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1. Introduction

A goodness of fit χ
2
 test evaluates the degree to which an observed discrete distribution over one

dimension differs from another. A typical application of this test is to consider whether a

specialisation of a set, i.e. a subset, differs in its distribution from a starting point (Wallis

forthcoming). Like the chi-square test for homogeneity (2 × 2 or generalised row r × column c test),

the null hypothesis is that the observed distribution matches the expected distribution. The expected

distribution is proportional to a given prior distribution we will term D, and the observed O

distribution is typically a subset of D.

A measure of association, or correlation, between two distributions is a score that measures the

degree of difference between the two distributions. Significance tests might compare this size of

effect with a confidence interval to determine that the result was unlikely to occur by chance.

Common measures of the size of effect for two-celled goodness of fit χ
2
 tests include simple

difference (swing) and proportional difference (‘percentage swing’). Simple swing can be defined

as the difference in proportions:

d = 
0

0

1

1

D

O

D

O
− . (1)

For 2 × 1 tests, simple swings can be compared to test for significant difference between pairs of

test results. Provided that O is a subset of D then these are real fractions and d is constrained d ∈

[-1, 1]. However, for r × 1 tests, where r > 2, we will necessarily obtain an aggregate estimate of the

size of effect. Secondly, simple swing cannot be used meaningfully where O is not a subset of D. In

this paper we will consider a number of different methods to address this problem.

Correlation scores are a sample statistic. The fact that one is numerically larger than the other does

not mean that the result is significantly greater. To determine this we need to either

1. estimate confidence intervals around each measure and employ a z test for two proportions from

independent populations to compare these intervals, or

2. perform an r × 1 separability test for two independent populations (Wallis 2011) to compare the

distributions of differences of differences.

In cases where both tests have one degree of freedom, these procedures obtain the same result. With

r > 2 however, there will be more than one way to obtain the same score. The distributions can have

a significantly different pattern even when scores are identical.

1.1 A simple example: correlating the present perfect

Bowie, Wallis and Aarts (2013) discuss the present perfect construction. The present perfect

expresses a particular relationship between present and past events and it is not a priori determined

as to whether we would expect its use more commonly in texts which are more present- or past-

referring. We may estimate the degree to which a text refers to the present by counting the

frequency of present tensed verb phrases in it (and normalising as appropriate), ditto for the past.
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present

LLC ICE-GB Total

present perfect

goodness of fit

present non-perfect 33,131 32,114 65,245 d
%

 = -4.45 ± 5.13%

 present perfect 2,696 2,488 5,184 φ' = 0.0227

TOTAL 35,827 34,602 70,429 χ
2
 = 2.68 ns

past

other TPM VPs 18,201 14,293 32,494 d
%

 = +14.92 ± 5.47%

present perfect 2,696 2,488 5,184 φ' = 0.0694

TOTAL 20,897 16,781 37,678 χ
2
 = 25.06 s

Table 1. Comparing present perfect cases against (upper) tensed, present-marked VPs, (lower)

tensed, past-marked VPs (after Bowie et al. 2013).

Bowie et al. limit their discussion to two 400,000 word text categories in the DCPSE corpus,

divided by time, namely LLC (1960s) and ICE-GB (1990s) texts. Table 1 shows their analysis,

employing percentage swing d
%

 and Wallis φ' (section 3). They found that the present perfect more

closely associated with present tensed VPs. Note that in employing measures for this purpose, a

higher value of χ
2
, φ or d

%
 implies a weaker correlation between the present perfect and the

particular baseline being tested against it.

However with only two categories of text, this can

only be a coarse-grained assessment. To test the

hypothesis that the present perfect is more likely in

texts with a greater preponderance of present-

referring VPs than past-referring ones, we need to

find a way to extend our evaluation to smaller units

than 0.4M-word subcorpora, ideally to the level of

individual texts.

Before we do this it seems sensible to consider a

middle position. DCPSE is subdivided

sociolinguistically into different text genres of

different sizes. Figure 1 plots the observed

distribution O and the distributions for the present

referring and past referring VPs scaled by O, across

these 10 text categories.

‘Eyeballing’ this data seems to suggest a close

congruence between the distribution of the present

perfect and the present in some categories (e.g.

broadcast discussions, spontaneous commentary) and

a closer relationship with the past in others (prepared

speech). It appears intuitively that there is a closer

relationship between present perfect and the present,

but how might this be measured?

