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Abstract

In many fields, confidence intervals are growing in popularity, and citation is becoming mandatory in some

journals. Plotting data and citing scores with confidence intervals conveys a model of sampling uncertainty

to the reader absent from traditional approaches where plotting data and conducting analysis are separated.

Researchers may also compare sampled scores for significant difference or against a given benchmark.

However, statistical sources commonly quote formulae based on standard error. This assumes that

the probable true value of an observed parameter is Normally distributed, an assumption often untrue for

small samples or observations near numeric bounds. This method generates intervals not consistent with

standard statistical test procedures, and occasionally produces wholly implausible results.

In this paper we discuss a superior approach to constructing intervals for a wide range of properties.

This builds on the Wilson score interval for the simple proportion p, which is robust on the probability scale

P = [0, 1] and may be corrected for continuity and sampling. We demonstrate how we may compute intervals

for properties that are functions of p (such as ln(p), logit(p) and p
2
), and, by employing Zou and Donner’s

interval difference theorem, for algebraic combinations of independent proportions p1, p2, etc. (such as p2 –

p1, Σpi, p1 / p2 and p1
p2). These methods are efficient to calculate, robust, and perform consistently with

standard tests, while being capable of extension to novel statistical test procedures.

Key words: standard error, confidence interval, Wilson score interval, interval equality principle, interval

difference theorem, risk ratio, odds ratio, effect size, interval evaluation

1. Introduction

There is a growing interest among practising researchers in plotting data with confidence intervals

(sometimes termed ‘credible intervals’ or ‘compatibility intervals’) due to their explanatory power.

However, statistics compendia typically offer limited coverage of confidence interval methods, and

cited formulae often involve a common mathematical error.

This issue is of particular concern for linguists. Numerous research problems that linguists

address engage Binomial or Multinomial statistics, i.e. the statistics of simple choice proportions.

However, the treatment of Binomial intervals and derived properties (e.g. Zar 2010: 85, Sheskin

2011: 286, 661) tends to be weak.

In linguistics, a number of additional properties, scores and effect sizes are commonly cited.

In Section 3 we show how one can give Gries’s ∆P score (Gries 2013) an interval due to

Newcombe (1998b). However, we need a general algebraic method for calculating confidence

intervals for any linguistic property. This is the subject of this paper. We show how Zou and

Donner’s (2008) method can be used to create intervals for a wide range of properties, and evaluate

intervals computed over differing numerical scales against a Fisher ‘exact’ test.

1.1 The standard error

A common, incorrect method for calculating confidence intervals employs (asymptotic) standard

error. The model is extremely pervasive, finding its way into tests, algorithms and specialist

treatises (e.g. Bishop, Fienberg and Holland 1975).

The model can be expressed simply as follows: given an observation of a variable x, assume

that variation (uncertainty), scaled by a standard deviation S(x), is Normally distributed about x.

standard error interval for x, (e
–
, e

+
) = x ± zα/2.S(x), (1)
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where zα/2 is the two-tailed standard Normal deviate for an error level α.
1
 For the purposes of

computing an interval, α is constant (say, 0.01 or 0.05), so zα/2 is also constant.

This standard deviation term may measure the variation of observed values within a sample,

within-sample standard deviation, s(x). In this case the interval models the scatter of the values

observed within a sample.

However, inferential statistics concerns the sampling of an observation x from a population

with true value, X. Here we are interested in the standard deviation of sample means. In plain

English, we identify a standardised measure of the variability of observed averages (means) when

they are sampled. Such a mean might be Real (e.g. the mean pitch of n utterances), Interval (the

mean length of n clauses), or Binomial (the proportion of n clauses, phrases or words in a corpus

with a particular feature). In this paper we will focus on Binomial intervals predicting a population

proportion P. These intervals have the greatest utility to linguists. Binomial proportions may

represent linguistic alternation rates, or observed rates derived from multiple choices, such as

semasiological shares (Wallis 2021: 77) or standardised type-token ratios.

Engaging a mathematical model relies on making assumptions (requirements) that the data

conforms to certain parameters. In the case of the Binomial model, these include (i) sampled

instances should be drawn independently and randomly from the population, and (ii) instances must

be free to vary, so that proportions (rates) can range from 0 to 100%. We also assume (iii) that the

population is infinite, or much larger than the sample (see also Section 2.2 below).
2

Equation (1) assumes that the distribution of uncertainty is Normal (Gaussian) and

symmetric. For small samples of Real or Interval variables, zα/2 is replaced by the equivalent critical

value of the (symmetric) t-distribution.

However, a symmetric interval is incompatible with bounded variables. Suppose x is an

observed Binomial proportion, p. Typical examples are the proportion of phrases, clauses or

sentences with a feature, an alternation rate or meaning share.

This property is bounded by the probabilistic scale P = [0, 1]. The desired confidence

interval may be written p ∈ (p
–
, p

+
) = p ± zα/2.S(p).

Phenomena that linguists study are often rare. For example, somebody in the written

component of ICE-GB (Nelson et al. 2002) is infrequent (4 cases in 423,581 words), but its

alternate, someone, is less so (82 cases).

written somebody f someone total n proportion p

non-printed 0 24 24 0.0000

printed 4 58 62 0.0645

Table 1. Alternation of somebody/someone, printed and non-printed ICE-GB subcorpora.

Written data is subdivided into print and non-print sources. In the non-printed data (Table 1), we

find zero examples of somebody, i.e. p(somebody) = 0. One of these statements must be true.

1. S(p) = 0. The interval has zero width, p
–
 = p = p

+
, and is thus symmetric. But this means the

observation has no error. It is falsely certain.

2. S(p) > 0. The error interval has a non-zero width. The lower bound p
–
 < 0. It ‘overshoots’. The

model says there is a 50% chance that the true proportion, P < 0, which is also impossible.

