajectories and health outcomes

Camille Lassale

Department of Epidemiology and Public Health

c.lassale@ucl.ac.uk

ELSA Wave 8 Report Launch
The Royal Society
18th October 2018
Overview

- Trajectories: methodology
- Individual trajectories of body size
- Group-based trajectories of an inflammation marker
- Association with ageing outcomes
Overview

- Trajectories: methodology
- Individual trajectories of body size
- Group-based trajectories of an inflammation marker
- Association with ageing outcomes
Growth curve modelling

- Individual trajectories over time: Latent growth curve models
 - One trajectory for each person: Intercept and slope(s)
 - An average trajectory to characterize the entire sample
 - Variance trajectory = An indication of the extent to which individual trajectories deviate from the average trajectory

- Group-based trajectories: Latent Class Growth Analysis
 - Multiple sub-groups in a population → for each group you get an intercept and slope(s)
 - Sub-groups are NOT known a priori, can emerge from the data → exploratory and descriptive analysis
 - Sub-groups are called classes
Individual: Latent growth curve model

- **Gender**
- **Age**
- **SES**

Time invariant covariates:
- **BMI w2**
- tv1

Time varying principal variable:
- **BMI w4**
- tv2

Time varying covariates:
- **BMI w6**
- tv3
Group-based: Latent class growth analysis

- Class
- i
- s

Time varying principal variable
Time varying covariates
Overview

- Trajectories: methodology
- **Individual trajectories of body size**
- Group-based trajectories of an inflammation marker
- Association with ageing outcomes
Body size and health consequences

- Global obesity epidemic → diabetes, CVD, some cancers, other chronic diseases
- Prevalence in the UK in 2015: 58% women and 68% men overweight or obese
- Obesity particularly prevalent 45-74y then decline
- Socioeconomic gradient
Body size and health consequences

- Both obesity and underweight are associated with higher mortality risk

Body size in relation to SES

- Higher obesity rates in lower SES groups
 - Compelling evidence in adults throughout midlife
 - Less studies and more conflicting evidence in older age
 - Decline in body size at older age: frailty / illness

Feng et al, Plos One 2015; Dugravot et al, AJCN 2010
Objective and Methods

Objective: Describe and compare BMI and waist circumference trajectories in ELSA and assess the effect of socioeconomic status

Population:
- Baseline year: 2004 (wave 2)
- Three time points: wave 2, wave 4, wave 6 (clinical examination)
 - N=3259 men, mean age at baseline 65.6 ± 9.2 y
 - N=3966 women, mean age 66.1 ± 9.6 y
- BMI and Waist Circumference measured by nurse
- SES measure: tertiles of wealth in 2004
- Covariates: smoking, physical activity, limiting longstanding illness, marital status
- 8-year period
- Linear and quadratic term of age on I and S to describe age-specific trajectories = aging vectors
Results (I)
Vector graph showing 8-year aging vectors of anthropometric markers, ELSA 2004-5 to 2012-13

BMI

Waist Circumference
Results (I)

Vector graph showing 8-year aging vectors of anthropometric markers, ELSA 2004-5 to 2012-13

- Less variations in men than women
- Increase in BMI and WC (gain) from 50 to ~70y
- Decrease after 70 y stronger for BMI than WC
- Cohort effect: younger cohort bigger
 E.g. a man who was 62 in 2004 has a lower BMI by 1kg/m² compared to a man who was 62 in 2012
Results (II)

Vector graph showing 8-year aging vectors of anthropometric markers according to wealth

- **BMI**
 - **Men**
 - Poorest wealth
 - Richest wealth
 - **Women**
 - Poorest wealth
 - Richest wealth

- **Waist Circumference**
 - **Men**
 - Poorest wealth
 - Richest wealth
 - **Women**
 - Poorest wealth
 - Richest wealth
Results (II)

Vector graph showing 8-year aging vectors of anthropometric markers according to wealth

- Strong effect of wealth on baseline BMI and WC
 - For men and women
 - For <70y and >70y
 - Poorer = greater body size

- No sig effect of wealth on slope
 - Men: parallel trajectories by SES group → the gap doesn’t close
 - Women: in poorest wealth group decline faster

→ Cumulative disadvantage
Conclusions (I)

- Identification of body size trajectories in ELSA:
 - Participants aged 50 to 70 tend to gain weight
 - Participants aged >70 tend to lose weight, likely to be lean mass
 - Cohort effect: younger cohort bigger

- Effect of wealth
 - At any given age, lower wealth associated with higher BMI and higher waist circumference
 - No significant effect of wealth on the change of body size: the gap doesn’t close or the decline in BMI tend to be stronger in older women

- Our results support the cumulative disadvantage theory: social disadvantage over the life course is associated with unfavourable body size