Any measure of correlation between pairs of

distributions needs to scale appropriately to permit

populous categories, such as informal face-to-face

conversation, and less populous ones, such as legal

cross-examination, to add evidence to the metric

appropriately.
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Figure 1. The distribution of the present

perfect O, scaled distributions E for present

and past, across text categories of DCPSE.
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Figure 2. A test expected distribution E and

an example observed distribution O.
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1.2 Distributions for evaluation purposes

The present perfect example contains data in categories of radically different size, which a robust

measure must accommodate. Where categories are guaranteed to be of the same or similar size we

would expect the performance of measures to converge, as this variation is simply one less factor to

take into account. We therefore employ a highly skewed idealised distribution for comparative

purposes.

Consider the following discrete distribution, expressed over a three-valued variable A = {a0, a1, a2}

(Table 2a). We employ an expected distribution that is highly skewed, indeed exponential: D =

{100, 10, 1}. We can also express this as a prior probability distribution p.

χ
2
 sums the square of differences between observed and expected distributions, scaled by the

variance, taken to be the same as the expected distribution E. The effect of the skewed expected

distribution can be clearly seen in Table 2b.

A D p O E χ
2

a0 100 0.90 1 2.70 1.07

a1 10 0.09 1 0.27 1.97

a2 1 0.01 1 0.03 35.03

TOTAL 111 1 N = 3 3.00 38.07

Tables 2a and 2b. An example skewed three-valued prior distribution and sample χ
2
 test.

In this paper we consider a wide range of methods utilising this simple test distribution.

2. Reduced χχχχ2

A common approach, employed in model-fitting, employs the so-called ‘reduced chi-square’,

χ
2
red = χ

2
/v, (2)

where v represents the number of degrees of freedom in the table. The idea in model-fitting is to

compute a chi-square against an expected distribution predicted by a function f(a) and attempt to

match that function to the observation.

If we substitute our expected distribution, f(a) = E(a), the number of degrees of freedom v = k – 1 =

2, where k is the number of categories. (In fitting, one would also subtract the number of parameters

of the function.) For our data this obtains a reduced chi-square of 19.035. The interpretation of this

result is simply that, as χ
2
red > 1, the data ‘does not match’ the function, which a glance at Figure 2

reveals! But this conclusion does not allow us to compare the extent to which distributions match,

merely to reject E as a good fit to our observation O.

Second, χ
2
 increases in proportion to sample size N. We cannot easily employ this method to

compare results with different sample sizes. This is less important when fitting different functions

to a single observed distribution, because N is constant throughout and fitting against a model

employs an information-theoretic argument (essentially: as N increases the model is permitted to

become more complex). However if we wish to compare sizes of effect over samples, then we must

scale measures proportionately.

Third, as Andrae et al (2010) note, reduced chi-square applies to linear models, and its behaviour is

unreliable with nonlinear models, such as arbitrary categorical data.
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3. Cramér’s φφφφ

For r × c tests of homogeneity (independence) a

standard method employs Cramér’s φ:

φ ≡ 
)1(

χ
2

−× kN
(3)

where N is the total number of observed cases, k

is the length of the diagonal, i.e. min(r, c) for a

matrix of r rows and c columns. We guarantee

that φ is constrained to the probability space [0,

1], where 0 represents an exact match and 1 a

complete perturbation (Wallis 2012).

The corollary of (3) is that the maximum value of

an r × c χ
2
 computation can be identified as

limit(χ
2
) = N × (k – 1). (4)

This formula may even be generalised to three dimensional chi-square tests, provided the limit is

multiplied by 3. Indeed it can be shown that φ measures the linear perturbation from a flat matrix

towards a diagonal. This is obtained irrespective of whether the expected distribution is skewed, and

the maximum is achievable irrespective of prior distribution.

This formula cannot be applied as-is to a goodness of fit test, however, without hitting a major

obstacle due to the distinction between the two tests. Whereas the expected distribution in a test of

homogeneity is determined exclusively from observed totals, employing the product of the row and

column probabilities, the expected distribution in a goodness of fit test is given, and is independent

from the observed distribution. As a result φ may exceed 1.

We can demonstrate the problem numerically. Suppose we calculate χ
2
 in the normal manner (cf.

Table 2b). The maximum value of the goodness of fit χ
2
 is obtained when the observed distribution

falls wholly at the least expected value (here a2), i.e. O = {0, 0, N}. Substituting O = {0, 0, 1}

obtains a χ
2
 of 110.00 and φ of 7.42. The fact that χ

2
 can exceed N × (k – 1) due to the

independence between O and E means that we cannot limit φ to [0, 1].