Wallis (2021: 297) terms this presumption of Gaussian uncertainty the ‘Normal fallacy’. A

symmetric interval on a bounded variable cannot be correct.

                                                
1
 Sometimes, unhelpfully, the term ‘standard error’ is used as a substitute for ‘standard deviation’.

2
 Assumption (ii) means that ‘per million word’ rates are unlikely to be Binomial proportions for most sampled

linguistic phenomena. Alternative baselines should be considered (Wallis 2021a: 47). For text corpus samples,

assumption (i) can be addressed by a ‘random-text sampling’ correction (Wallis 2021a: 277).
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1.2 Population sampling intervals and confidence intervals

The conventional model used in χ2
 and z tests employs the Normal approximation to the Binomial

population proportion P. This gives us a legitimate, albeit approximate, Normal interval about P.

population standard deviation S(P) ≡ nPP /)1( − , and (2)

Gaussian interval (E
–
, E

+
) = P ± zα/2.S(P).

This population interval identifies the range of values a sampled proportion p will be expected to be

found at a given error level, α, given P.

We may engage in ‘what if’ reasoning. Suppose we thought the true rate of the

somebody/someone alternation in printed texts of the kind found in ICE-GB was 15 in 100, i.e. P =

0.15. In a sample of 62 cases, the observed proportion should fall within (E
–
, E

+
) = 0.15 ± 0.0889 =

(0.0611, 02389) at the α = 0.05 error level, i.e. on 19 out of 20 sampling attempts.

We can now compare our observed rate, p = 0.0645, with this interval. It is within the range,

so the observed p is not significantly different from the hypothesised rate P.

This model is not perfect. If P = 0 or 1 the interval width becomes zero. It overshoots near

the boundary (e.g. for P = 0.01 and n = 62, E
–
 = -0.0148). Fortunately, applying Yates’s correction

for continuity (Yates 1934) conservatively compensates for both problems, and the ‘smoothing

error’ created by the approximation of the discrete Binomial distribution by a continuous Normal

curve. The interval is moved away from P by half an instance on either side.

Yates’s Gaussian interval (E
–
cc, E

+
cc) = P ± (zα/2.S(P) + 

n2
1 ). (3)

Equations (2) and (3) are employed in the z test for the single proportion (Wallis 2013) to compare

an observed proportion, p, with an expected one, P. They perform identically to their equivalent 2 ×

1 χ2
 goodness of fit test (see Equation (12), below).

However, population intervals have limited utility. Usually we do not know P. Instead we

wish to predict the most likely range of values of P based on the observed rate, p, and the error

level, α. We need a confidence interval for p.
3

For decades, researchers wishing to create confidence intervals were directed to employ

Equations (2) or (3), substituting p for P. Thus the following would be used in place of (2).

observed standard deviation S(p) ≡ npp /)1( − , and (4)

Wald interval (e
–
, e

+
) = p ± zα/2.S(p).

In one statistics reference after another, we see standard error or ‘Wald’ intervals quoted. But they

obtain results that are inconsistent with their equivalent z or χ2
 test.

Consider our earlier example where P = 0.15 and n = 62. Substituting p = 0.0645 into

Equation (4), we obtain the interval (e
–
, e

+
) = (0.0034, 0.1256), which excludes P = 0.15. The Wald

interval has given us a different result!

This interval has zero-width behaviour for p = 0 or 1, and overshoots near the boundary.

These problems are conventionally addressed by the ‘3-sigma rule’, which rules out Equation (4) if

p ± 3S(p) exceeds [0, 1] (i.e. for small samples and proportions close to 0 or 1). Yet the principal

utility of inferential statistics concerns small samples, and many fields, linguistics included,

frequently contend with low-frequency terms.

But arguably the worst problem is that the Wald interval obtains results inconsistent with the

Gaussian model (Equation (2)), i.e. it rules results ‘significant’ when the equivalent z test does not,

                                                
3
 Confidence intervals should not be confused with ‘replication’ or ‘resampling’ intervals. A confidence interval

predicts the range of values of the true mean P, whereas a resampling interval predicts the range of the mean of a

second sample. See Wallis (2020).
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and vice-versa. This, we believe, is the source of the historic low status of confidence intervals.

Without a method for computing a confidence interval consistent with the equivalent significance

test, confidence intervals cannot be ‘proper’ statistics.

However, if we can address this problem, then confidence intervals become very powerful.

Plotted intervals are visually intuitive and permit us to contrast observations on the same scale by

eye without performing significance tests. See Figure 10.

This paper is set out as follows. In the next section we discuss the interval equality principle,

which defines an interval by inverting an equivalent test procedure, guaranteeing consistency with

the test. In Section 3 we introduce difference intervals and tests, and in Section 4 we generalise both

approaches with mathematical functions and operators. We give examples for effect sizes in Section

5 and Section 6 is the conclusion.

2. The interval equality principle

The reasoning supporting the Wald formula is incorrect. The probability distribution of a population

score P given an observed proportion p is not Normal. See Figure 1.

Wilson (1927) argued that confidence intervals on an observed Binomial proportion p

should be obtained by mathematically inverting the population interval formula (Equation (2)),

rather than substituting p for P (Equation (4)). This interval equality principle (Wallis 2021a: 319)

is simply stated:

when P is at a bound of p, p is at the opposite bound of P.

The difference between observed and expected proportions, | p – P |, must be the same, whether one

measures it from p or from P (Figure 1, left, arrowed).

Suppose P1 and P2 represent the two potential values of P on either side of p just sufficiently

distant to be deemed significant by a single-sample z test (Equation (2)). The following hold:
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Figure 1. Left, the interval equality principle illustrated: example pdf distributions for the bounds of

the Wilson interval (w
–
, w

+
), for p = 3/10 at α = 0.05, with half-Gaussian distributions at each

bound. Right: Wilson distributions for p ∈ {0.1, 0.3, 0.5} and n = 10.
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p = E1
+
 ≡ P1 + zα/2.S(P1), and (5)

p = E2
–
 ≡ P2 – zα/2.S(P2).