- Paper under review Zaninotto P & Lassale C “Socioeconomic trajectories of body mass index and waist circumference: results from the English Longitudinal Study of Ageing”
Overview

- Trajectories: methodology
- Individual trajectories of body size
- Group-based trajectories of inflammation markers
- Association with ageing outcomes
Inflammation and aging outcomes

- Compelling evidence of associations between elevated inflammation biomarkers (C-reactive protein, Inteleukin 6 and Fibrinogen mainly) with a range of age-related outcomes:
 - Cardiovascular, Diabetes, Cancer
 - Cognitive function and dementia
 - Sarcopenia and osteoporosis
 - Frailty
- Most studies used only one measurement of biomarker
- Few studies have used two measurements to define “chronic inflammation”
 - Akbaraly et al, CMAJ 2013: Whitehall II, 5 years apart
- Promising but partial evidence
- Little is known about long-term changes in inflammation as predictor
- No study on trajectories on more time points
Methods

Objective: Identify group-based trajectories of inflammation and assess the associations with ageing outcomes

- N=2,439
- Exposure: hsCRP (mgL) measured at wave 0, 2 and 4 in ELSA
- Exclusion of existing cardiometabolic disease: CHD, stroke, diabetes
- Adjustment for: age, sex, education, smoking, BMI and NSAID use at baseline
- Distal outcomes measured at wave 6:
 - Physical functioning
 - Cardiometabolic health
 - Lung function
 - Cognitive function
 - Depression CES-D
Methods

Core participants at baseline (wave 0, 1998) N=11,107

- Did not attend wave 6 visit n=5,564
 - Of whom died between wave 1 and 6 n=2,510

Core participants who attended wave 6 visit N=5,543

- Exclusion of chronic disease at wave 0 (n=452)
 - Coronary Heart Disease n=85
 - Stroke n=41
 - Diabetes n=69
 - Cancer n=279

- Missing CRP at 2 or 3 occasions (waves 0, 2, 4) n=2,665

Healthy core participants with 2 or 3 CRP measurements (waves 0; 2; 4) N=2,439

- Missing baseline smoking status n=1
- Missing education n=1

Analytical sample N=2,437
Results: trajectories of CRP

CRP (mg/L)

Stable-high (4.6%)
High-to-medium (9.9%)
Medium-to-high (14.3%)
Stable-low (71.3%)

Time (years)
Results: Association with physical functioning

<table>
<thead>
<tr>
<th>CRP trajectory</th>
<th>N</th>
<th>N cases</th>
<th>OR (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disability: ADL b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1762</td>
<td>210</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>336</td>
<td>93</td>
<td>2.09 (1.51, 2.88)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>231</td>
<td>50</td>
<td>0.92 (0.60, 1.42)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>107</td>
<td>24</td>
<td>0.90 (0.50, 1.62)</td>
</tr>
</tbody>
</table>

Disability: IADL c			
Stable-Low	1762	191	1.00 (ref)
Medium-to-High	336	67	1.62 (1.15, 2.30)
High-to-Medium	231	47	1.20 (0.79, 1.82)
Stable-High	107	15	0.90 (0.48, 1.69)

Balance impairment d			
Stable-Low	1762	361	1.00 (ref)
Medium-to-High	337	112	1.59 (1.20, 2.11)
High-to-Medium	231	79	1.31 (0.94, 1.83)
Stable-High	107	35	1.46 (0.91, 2.33)
Results: Association with physical functioning

Lower body strength impairment: Chair rise

<table>
<thead>
<tr>
<th>Impairment Level</th>
<th>Cases</th>
<th>Progressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable-Low</td>
<td>1575</td>
<td>21</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>272</td>
<td>8</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>191</td>
<td>9</td>
</tr>
<tr>
<td>Stable-High</td>
<td>88</td>
<td>6</td>
</tr>
</tbody>
</table>

- **1.00 (ref)**
- **1.74 (0.73, 4.10)**
- **2.39 (1.02, 5.58)**
- **3.22 (1.14, 9.09)**

Musculoskeletal impairment: Walking speed

<table>
<thead>
<tr>
<th>Impairment Level</th>
<th>Cases</th>
<th>Progressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable-Low</td>
<td>1637</td>
<td>202</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>290</td>
<td>67</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>199</td>
<td>38</td>
</tr>
<tr>
<td>Stable-High</td>
<td>94</td>
<td>25</td>
</tr>
</tbody>
</table>

- **1.00 (ref)**
- **1.61 (1.15, 2.24)**
- **1.05 (0.69, 1.59)**
- **1.44 (0.84, 2.45)**