The maximum value of a goodness of fit χ
2
 can be shown to be

limit(χ
2
) = N × (1/min(p(a)) – 1), (5)

where min(p(a)) represents the probability of the least probable element a. In our case min(p(a)) =

0.0090 (to four decimal places). If we fix on this value as a maximum, with a skewed prior

distribution, no amount of deviation from the expected distribution on the other values of A can

obtain a φ of 1. This method is also sensitive to the minimum prior min(p(a)). It is therefore

difficult to recommend this method for comparing results with different prior distributions E.

To illustrate the performance of each function we will explore the effect of varying the middle

value, a1, from 0 to 10 with different lines representing different values of the most common value

a0. The least common value a2 has zero items. Figure 3 plots φ where k = 1/min(p(a)), i.e. 1/p(a2).

In these circumstances φ cannot reach 1, and we can see that the line a0 = 1 is tending to reach an

asymptote as a1 increases. In section 6 we will explore a different approach to constraining φ.
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Figure 3. Cramér’s φ as a1 varies from 0 to 10,

k = 1/min(p(a)). The functions described in this

paper reach a minimum at a1 = a0/10,

corresponding to the expected ratio.
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4. Normalised φφφφ'

Bowie et al. used a normalised φ measure, φ', that reaches 1 where the observed distribution settles

on any single value, irrespective of its prior frequency in E. Note that equation (5) above converges

to (4) if the prior probability is even: min(p(a)) = p(a) = 1/k, i.e. 1/min(p(a)) = k.

The method first flattens the expected distribution (p(a) = 1/k), and recalibrates the observed

distribution in linear proportion. A new χ
2
 computation (and therefore φ') sums these rescaled

differences. We need two new normalised distributions as E' and O'. We require E'i ≡ N/k and

rescale the observed distribution O' in two steps.

Note that in applying the standardisation to E each term Ei has been adjusted by multiplying by

E'/E, so first we repeat the scaling transformation for the observed distribution, thus:

O''i ≡ Oi × E'i/Ei, and then (step 1)

O'i ≡ O''i × N/ΣO''. (step 2)

We compute φ' from a goodness of fit χ
2
(O', E') using equation (3). If we perform the same

computation as before, we now find that with a2 = 0, whereas constrained φ could not exceed 0.5,

this new φ' cannot fall below it! This seems rather counter-intuitive, but it is a result of the

reweighting of the difference at a2 in this data. Figure 4 also shows that this function reaches 1

when a1 is zero. (Since a2 = 0 already, this means that all observations are found at a0.)

A O E E' O" O' χ
2

a0 1 2.70 1 0.37 0.03 0.95

a1 1 0.27 1 3.7 0.27 0.53

a2 1 0.03 1 37 2.70 2.90

TOTAL N = 3 3.00 3.00 41.07 3.00 4.38

Table 3. Recalibrating observed and expected distributions to obtain a normalised φ'.

5. Probabilistically-weighted φφφφp

Suppose we weight χ
2
 computations according to the prior p(ai), i.e.

χ
2
p = ∑

−

=

×
−1

0

2

)(
)(k

i

i

i

ii ap
E

EO
 =∑ ×

−

N

i

i

ii E

E

EO
2)(

 = 
N

ii∑ − 2)( EO
. (6)

Probabilistically-weighted χ
2
p cannot exceed a limit of 2N, and we may define φp accordingly.

1

φp = 
N

p

2

2χ
. (7)

The performance of this function over our test data is illustrated by Figure 5. Weighted φp performs

similarly to Cramér’s φ, in that it reaches a maximum value on the least frequent value, and indeed

Figure 5 obtains a similar pattern to Figure 2. However this function is not sensitive to the particular

expected distribution E, as it does not rely on the minimum function. At saturation φp is constrained

probabilistically, and will approach but not reach 1, i.e. φp ∈ [0, 1).

                                                
1
 Whereas we use the notation φp in this paper to identify relationships between φ measures, clearly this formula is

simply the standardised root mean square (r.m.s.) of error terms.
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This formula has one further advantage. So far we have assumed that O is a true subset of D, so that

O cannot take a value in any cell where Ei = 0. Since equation (8) does not divide by Ei, this

requirement no longer applies and φp can be applied to any pair of sets with a limit of 2N.