We wish to find two values: P1, with its Normal upper bound at p, and P2, with p at its lower bound.

The interval (P1, P2) identifies the range of values not significantly different from p at the required

error level (hence ‘compatibility interval’).

2.1 The Wilson score interval

We could employ a search procedure to find P1 and P2 (see Section 2.3). However, there is a more

efficient method. Wilson solves Equation (2) to derive a direct formula for the interval:

Wilson score interval (w
–
, w

+
) ≡ 










+














+

−
±+

n

z

n

z

n

pp
z

n

z
p

2

α/2
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2

α/2
α/2

2

α/2 1
4

)1(

2
. (6)

Recall our population interval for P = 0.15, n = 62. Substituting the 95% lower bound, p = E
–
 =

0.0611, into Equation (6) yields (w
–
, w

+
) = (0.0235, 0.1500). The upper bound, p = E

+
 = 0.2389,

obtains (0.1500, 0.3582). The interval precisely inverts Equation (2).

We are used to seeing Normal distribution curves. What shape does the equivalent Wilson

distribution have? Figure 1, left, plots the distribution of w
–
 and w

+
 on either side of p = 3/10 for

varying α. They meet at p where α = 1.
4
 This curve is not Normal, but has a well-defined

relationship (the interval equality principle) with the inner half of Normal intervals at each tail. The

tail areas, t, are equal for any value of α.

Figure 1, right, depicts example curves for p = 0.1, 0.3, and 0.5 for the same sample size.

Apart from where p = 0.5, curves and intervals are asymmetric, tending towards the middle of the

probabilistic range.

The interval has a number of important properties.

1. Distributions are entirely contained within P = [0, 1]. At the limit where α → 0, P → 0 (lower)

or 1 (upper bound).

2. If n is large or p close to 0.5, the curve appears approximately Normal (this has long excused the

‘Wald’ standard error interval). But it is also well-behaved for small n and skewed p.

3. The Wilson model is related to the logistic (‘S-curve’) model. Except for p = 0 or 1, where the

interval will be one-sided and logit(p) infinite, the logit-Wilson (the logit transform of Figure 1)

is symmetric and tends to a Normal distribution (Wallis 2021a: 308, and Figure 8).

2.2 Adjusting the Wilson formula using functional notation

The formula may be corrected for continuity and adjusted for sampling.

For a two-tailed interval, let us define the functions

WilsonLower(p, n, α/2) ≡ w
–
, and

WilsonUpper(p, n, α/2) ≡ w
+
, (7)

where w
–
 and w

+
 are defined by Equation (6).

Adjustments to intervals are now straightforward. Wallis (2021a: 161-162) notes that both

Yates’s continuity correction and a finite population correction may be simultaneously applied to

the Wilson interval.

                                                
4
 Equation (6) is the cumulative density function of the interval. We vary α ∈ (0, 1] in Equation (6) and compute the

height (pdf) by delta approximation. See Wallis (2021a: 297-307).



Accurate confidence intervals Sean Wallis © 2022

6

The continuity-corrected Wilson score interval (w
–
cc, w

+
cc) is obtained by moving the first

parameter away from p by Yates’s continuity correction term, 
n2

1 :

w
–
cc = WilsonLower(max(0, p –

n2
1 ), n, α/2), and

w
+
cc = WilsonUpper(min(1, p +

n2
1 ), n, α/2). (8)

The ‘max’ and ‘min’ functions restrict the first parameter to the probabilistic range P. This interval

is consistent with Equation (3).

Now, suppose we wish to employ a finite population correction (Wallis 2021a: 160). This

factor reduces the variance when a sample is a subset of a finite population. It may be defined as

finite population correction ν = )1/()( −− NnN , (9)

where N is the population size and n the sample size. It can be used to scale the variance, S
2
(P) = ν2

P(1 – P) / n. To scale the Wilson interval, we divide the weight of evidence, n, by ν2
.

w
–
 = WilsonLower(p, n / ν2

, α/2), and

w
+
 = WilsonUpper(p, n / ν2

, α/2), (10)

and, likewise,

w
–
cc = WilsonLower(max(0, p –

n2
1 ), n / ν2

, α/2), and

w
+
cc = WilsonUpper(min(1, p +

n2
1 ), n / ν2

, α/2). (11)

Note how the continuity correction term, 
n2

1 , is not altered by the finite population correction. The

corrections are independent. Adjustments to variance to account for random-text sampling (Wallis

2021a: 277) may be incorporated in the same way.

2.3 Obtaining intervals by search

We can also invert a population interval function or 2 × 1 test procedure by search.
5
 For example,

goodness of fit χ2
 or log-likelihood may be calculated from two simple pairs:

observed oi ∈ [np, n(1 – p)], and

expected ei ∈ [nP, n(1 – P)]. (12)

Suppose we desire a log-likelihood interval (g
–
, g

+
) for a given p.

log-likelihood G
2
 ≡ ∑

=

k

i

iii eoo
1

)/log(2 . (13)

We search for the lower bound g
–
 < p:

find P = g
–
 ∈ [0, p) where G

2
 = χ2

crit(α, 1) = zα/2
2
. (14)

The upper bound, g
+
, may be found via a search for the lower bound for 1 – p.

                                                
5
 Wallis (2021: 322) offers a binary search algorithm for a lower bound between 0 and p.
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An alternative approach avoids the Normal approximation. The ‘exact’ Clopper-Pearson

interval (Newcombe 1998a; Wallis 2013, 2021a: 147) is found by search using the cumulative

Binomial function. Although more difficult to compute, it is useful for evaluation purposes.