Musculoskeletal impairment: Grip strength

<table>
<thead>
<tr>
<th>Impairment Level</th>
<th>Cases</th>
<th>Progressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable-Low</td>
<td>1725</td>
<td>274</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>329</td>
<td>60</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>224</td>
<td>40</td>
</tr>
<tr>
<td>Stable-High</td>
<td>104</td>
<td>26</td>
</tr>
</tbody>
</table>

- **1.00 (ref)**
- **1.12 (0.81, 1.55)**
- **1.05 (0.71, 1.55)**
- **1.57 (0.95, 2.57)**

Arthritis

<table>
<thead>
<tr>
<th>Impairment Level</th>
<th>Cases</th>
<th>Progressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable-Low</td>
<td>1762</td>
<td>697</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>337</td>
<td>175</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>231</td>
<td>109</td>
</tr>
<tr>
<td>Stable-High</td>
<td>107</td>
<td>58</td>
</tr>
</tbody>
</table>

- **1.00 (ref)**
- **1.55 (1.16, 2.06)**
- **0.72 (0.49, 1.04)**
- **1.02 (0.60, 1.72)**
Results: Association with CVD risk factors

<table>
<thead>
<tr>
<th>CRP trajectory</th>
<th>N total</th>
<th>N cases</th>
<th>OR (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1691</td>
<td>808</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>321</td>
<td>205</td>
<td>1.57 (1.21, 2.04)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>223</td>
<td>127</td>
<td>1.06 (0.78, 1.44)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>104</td>
<td>58</td>
<td>1.02 (0.67, 1.57)</td>
</tr>
<tr>
<td>Low HDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1493</td>
<td>143</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>282</td>
<td>45</td>
<td>1.41 (0.97, 2.06)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>183</td>
<td>27</td>
<td>1.24 (0.77, 1.99)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>92</td>
<td>12</td>
<td>0.88 (0.45, 1.72)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1761</td>
<td>145</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>337</td>
<td>51</td>
<td>1.29 (0.89, 1.86)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>231</td>
<td>31</td>
<td>1.03 (0.66, 1.63)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>107</td>
<td>21</td>
<td>1.42 (0.81, 2.47)</td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1708</td>
<td>349</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>318</td>
<td>148</td>
<td>1.95 (1.36, 2.80)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>220</td>
<td>90</td>
<td>0.97 (0.63, 1.49)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>102</td>
<td>60</td>
<td>1.82 (0.95, 3.49)</td>
</tr>
<tr>
<td>Low FEV1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1512</td>
<td>283</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>282</td>
<td>86</td>
<td>1.84 (1.36, 2.50)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>191</td>
<td>58</td>
<td>1.75 (1.22, 2.52)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>92</td>
<td>29</td>
<td>2.16 (1.32, 3.55)</td>
</tr>
</tbody>
</table>
Results: Association with mental health

<table>
<thead>
<tr>
<th>CRP trajectory</th>
<th>N total</th>
<th>N cases</th>
<th>OR (95% CI) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1755</td>
<td>248</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>336</td>
<td>78</td>
<td>1.55 (1.13, 2.12)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>228</td>
<td>50</td>
<td>1.16 (0.79, 1.70)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>107</td>
<td>19</td>
<td>0.79 (0.44, 1.40)</td>
</tr>
<tr>
<td>Memory impairment c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable-Low</td>
<td>1762</td>
<td>283</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Medium-to-High</td>
<td>337</td>
<td>70</td>
<td>1.05 (0.76, 1.44)</td>
</tr>
<tr>
<td>High-to-Medium</td>
<td>231</td>
<td>49</td>
<td>1.12 (0.78, 1.63)</td>
</tr>
<tr>
<td>Stable-High</td>
<td>107</td>
<td>22</td>
<td>1.00 (0.58, 1.70)</td>
</tr>
</tbody>
</table>
Conclusions (II)

- Identified 4 long-term trajectories of CRP over a 10 year period
- Increasing CRP from medium to high levels associated with most adverse ageing outcomes:
 - poor cardiometabolic health
 - lower physical functioning and increased arthritis
 - Lower respiratory functioning
 - increased depressive symptoms
- Maintaining high levels of CRP associated with some outcomes
- Independent of health behaviours, SES, BMI, anti-inflammatory drugs
- Monitor inflammation levels over time can help prevent adverse ageing outcomes

General conclusions

- ELSA rich study with repeated measurements
- Latent growth curve modelling useful to identify both individual and group-based trajectories
- Useful to describe evolution of health markers over time and relate it to contextual factors
- Interesting to group individuals that follow similar pattern of trajectories over time and relate this to disease risk or any aspect of ageing
Acknowledgements

Dr Paola Zaninotto
Prof Andrew Steptoe
Dr Dorina Cadar
Dr David Batty
Prof Mika Kivimaki
Dr Tasnime Akbaraly