Consider the pair of distributions O1 and O2 in Table 4. To compute φp we simply rescale O2 to

match O1 (obtaining E1) or vice-versa. We can see that the result is robust, does not require non-

zero cell values, and is not dependent on choosing one distribution as a baseline. We can conclude

that φp is a general measure of fit between any two baselines.

O1 O2 E1 (O1-E1)
2

E2 (O2-E2)
2

a0 1 0 0 1 9.8333 96.6944

a1 0 1 0.1017 0.0103 0 1

a2 0 1 0.1017 0.0103 0 1

a3 0 0 0 0 0 0

a4 1 1,000 101.6949 10,139.4660 9.8333 980,430.0278

a5 100 1 0.1017 9,979.6714 983.3333 964,978.7778

TOTAL 102 1,003 102 20,120.1580 1003 1,945,507.5000

χ
2
p 197.2565 χ

2
p 1,939.6884

φp 0.9833 φp 0.9833

Table 4. Measuring the association of a pair of overlapping sets with paired φp.

6. Variance-weighted φφφφ measures

The most general formula for chi-square is the sum of error squares, SSerr (see section 8):

χ
2
v = ∑

−

= σ

−1

0
2

2)(k

i i

ii EO
, (8)

where σ
2
i the expected Gaussian variance based on the prior for ai, i.e.

σ
2
i = p(ai)(1 – p(ai))N. (9)

This formula is often overlooked. Pearson’s χ
2
 formula (whose form is very similar but the divisor

is Ei in our notation) is most commonly cited and has been used thus far in computations of φ. The

justification for Pearson’s formula is that Binomial probabilities p(ai)<0.5 are Poisson-distributed
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Figure 4. Plotting φ' over the same distributions

(a0 = 1, 10, 25 etc.), a1 from 0 to 10.

Figure 5. Plotting weighted φp over the same test

distributions.
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where variance σ
2
i ≈ Ei. However in skewed distributions some prior probabilities can be greater

than 0.5. Employing the Gaussian equation (9) permits an alternative to standard χ
2
.

We have already seen that division by Ei is the largest source of instability in determining φ values,

and probabilistic φp replaced Ei by N. This removes this instability, but then each squared difference

is equally weighted. The limit of χ
2
v is the product of the sum of the inverse variance Σσ -2 and N

2
.

φv = 
21

2

2 N
i

v

∑ σ

χ
= 

N

i
v ∑ σ

χ 2

12

. (10)

This formula has a similar ‘shape’ to other φ computations. Like φp it performs similarly to

Cramér’s φ limited by the minimum value, but it is not dependent on this limit and is therefore

relatively robust.

We can also substitute σ
2
i ≈ Ei back into formula (8) and employ regular χ

2
 to obtain a new version

of Cramér’s φ, which we will term φE (Figure 7). The resulting formula is not dependent on a single

value of φ or scaled by a theoretical minimum 1/N.

7. Bayesian mean dependent probability

A different approach is suggested by Bayes’ Theorem. Here we compute the difference between the

observed probability, p(ai | b), and the expected prior, p(ai). The absolute difference may be scaled

as a proportion of the available range to obtain a relative difference, ranging from 0 to 1:

dpR(ai, b) ≡ 










−

<
−

−

otherwise
ap

bapap

bapap
ap

apbap

i

ii

ii

i

ii

)(

)|()(

)|()( if
)(1

)()|(

(11)

To combine these proportions we may employ the probabilistically weighted sum, i.e.

dpR = ∑
−

=

×
1

0

)(),(
k

i

iiR apbadp . (12)

For any given value i, the value of variation at that point towards the total is proportional to the
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Figure 6. Variance-weighted φv  for a0 = 1, 10,

25 etc., a1 from 0 to 10.

Figure 7. Variance-weighted φE.
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prior probability of selecting it. Like φ' this function will also tend to 1 if any single value saturates.

Figure 8 demonstrates that dpR covers most of the entire range [0, 1] over this computation. The

‘floor’ is small because the prior probability of selecting a2 is very low. If, instead of employing the

probabilistically weighted sum (13) we take the mean (ΣdpR(a, b)/k), this ‘floor’ rises to 1/3.

Note that whereas chi-square approaches consist of a root mean square summation, this approach

simply sums normalised probabilities. A worked example is given in Table 5.

A O E p(a | b) p(a) dpR dpR×p(a)

a0 1 2.70 0.33 0.90 0.63 0.57

a1 1 0.27 0.33 0.09 0.27 0.02

a2 1 0.03 0.33 0.01 0.33 0.00

TOTAL N = 3 3.00 1.00 1.00 0.59

Table 5. Obtaining a weighted Bayes’ dependent probability association measure.