2.4 Performance

Various researchers (e.g. Newcombe 1998a, Brown et al. 2001, Wallis 2013) have compared the

performance of Binomial intervals. The Wilson score interval with continuity-correction improves

over the uncorrected Wilson, log-likelihood and ‘Wald’ approaches (Figure 2). The closest fit to the

‘exact’ Clopper-Pearson (shaded) is the continuity-corrected Wilson interval.

Newcombe (1998a: 868) recommends that ‘Wald’ methods should be replaced, commenting

that ‘intervals calculated by these methods should no longer be acceptable for the scientific

literature.’ Wilson-based methods should be substituted.

Newcombe’s assessment is that even without continuity correction, the Wilson score

interval’s average coverage probability is very close to the nominal value 1 – α, and, with a

continuity correction, the method is ‘nearly strictly conservative’ (has almost no Type I errors) with

minimum coverage probability 0.949 for a nominal 0.95. These intervals, including the Clopper-

Pearson, tend to be slightly too ‘mesial’, i.e. too close to p = 0.5.
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–

p
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Figure 2. Estimates for the lower bound of p, p = f / n, n = 10, α = 0.05, after Wallis (2013). We can

clearly see the inconsistency of the ‘Wald’ interval, which is not computed by interval equality.

Figure 3 plots distributions of Wilson and Clopper-Pearson intervals for p = 0.3 and n = 10. Upper

and lower bounds are computed separately, leaving a discontinuous space on either side of p for

both Clopper-Pearson and continuity-corrected Wilson distributions.
6
 All three methods are

constrained by boundaries (as P → 0 or 1, α → 0).

                                                
6
 (Wallis 2021a: 312) notes that distributions computed by the interval equality principle, while guaranteed consistent

with the equivalent significance test, are not strictly equivalent to ‘the probability distribution of P given p’. Instead

they are best considered as independent distributions for each bound.
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Figure 3. Continuity-corrected Wilson and Clopper-Pearson intervals, and their probability density

distributions, unit scale, after Wallis (2021a: 311).

3. From contingency tests to difference intervals

We have evaluated the difference d = p – P. A related task is evaluating the difference between two

independently observed proportions, d = p2 – p1, which has a general application. An interval for

Stefan Gries’s (2013) ∆P = p1 – p2 can be easily obtained from the following.

3.1 A chi-square based interval

The 2 × 2 χ2
 test for homogeneity (Sheskin 2011: 643) is well-known:

chi-square χ2
 = ∑ ∑

= =

−

ri cj ji

jiji

e

eo

..1 ..1 ,

2

,, )(
, (15)

where oi,j represent observed cell frequencies in Table 2, and the expected frequency ei,j = oi+ × o+j /

o++. The sum is compared to the critical value χ2
crit(α, 1) = zα/2

2
.

This test can be reformulated as a z test for two independent proportions (Sheskin 2011:

655). We test if p1 and p2 are significantly different, assuming both are drawn from one population

with a mean equal to the pooled probability estimate, p^.

We compare d to a Normal interval (–ed, ed) centred on zero, obtained by

probability estimate p^  ≡ (n1p1 + n2p2) / (n1 + n2) = o1+ / o++, and

standard deviation S(p^) ≡ )()ˆ1(ˆ
21

11
nn

pp +− , (16)

standard error ed = zα/2.S(p^).

Outcome 1 Outcome 2 Total

Condition 1 o1,1 = n1p1 o2,1 = n1(1 – p1) o+1 = n1

Condition 2 o1,2 = n2p2 o2,2 = n2(1 – p2) o+2 = n2

Total o1+ = o1,1 + o1,2 o2+ = o2,1 + o2,2 o++ = n1 + n2

Table 2. Contingency table comparing two proportions, p1 and p2 supported by n1 and n2. Row

and column totals are indicated by ‘+’ subscripts.
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The formula performs identically to the χ2
 test and may incorporate a continuity correction and

other adjustments. However, if repositioned about d (Sheskin 2011: 661), it performs poorly.

3.2 The Newcombe-Wilson interval

Newcombe (1998b) computes an alternative interval for d = p2 – p1 by summing variances

independently estimated at inner interval bounds. Recall that the Wilson interval (w
–
, w

+
) assumes P

has a Normal distribution at each bound (Figure 1).

Suppose p1 > p2. To find out if p1 is significantly greater than p2 we examine the intervals on

the inner side of this difference, i.e. w1
–
 and w2

+
. Figure 4 illustrates the idea. We assume intervals

are independent and tangential, and independent variances may be summed (termed the Bienaymé

theorem).
7

S
2
(d) = 





+

>+
−+

+−

otherwise.)()(

, if)()(

2

2

1

2

212

2

1

2

wSwS

ppwSwS
(17)

We know the following interval widths must be equal:

(p1 – w1
–
) = zα/2.S(w1

–
),

(w2
+
 – p2) = zα/2.S(w2

+
), etc.

A zero-based difference interval is computed from Equation (18).

(wd
–
, wd

+
) = (− 2

22

2

11 )()( pwwp −+− +− , 2

22

2

11 )()( −+ −+− wppw ). (18)

This Newcombe-Wilson interval is asymmetric, unlike Equation (16). It may be used as a

significance test for the difference between two Binomial proportions by simply testing if d lies

outside it.

It may also be repositioned about d by simple subtraction:

d ∈ (d
–
, d

+
) = d – (wd

–
, wd

+
) = (d – wd

+
, d – wd

–
). (19)

Whereas (wd
–
, wd

+
) has origin 0, this interval (d

–
, d

+
) is an interval for d, like the Wilson interval for

p. We can now plot confidence intervals for d, and test if d is less than or greater than a given

difference D. The interval may also be further generalised, for example, to compare two observed

differences d1 and d2. See Section 5.3.