8. Generalising R2

We may also consider the coefficient of determination measure R
2
, which is conventionally applied

to continuous (Pearson r
2
) or ranked (Spearman R

2
) data. The obvious questions are whether it can

be applied to discrete unranked data and if so, whether it improves on previous measures described.

Note that unlike the contingency correlation φ, R
2 

is typically defined such that a value of 1 is

interpreted as an exact correlation and 0 represents no correlation:

R
2
 = 

tot

err

SS

SS
−1 , (13)

where SSerr and SStot represent the sum of the squares of the error and sample variance respectively.

For purposes of comparison we will simply reverse this subtraction, and take the square root of the

ratio obtaining a new ratio which we will call R*:

R* = 
tot

err

SS

SS
. (14)

R
2
 is conventionally applied to N observations, but in the case of a contingency table, i.e. where

multiple observations are found in each cell, we need to factor in cell variance in these summations,
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Figure 8. Plotting dependent probability dpR. Figure 9. Plotting R* over test distributions.
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obtaining

SStot = ∑
−

= σ

−1

0
2

2)(k

i i

i OO
, and SSerr = ∑

−

= σ

−1

0
2

2)(k

i i

ii EO
. (15)

where Ō  represents the mean observation (either by simple division or by probabilistic summation)

and σ
2
i the expected Gaussian variance for ai (equation 9).

Over our data this formula behaves similarly to φp as Figure 9 reveals. However it is not constrained

probabilistically. Indeed SStot can tend to zero, obtaining an infinite R*. R* compares the deviation

of the error (difference of observed to expected) to the overall deviation of the observed results

from a constant mean Ō . This is not a particularly useful comparison in categorical data! The fact

that φp and R* behave similarly over the same range and φp is better behaved, means that we can

discount R* as an alternative to φ-based measures. Nagelkerke’s modification of R
2
 constrains the

measure to a limit similarly to the way we constrained φ to φE.

9. Numerical evaluation of extrema

We can draw out differences between measures by a tabular comparison of extreme sample points

(Table 6, Figure 10). Recall that the expected distribution is highly skewed (D = {100, 10, 1}). The

first line in Table 6 demonstrates that all functions obtain 0 when the expected and observed

distributions match. Both reduced chi-square and R* can obtain values in excess of 1.

The next three rows list measures when a single value is found in one cell and all others are zero.

All functions with the exception of χ
2
red are scaled by N, and the value of the middle of the three,

O = {0, 1, 0}, matches the fifth row, {0, 10, 0}, with this exception. We can also see that two

measures, normalised φ' and dpR, score 1 for all three maximally-skewed cases. Other measures

order their scores so as to treat maximum saturation at the term with the lowest expected

probability. Note that no other φ measure scores this value as 1. Saturation at the middle value a1

obtains a ~90% score for φp but φv and φE have a lower score, much closer to Cramér’s φ (against

1/min(p(a))). φp is less sensitive to variation at these lower-valued points.

The second set of three rows show what happens when data is distributed evenly between two out

of three cells. Here we do not expect values to be equal. With the exception of φ', the highest-

scoring patterns are in the second row {0, 1, 1}, which seems intuitively sound. Both

probabilistically weighted estimates, dpR and φp, score this approximately twice as much as the

other two patterns, which include a 1 in the most probable cell a0. φv rates it higher by ~7

percentage points, whereas Cramér’s φ and φE rate it higher by about 2.

If we now see what happens if the number of cases in the least probable outcome, a2, increases by 1,

O measures of fit

a0 a1 a2 Σ χ
2
red φ φE φv φp φ' dpR R*

100 10 1 111 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0 0 1 0.055 0.0316 0.0299 0.0401 0.0949 1.0000 1.0000 0.0116

0 1 0 1 5.05 0.3030 0.2863 0.3766 0.9054 1.0000 1.0000 1.0046

0 0 1 1 55 1.0000 0.9449 0.9382 0.9492 1.0000 1.0000 2.2754

0 10 0 10 50.5 0.3030 0.2863 0.3766 0.9054 1.0000 1.0000 1.0046

1 1 0 2 2.0525 0.1366 0.1291 0.1688 0.4055 0.8672 0.4505 0.2947

0 1 1 2 29.525 0.5181 0.4895 0.5307 0.7813 0.8672 0.9459 8.1246

1 0 1 2 27.0275 0.4957 0.4684 0.4620 0.4527 0.9852 0.4955 6.0489

0 1 2 3 74.35 0.6713 0.6343 0.6559 0.8072 0.9295 0.9310 4.2555

1 0 2 3 72.685 0.6637 0.6271 0.6206 0.6176 0.9925 0.6636 3.7789

Table 6. Assessing measures of fit: sample points against D = {100, 10, 1}.
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we find that the dependent probability dpR actually falls numerically in one of the patterns {0, 1, 2},

whereas φ-based measures increase. This leads us to discount dpR. For a meta-comparison we order

measures according to their similarity of performance. We find that among the φ-based measures

we find that φE and φv is most similar to φ, and φp is closer to φ' (and relative dependence dpR).

Figure 10 shows this pattern in a striking manner.

We are left with four formulae based on χ
2
 that behave in a reliable manner. Due to the scaling

problem, Cramér’s φ is not robustly applicable to different expected distributions, and can be

replaced with φE. It is not clear what the Gaussian variance φv gains over φE, so φv can be

eliminated. The most interesting cases are φp and φE, which are both robust fitness measures. φp is

the most general and can be applied to partially-overlapping subsets, however we may prefer φE for

true subsets because it appears to behave most like Cramér’s φ.

For overlapping sets we can employ φp. Note that φp is the probabilistic sum of χ
2
 partials, or, to put

it another way, it is proportional to the absolute sum of squares. Absolute variation at more probable

terms (here, a0) contributes a greater amount to the overall sum than would otherwise be the case.

This fact is important to bear in mind when employing φp, and it is conceivable that a comparison

could lead to a different ranked order than φE.

10. Correlating the present perfect

In the introduction we summarised the type of problem we wished to apply these measures to. It

seems apposite to return to this example in conclusion. Selected correlation estimates are computed

below. We have also included unconstrained Cramér’s φ for comparison purposes. We model for

the total distribution baseline to be inclusive of the observed (see Table 1). In this case we also

examine ratios of measures in addition to the measures themselves. Variation of ratio tells us

whether we can reliably employ a given measure to distinguish two baselines (which is of course

the entire rationale for this exercise).

We will first evaluate DCPSE sampling categories to demonstrate the approach.

10.1 Time: LLC vs. ICE-GB

We apply our new measures to the data in Table 1 to obtain Table 7. The pair of 2 × 1 tables are

approximately evenly distributed, and, as we suggested at the outset, with only two categories it is

difficult to distinguish measures by performance. Results fall into two groups. Variance-weighted φv

and φE perform similarly to probabilistically-weighted φp. φ and φ' are approximately double these

scores. The past:present ratio between correlation measures is near constant, meaning that,

irrespective of the chosen measure, present-perfect correlates closer to the present.

φ

φv

φp

φ'

dpR

0.00

0.25

0.50

0.75

1.00

{1,0,0} {0,1,0} {0,0,1} {1,1,0} {0,1,1} {1,0,1} {0,1,2} {1,0,2} O

φE

Figure 10. Visualising probabilistic measures of fit in Table 6. χ
2
red and R* are not shown.
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time φ φ' φp φv φE

present 0.0227 0.0227 0.0114 0.0114 0.0114

past 0.0695 0.0694 0.0346 0.0346 0.0346

ratio 3.0587 3.0521 3.0408 3.0408 3.0408

Table 7. Comparing correlation measures for the present perfect against present and past tensed VP

baselines, measured across LLC and ICE-GB subcorpora.

Note that the ICE-GB vs. LLC distinction is not evenly balanced by text size, with ICE-GB texts

containing 2,000 words and LLC texts of 5,000 words. The total number of words is very similar

and sampled for broadly equivalent text categories. Bear in mind that this evaluation has a single

degree of freedom, and it should not be surprising therefore that different approaches to measuring

correlation achieve the same result.

10.2 Genre

Next, we apply these measures to the ten sociolinguistic genre text categories of DCPSE to obtain

Table 8. This confirms that, again, measured across text categories, present perfect constructions

tend to correlate more closely with present tensed VPs than those marked for past tense. However

the scores themselves are much more varied.

genre φ φ' φp φv φE

present 0.0594 0.0871 0.0460 0.0104 0.0095

past 0.1049 0.1545 0.0642 0.0214 0.0207

ratio 1.7655 1.7733 1.3950 2.0596 2.1721

Table 8. Measuring goodness of fit across 10 DCPSE text categories.