Figure 5 sketches some consequences of this formulation. The

first sketch, left, reminds us that the Newcombe-Wilson test may be

performed either by checking whether the zero-based interval (wd
–
,

wd
+
) excludes d or if the difference-based interval (d

–
, d

+
) excludes

zero. The central figure emphasises that the inner gradient is the

shallowest gradient for d (conventionally tested against zero) and the

outer gradient is the steepest.

The third sketch compares these gradients with Wilson

intervals at their end points. The shallowest gradient (here d
+
) falls

within single interval bounds, so if two intervals have no overlap the

difference d = p2 – p1 must be significantly falling or rising. The

difference cannot be significant if either point is within the Wilson

interval of the other.

                                                
7
 Probability space (P × P) is curved, and this formula introduces a small error. However this does not undermine the

overall viability of the method. We explore the impact of this approximation over different scales in Appendix 1.

w2
–

w2
+

w1
–

w1
+

wd
–

p1
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+

Figure 4. Calculating the

bounds of the Newcombe-

Wilson interval using the

Bienaymé formula.
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Wallis (2021a: 119) terms this system the Wilson interval comparison heuristic:

Wilson interval comparison heuristic: (20)

For any pair of points representing comparable observed proportions:

1. if two points’ intervals do not overlap, the points must be significantly different;

2. if one point is inside the interval of the other, the points cannot be significantly

different;

3. otherwise, carry out a statistical test to decide whether they are significantly different.

Provided that p1, p2, etc. are plotted on the same scale, one can perform a visual assessment as a first

pass, eliminating demonstrably significant and non-significant cases. Only where intervals partially

overlap is a significance test required.

Although referred to as the ‘Wilson’ interval comparison heuristic, thanks to Zou and

Donner’s generalisation (see 4.2) it can supplement many interval comparisons.

3.3 Performance

The left graph in Figure 6 was constructed by iterating cell frequencies in Table 2. As one

proportion increases, the other declines: p1 = 1 – p2, p2 ∈ [0, 1], so d increases.

Whether or not a continuity-corrected is employed, the Newcombe-Wilson interval is well-

behaved, neither overshooting nor collapsing to zero-width. But a repositioned Gaussian interval

overshoots. Figure 6, right, examines intervals for a constant difference d = 0.5.

We can also examine probability density curves for these intervals. Figure 7 plots the
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Figure 5: Geometry of Newcombe-Wilson difference intervals, for a significant fall d < 0, after

Wallis (2021a). Left: repositioning the Newcombe-Wilson interval at d allows us to test if d < wd
–
 or

d – wd
–
 < 0. Middle: identifying slopes for d ∈ (d

–
, d

+
). Right: with Wilson intervals for p1 and p2.
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Figure 6. Estimates for 95% intervals on difference d = p2 – p1 in a 2 × 2 matrix with n1 = n2 = 10.

Left: p1 = 1 – p2, d ∈ [-1, 1]. Right: a constant difference d = 0.5, and p1 = p2 – d.
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distributions of interval bounds where p1 = 0.5, p2 = 1.0, and n1 = n2 = 10.

These methods are consistent for testing against zero (the archetypal 2 × 2 test scenario).

But Newcombe’s method is clearly superior when repositioned.

4. Confidence intervals for other properties

Although Binomial proportions are ubiquitous in linguistic research problems, we often wish to

compute intervals for other properties.

4.1 Functions of the Binomial proportion

We can simply obtain confidence intervals for monotonic functions of p (Wallis 2021a: 175).

Monotonic functions always either increase or decrease over the parameter’s range and have a

unique solution when inverted.

For any function fn(p) of a Binomial proportion p that is monotonic over p ∈ P = [0, 1], the

transformed Wilson score interval is

transformed Wilson (wt
–
, wt

+
) =





−+

+−

otherwise.))(),((

or , with increases  if))(),((

wfnwfn

pfnwfnwfn
(21)

For example, the logit (log odds) function, logit(p) ≡ ln(p / (1 – p)), is monotonic and increasing, so

the logit Wilson interval is simply (logit(w
–
), logit(w

+
)). The reciprocal function, 1/p,

monotonically decreases, so its interval, (1/w
+
, 1/w

–
), has interval bounds reversed. To compute an

interval for mean clause length, l
¯
 = words/clauses, we can use p = clauses/words.

Probability density distributions for selected functions of p ∈ {0.1, 0.3, 0.5} with n = 10 are

shown in Figure 8. Exceptionally, the logit Wilson is symmetric and approximately ‘Normal’

(Wallis 2021a: 307), but note in passing how the others have very different distributions!

Intervals subject to non-monotonic transforms require us to identify turning points (local

minima or maxima). Suppose that a is a turning point within an interval (w
–
, w

+
). The lower bound

is simply min(fn(w
–
), fn(w

+
), fn(a)), and the upper bound is the maximum of the same sequence.

See Section 5.1.
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= 10. For comparison, the (erroneous) repositioned Gaussian interval is shown.
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4.2 Functions of two or more independent proportions

Functions with multiple parameters may be generalised from the Newcombe-Wilson difference

interval using a theorem proposed by Zou and Donner (2008). We apply the Bienaymé theorem to

inner interval variances (cf. Figure 4) but on different numeric scales.

Zou and Donner’s interval difference theorem quotes an interval (L, U) for the difference

between two independent parameters, θ̂1 and θ̂2, each with intervals (li, ui).

L = 2

22

2

1121 )ˆ()ˆ(ˆˆ θ−+−θ−θ−θ ul , and

U = 
2

22

2

1121 )ˆ()ˆ(ˆˆ lu −θ+θ−+θ−θ . (22)

If we substitute θ̂1 = p2, θ̂2 = p1 with respective Wilson intervals, we obtain the Newcombe-Wilson

difference interval about d (Section 3.2).