In Table 7 we obtained very similar ratios between scores. However in Table 8 the ratio for φ

metrics varies from between 1.4 and 2.2 times, with the greatest ratio applying to variance-based

measures. This is also the only table where φv and φE differ by more than 1%. Text category obtains

quite different results depending on the measure used.

We have already seen that text categories in DCPSE are extremely uneven in size (Figure 1),

ranging from 126 to 3 texts per category. Moreover text categories may be influencing the baselines

by grouping texts with more present- and past-referring VPs together. We return to this below.

10.3 Texts and subtexts

Finally, we perform the same set of calculations over every distinct text and subtext in DCPSE.  As

we note above, texts are approximately equal in length within LLC and ICE-GB. On the other hand

subtexts differ in length from short phone-calls of a few hundred words to long monologues of

5,000+. Again, higher figures imply a lesser degree of correlation.

text φ φ' φp φv φE

present 0.0247 0.0270 0.0184 0.0013 0.0013

past 0.0349 0.0401 0.0298 0.0017 0.0017

ratio 1.4141 1.4848 1.6204 1.2963 1.2952

subtext φ φ' φp φv φE

present 0.0225 0.0333 0.0177 0.0005 0.0005

past 0.0303 0.0348 0.0280 0.0006 0.0006

ratio 1.3478 1.0436 1.5776 1.1259 1.1251

Table 9. Measuring goodness of fit against texts (upper) and subtexts (lower).
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We may summarise our initial observations on the basis of these results as follows.

• Probability-weighted φp factors out variance and has the smallest ratio between baselines in

Table 8, indicating that present and past are distinguished the least from the perfect. However,

this measure appears to be the most consistent across different scales.

• Variance-weighted φv (≈ φE) seems to be less affected by noise, which we would expect, as

each difference square is scaled by its variance. However this is at the cost of a tendency for φv

to fall as the number of categories, k, increases. Table 9 has a large number of different

categories (280 texts, 460 non-empty subtexts in the case of present tensed VPs).

• There is a relationship between Cramér’s φ (first column) and φE (last column). φE is

constrained to the range [0, 1] by scaling each to their limit (involving the sum of 
1
/E terms). If

this limit is different for present and past cases, then the ratios for φ and φE will also differ.

Does the simple fact that texts are grouped into larger categories explain the difference in scores

between Table 8 and 9? Are measures affected by scale, or by particular distribution?

10.4 Pseudo-genre

To answer this question we employ the following computational approach, and compare the results

with Table 8 and 9.

• Randomly assign each text into one of ten pseudo-text categories, with the same total number of

texts per category as DCPSE’s actual text categories. Calculate goodness of fit measures over

these totals, and repeat 10,000 times to obtain a set of mean values.

First, let us examine the effect of this resampling (cf. Table 9, upper). We can see that φp, φv and φE

appear to be affected by the reduced number of categories, whereas unconstrained Cramér’s φ

seems more stable. Variance-weighted φ measures increase four-fold, whereas probabilistically-

weighted φp has fallen by about a fifth. However the most useful comparison is to examine the ratio

of measures, and here φp is stable across scales.

‘genre’ φ φ' φp φv φE

present 0.0253 0.0401 0.0154 0.0048 0.0046

past 0.0402 0.0615 0.0248 0.0075 0.0072

ratio 1.5899 1.5333 1.6133 1.5655 1.5628

Table 10. Mean goodness of fit over 10,000 resamples of texts into pseudo ‘text categories’.

The fact that Cramér’s φ appears little affected by the grouping suggests that the rather higher

scores in Table 8 are due to an interaction between text category and ‘pastness’. This may also

explain the difference between φv and φE. In other words, the real text categories tend to group texts

according to whether they refer to the present or past, which this random allocation does not do.

We can test this hypothesis by carrying out a 10 × 2 χ
2
 test and comparing χ

2
 or Cramér’s φ scores.

In the genuine case we obtain a total χ
2
 = 2,710, and φ = 0.1664. In the pseudo-category cases we

obtain a mean χ
2
 = 398, and φ = 0.0621. Note that this increase in φ (2.7 times) is of roughly the

same order as increases in the φ column (present: 2.4, past 2.9 times). Examining χ
2
 partials, we can

see that broadcast interviews, spontaneous commentary, prepared speech and legal cross-

examination categories all differentiate texts by ‘pastness’. By way of contrast, the size of the effect

of time on ‘pastness’ (cf. Table 7) is below this random allocation (χ
2
 = 206, φ = 0.0438).
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10.5 The effect of category scale

W saw that measures were affected by the number of categories in a simple contrast of texts to the

pseudo-genre category, but this pseudo-genre was uneven in distribution. We would like to know

how measures behave if we merely vary scale alone. We need another computational assessment.