Zou and Donner (2008: 1695) say this equation may be applied to other parameters even if

the underlying distribution for each parameter is not Normal, provided that each has ‘separate

confidence limits that have coverage levels close to nominal.’ This is a strong claim worthy of

evaluation.
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Parameters θ̂1 and θ̂2 may be any monotonic function of p1 and p2. Thus we obtain an

interval for the risk ratio, r = p1 / p2, since a ratio is a difference on a log scale:

ratio r = p1 / p2,

log ratio ln(r) = ln(p1) – ln(p2),

(wr
–
, wr

+
) = (− 2

22

2

11 ))ln()(ln())ln()(ln( −+ −+− wppw , 

2

22

2

11 ))ln()(ln())ln()(ln( pwwp −+− +− ). (23)

Finally, we reverse the transformation and reposition the interval by Equation (19):

interval for r (r
–
, r

+
) = exp(ln(r) – (wr

–
, wr

+
)) = (exp(ln(r) – wr

+
), exp(ln(r) – wr

–
)).

The theorem has multiple applications. Trivially, negation is monotonic, so (θ̂1, θ̂2) = (p1, –p2)

obtains the interval for the sum, p1 + p2, which may be generalised to a series of terms. The interval

for the product, p1 × p2, may also be obtained via the log transform. See Table 3.

This is just the beginning. In sum and difference formulae, p1 and p2 may be replaced by

Real parameters. For products and ratios, parameters must be positive.

Thus the odds ratio is the ratio of two odds, where odds(p) = p / (1 – p). This function is

monotonic, increasing and yields a positive Real. To obtain an interval for the odds ration,

substitute odds(pi) for pi, odds(wi
–
) for wi

–
, etc. in Equation (23).

Wallis (2021b) derives intervals for power, p1
p

2, and logarithm, logp2
(p1), functions. Just as

multiplication becomes addition on a log scale, power becomes multiplication:

power p1
p

2 = exp(ln(p1) × p2) = exp(–exp(θ̂1 –  θ̂2)), (24)

function lower bound upper bound scale

proportion p w
–

w
+

P

alternate q = 1 – p 1 – w
+

1 – w
–

P

weighted kp kw
–

kw
+

P × k

plus constant p + k w
–
 + k w

+ 
+ k P + k

reciprocal 1/p 1/w
+

1/w
–

P
–1

square p
2

(w
–
)

2
(w

+
)

2
P

2

logit logit(p) logit(w
–
) logit(w

+
) ℜℜℜℜ

increasing fn(p) fn(w
–
) fn(w

+
)

decreasing fn(w
+
) fn(w

–
)

non-monotonic min(fn(w
–
)… fn(w

+
)) max(fn(w

–
)… fn(w

+
))

two independent proportions

difference (NW) p2 – p1 p2 – p1 –
2

22

2

11 )()( −+ −+− wppw p2 – p1 + 2

22

2

11 )()( pwwp −+− +−

sum Σpi Σpi –
2

)(
−−Σ ii wp Σpi +

2
)( ii pw −Σ +

ratio p1 / p2

exp(ln(p1 / p2) –
2

22

2

11 ))ln()(ln())ln()(ln( pwwp −+− +− )

exp(ln(p1 / p2) +
2

22

2

11 ))ln()(ln())ln()(ln( −+ −+− wppw )

product p1 × p2

exp(ln(p1 × p2) –
2

22

2

11 ))ln()(ln())ln()(ln( −− −+− wpwp )

exp(ln(p1 × p2) +
2

22

2

11 ))ln()(ln())ln()(ln( pwpw −+− ++ )

Table 3. Example confidence intervals derived from the Wilson score interval (w
–
, w

+
).



Accurate confidence intervals Sean Wallis © 2022

14

where

θ̂1 = ln(–ln(p1)), (l1, u1) = (ln(–ln(w1
+
)), ln(–ln(w1

–
))), and

θ̂2 = –ln(p2), (l2, u2) = (–ln(w2
+
), –ln(w2

–
)),

which we substitute into Equation (22).

Similarly, the logarithm interval is obtained by rewriting it as a ratio of negated logs, –ln(pi).

The bounds must be swapped for each negative monotonic transform (see Equation (21)).

4.3 Performance

Examining their risk ratio interval, Zou and Donner (2008: 1697) comment that it behaves more

consistently to χ2
 than traditional ‘delta’ methods (Altman et al. 2000). However, this is a poor

comparison. Delta methods assume that variance is Normal on a logarithmic scale (a ‘standard

error’ problem), and consequently obtain infinite intervals at extremes. Figure 9 plots intervals for

risk ratio r and odds ratio o using both approaches. The graph reveals such poor performance for

‘delta’ methods that they are best retired.

A better method for evaluating interval performance is to compare it with a classical 2 × 2

contingency test. If a repositioned difference interval excludes 0 or a ratio interval excludes 1, the

parameters p1 and p2 are significantly different. (If p1 ≠ p2 then p2 – p1 ≠ 0 and p1 / p2 ≠ 1.) Intervals

for risk and odds ratios, and logarithm (‘log ratio’), may be evaluated by this method.

This evaluation is an inner interval comparison. Only the interval bound nearest to 0 or 1 is

tested. We compare the result with a ‘gold standard’ Fisher ‘exact’ test. Appendix 1 plots the

performance cost of computing the Bienaymé sum-of-variances theorem (see Figure 4) on these

different number scales.

Each ratio method has an additional Type I error cost compared to the simple difference,

which also introduces errors. However, these errors are marginal compared to those introduced by

not employing a continuity correction, and overall performance is comparable to the χ2
 test.
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Figure 9. Comparing risk and odds ratio intervals and tests, n1 = n2 = 10, α = 0.05, φ = p1 – p2,
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are more conservative, catastrophically so where p1 or p2 → 0. They are also visibly inconsistent

where bounds cross 1, unlike Zou and Donner’s methods (‘ZD’, arrowed).
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Interval performance may be ordered from worst to best:

odds ratio (ln(odds(P))) < logarithm (ln(–ln(P)) < risk ratio (ln(P)) < difference (P).

In other words, computing intervals by this method tends to introduce more errors when employed

on a logarithmic scale (risk ratio) than a probabilistic one, and so on.

4.4 Analytic reduction

These error rates are sufficiently small to permit us to propose a general algebra of interval

calculations based on Zou and Donner’s theorem, the Wilson score interval (with continuity

correction and, potentially, sampling adjustments) and monotonic transformations.

However, one further note of caution is required. The theorem requires that observed

parameters are independent. If two parameters in a formula are not independent, we must rewrite

the formula.

Example 1. Difference of alternate proportions

Suppose we want an interval for d where p2 = 1 – p1. Since p2 is determined by p1, the interval is

trivial:

d = 1 – 2p1 ∈ (1 – 2w1
+
, 1 – 2w1

–
).

Example 2. Percentage difference d
%

Consider the widely-cited percentage difference:

d
%

 = d / p1 = (p2 – p1) / p1. (25)

If we apply Zou and Donner’s theorem first to the difference d = p2 – p1, and then to the ratio d / p1,

we obtain a poor interval that assumes uncertainty about p1 twice. See Wallis (2021d).

The solution is to rewrite Equation (25) in a canonical form where each parameter appears

once only:

d
%

 = p2 / p1 – 1.

We compute the ratio interval for p2 / p1 with Equation (23), and subtract 1.

5. Effect sizes and meta-tests

More complex applications of this interval algebra can be found in the derivation of intervals for

effect sizes, which are properties of a contingency table or vector. Traditionally, effect sizes were

quoted to estimate the absolute scale of differences in observed distributions, without confidence

intervals. Only ‘small’, ‘medium’ or ‘large’ effects were cited (Sheskin 2011: 676).

We will consider two examples, each with multiple applications.

5.1 Unweighted goodness of fit φp

Unweighted error φp (Wallis 2021: 229) is a simple ‘root mean square’ goodness of fit error

measure. It sums the difference between observed and expected proportions pi and Pi. For two-

valued tables, it equals the difference | p1 – P1 |. A small score means a close fit.

unweighted φp = ∑ − 2/)( 2

ii Pp . (26)

Wallis (2021e) obtains an interval for φp in two steps. First, we obtain an interval for each summed

term,
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squared difference sqd(pi) = (pi – Pi)
2
/2.

This function is non-monotonic, with a local minimum, 0, at Pi (considered ‘given’, i.e. constant).

We obtain a conservative interval (di
–
, di

+
) from

sqd(pi) ∈ (di
–
, di

+
) = 









<

>

+−

+−+

−+−

otherwise.)))sqd(),max(sqd(,0(

 if))sqd(),(sqd(

 if))sqd(),(sqd(

ii

iiii

iiii

ww

Pwww

Pwww

(27)

Second, we use a modified version of the sum formula in Table 3 to account for the fact that a k-

valued goodness of fit table has k-1 degrees of freedom.
8

φp
2
 ∈ (L, U) =  (φp

2
 – 

2))(sqd(κ
−−Σ ii dp , φp

2
 + 

2))(sqd(κ
+−Σ ii dp ), (28)

where κ = k/(k – 1). Finally we take the square root to obtain an interval for φp.

Bowie, Wallis and Aarts (2013) employed goodness of fit φ scores to estimate the

correlation between the present perfect construction and present and past-marked verb phrases in

the Diachronic Corpus of Present-day Spoken English (DCPSE), over different genre

subcategories. Without an interval formula, they could only observe that present and past scores

appeared numerically distinct, but could not identify if they were significantly different.
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Figure 10. Comparing goodness of fit scores for the present perfect against present and past-marked

verb phrase baselines across three different genre categorisations in DCPSE, with 95% confidence

intervals obtained from Equation (28). See Wallis (2021e).

Figure 10 plots φp scores over three different genre categories in the corpus: 2 source corpora

(simple ‘time’: LLC and ICE-GB), 10 text categories (of divergent sizes), and 280 texts. There is a

significant difference between each pair of scores. Notably, intervals are smaller where more

subcategories are employed.

                                                
8
 Both series Σpi = 1 and ΣPi = 1. They are not independent. For k = 2, p2 = 1 – p1, and we may employ signed φp = p1 –

P1 with interval (w1
–
 – P1, w1

+
 – P1). Equation (28) obtains the same result if the signed interval is greater than zero.
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5.2 Cramér’s 2 × 2 φ

A more complex derivation is required for Cramér’s 2 × 2 φ. This is a well-known metric closely

related to the chi-square statistic and simple difference (d or ∆P). Unlike difference, φ is

bidirectional (‘associative’), i.e. the same score is obtained when dependent and independent

variables are reversed.

Wallis (2021a: 225) demonstrates how the score can be applied to a grammatical priming

analysis. φ measures the association between two choices, A and B, in the same utterance or text.

Confidence intervals permit us to investigate whether distance attenuates this association, and to

compare association (‘priming strength’) across different grammatical relationships.

A signed φ score for 2 × 2 tables (φ ∈ [-1, 1]) may be calculated by

signed 2 × 2 φ = 
2121

2,11,22,21,1

++++

−

oooo

oooo
, (29)

using the notation in Table 2.