The 280 texts are randomly reallocated to k categories 10,000 times and mean values of Cramer’s φ,

φ', φp and φE are computed for the present perfect against present- and past- VP baselines. Results

are plotted in Figure 11. All values of φ are affected by the number of categories, but φp appears

more stable than other measures, with the present:past ratio near-constant across all scales.

The final pair of columns in the plots in Figure 11 demonstrates the effect of different sizes of genre

subcategories. This compares random sampling into uneven pseudo-categories (with between 126

and 3 texts per category) with random sampling into 10 categories of 28 texts each.

In conclusion, in evaluating measures we should consider a number of questions.

• Stability of measures and stability of ratios. Stability of φ measures means that a particular φ

cited with k corpus subdivisions would predict φ with a different k. Stability of ratios means that

the ratio between two measures is constant over k. Thus it seems that Cramér’s φ is highly

stable measuring against the present VP baseline from 280 to 17 (Figure 11(a), middle), but it

increases steadily against the past over the same range, and therefore the ratio steadily increases.

On the other hand φp appears to fall in an arc with increasing k in both cases, but the

past:present ratio (Figure 11(b)) is extremely stable.

• The impact of the number of categories. As we have seen, all measures are affected by the

number of categories, with φE tending to increase as k falls and φp decreasing (although not as

dramatically). Different measures tend to converge (φE ↔ φp, φ ↔  φ') as k approaches 2, a by-

product of the Central Limit Theorem. However the impact of k is less dramatic than that found

with conventional Cramér’s φ. Comparing past and present VPs, k × 2 φ falls with k (Figure 12).

• The impact of uneven-sized categories. The differences between irregular-sized pseudo-

categories and categories with evenly allocated texts parallel the variation in scale, with the

exception that φ' is particularly affected by uneven categories.
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Figure 11: Effect of number of categories k on Cramer’s φ, φ', φE and φp.
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• The standard deviation of measures. The standard

deviation of each measure will increase as the number

of categories k falls, because there are greater

permutations of text to category (this may also be

affected by different-sized DCPSE texts). However,

considered as a proportion of the mean, the standard

deviation of each measure is in the following order:

 σ(φp) < σ(φ) ≈ σ(φ') < σ(φE), meaning that φp is least

affected by the particular allocation to category.

The result of our evaluation is that on a number of counts

probabilistically-weighted φp (i.e. root mean square error)

seems to be superior to other measures. It is the most stable

with respect to variation of size and number of categories,

and obtains a reliable ratio when comparing two different

baselines. It is easily constrained to 1 and is one of the

simplest measures to calculate. It also has the smallest standard deviation as a proportion of the

measure. Finally  it is robustly extensible to comparing non-overlapping sets.

10.6 Estimators for φp

In this paper we identified that text category impacted on the relationship between present perfect

and present and past categories. To demonstrate this we calculated the mean for k = 10 from 10,000

repetitions of φp(k) for random subdivisions of the corpus.

Consider the following problem. Suppose we were to subdivide a corpus into two approximately

equal halves and observe the value of φp for this subdivision. Depending on how the subdivision

affects the dependent variable, the observed score will be above or below the expected value. What

is the optimum expected value for φp, the estimator, written φ̂p(2)? In short, how may we

algebraically predict the expected value of φp for any given k from φp(K) where K is the number of

texts, subtexts etc. (or some other categorically normative baseline)?

Note that we cannot apply a separability test (Wallis 2011) to compare results because the two

experiments (K=280, k=2) have different degrees of freedom.

We need to find this optimum expected value. In this paper we relied on extensive computation to

do this. Is there an algebraic solution?

Examining the curves for φp in Figure 11(a) reveals that the relationship can be closely predicted by

the formula φp(k) + x/k = c, so it follows that

φ̂p(k) = φp(K) + x/K – x/k.

These curves allow us to find x = φp(K)/y, where y ≈ 1.2, simplifying to

φ̂p(k) = φp(K)(1 + 1/yK – 1/yk). (16)

Further experimentation with DCPSE and ICE-GB finds optimum values of y ≈ 1.17 and 1.25

respectively. This result appears robust with respect to other queries, but subsets obtain a scatter and

may needed to be tested individually.
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