A confidence interval for φ ∈ (φ–
, φ+

) is found by observing that φ2
 = d(x1) × d(y1), where

d(x1) is the difference in proportions of x1 out of X (along the y axis), etc. Differences d(x1) and

d(y1) are monotonically related, and not independent. Zou and Donner’s method is therefore

inappropriate (see 4.4 above). Instead, an interval is obtained from the signed geometric mean of the

differences:

φ–
 = – )()())(sign( 111 xdydyd

+++ × , and

φ+
 = – )()())(sign( 111 xdydyd

−−− × , (30)

where d
+
(x1) is the upper Newcombe-Wilson bound of d(x1), etc. The initial term ‘–sign(d

+
(y1))’,

etc. reinstates the sign of φ.
9
 This interval outperforms standard error based estimates (Bishop,

Fienberg and Holland 1975: 387) for reasons similar to those identified in Section 3.3.

5.3. Meta-tests for differences between scores

Zou and Donner’s (2008) theorem can be employed to compare any pair of independent scores for

significant difference. Provided that we have a good-coverage interval for each parameter, we can

substitute them into Equation (22) and create a difference interval and test.

Wallis (2019b; 2021a: 233-260) discusses a series of meta-tests that evaluate differences

between scores. So-called ‘difference of differences’ tests may be employed in replication studies,

or to examine the impact of changes in experimental design.

A simple example is the Newcombe-Wilson gradient meta-test, for comparing two observed

differences (gradients). Employing Zou and Donner’s theorem we have

difference of differences (wd

–
 , wd

+
) = (– 22 )()(

21

−+ + dd ww , 22 )()(
21

+− + dd ww ), (31)

where (wdi

–
, wdi

+
) is the zero-based Newcombe-Wilson interval width for di (Equation (18)). To test

if the two differences are significantly different, we compare the difference of differences d = d2 –

d1 with this interval. (We may also reposition the interval about d for plotting purposes.)

We can use this method to compare any two independent properties, such as risk ratios or

effect sizes (Figure 10). It may also be generalised across multiple degrees of freedom using χ2
.

                                                
9
 The equation fails if terms within the square root have different signs, which can occur near 0. Zero or the negated

arithmetic mean may be substituted.
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As a corollary, we can employ the Wilson interval comparison heuristic (Equation (20)) to

visually compare any two properties for which this test is legitimate. Note that in Figure 10, two out

of the three interval pairs do not overlap.

6. Conclusions

Lab researchers learn that measurement is embodied with an estimate of accuracy. Likewise,

observed means, proportions and probabilities are necessarily qualified estimates, their accuracy

determined by sample size and method. When we plot or cite statistics derived from data we should

account for sampling uncertainty.

The solution is to deploy confidence intervals identifying the most likely range of the true

population value. This is not to be confused with ‘scatter’, i.e. observed within-sample spread.

Accurate confidence intervals on a Binomial proportion p ∈ P = [0, 1] are asymmetric,

except at p = 0.5, due to the presence of bounds at 0 and 1. We have previously shown that in

computing Binomial intervals, the Wilson score interval with continuity-correction performs almost

as well as ‘exact’ methods. The principal advantage of Wilson-derived methods is not merely

efficient computation. They can be readily corrected for continuity, finite population and random-

text sampling, by first adjusting the Wilson formula for each term.

Armed with a reliable model for estimating the sampling error of a single proportion, p, a

wide range of possibilities emerge through algebra and some basic theorems. We have shown that

we may

• transform the interval to other mathematical scales, such as 1/p, ln(p), or logit(p),

• compute intervals for differences between independent proportions p2 – p1, and other

mathematical relations (sum, ratio, product, power, etc.),

• create intervals for other properties derived from these, such as the odds ratio,

percentage difference and effect sizes, and

• create meta-tests, such as the difference in differences gradient test.

We demonstrated that despite the fact that summation of variance is performed on different scales,

their inner intervals have comparable performance to classical contingency tests (χ2
, Fisher).

Confidence intervals have long been seen as ‘not proper’ statistics, because their

conventional treatment depended on a fundamentally erroneous standard error model. Even when a

Normal model is legitimate (such as testing for d ≠ 0 with a Gaussian interval on p^), it has limited

generality. It is time to restore confidence intervals to their rightful place.

The following are recommended. Graphed proportions, differences and other scores should

be plotted with confidence intervals wherever feasible, and variables should be cited with bounds at

selected error levels. This approach should replace the long-criticised practice of ‘p value’ citation.

Aside from the logical error involved in comparing error levels (p values) between experiments,

they do not encourage an appreciation of the uncertainty of observations.

Given the errors we have seen with difference, ratio and φ intervals, it would be surprising if

other formulae and algorithms were immune to the ‘standard error’. Their internal workings should

be reviewed, and where this error has appeared, substituted with Wilson-based alternatives.
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Appendix 1

To evaluate their consistency with classical contingency testing, we can treat difference and ratio

intervals as a type of 2 × 2 test. In essence, such tests compare if p1 ≠ p2, where ‘≠’ is interpreted as

‘is significantly different from’. A difference test compares if d = p2 – p1 ≠ 0, whereas a ratio test

compares if the risk ratio r = p1 / p2, logarithm l = ln(p1) / ln(p2), or odds ratio o = odds(p1) /

odds(p2) ≠ 1.

For n1 = n2 from 1 to 200, we enumerate all discrete matrix combinations and compare test

performance. Where the test differs from the Fisher ‘exact’ test, we sum the additional error,

weighted by the prior probability of that cell combination occurring (the Fisher weight). See Wallis

(2021c). We repeat the exercise for n1 = 5n2.
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Figure A1. Fisher-weighted error rates for Type I errors against the Fisher ‘exact’ test, computed for

values of n2 ∈ {1, 2,… 200}, α = 0.05, with equal-sized samples. Yates’s χ2
 test obtains no Type I

errors in this case.
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Figure A2. Fisher-weighted error rates for Type I errors against the Fisher ‘exact’ test, computed for

values of n2 ∈ {1, 2,… 200}, α = 0.05, with unequal-sized samples (n1 = 5n2).


