
Comparing χχχχ2 tables for separability of distribution and effect

Meta-tests for comparing homogeneity and goodness of fit contingency test
outcomes

Sean Wallis, Survey of English Usage, University College London

Abstract

This paper
1
 describes a series of statistical meta-tests for comparing independent contingency tables

for different types of significant difference. Recognising when an experiment obtains a significantly

different result and when it does not is frequently overlooked in research publication. Papers are

frequently published citing ‘p values’ or test scores suggesting a ‘stronger effect’ substituting for

sound statistical reasoning. This paper sets out a series of tests that together illustrate the correct

approach to this question.

These meta-tests permit us to evaluate whether experiments have failed to replicate on new data;

whether a particular data source or subcorpus obtains a significantly different result than another; or

whether changing experimental parameters obtains a stronger effect.

The meta-tests are derived mathematically from the χ2
 test and the Wilson score interval, and

consist of pairwise ‘point’ tests, ‘homogeneity’ tests and ‘goodness of fit’ tests. Meta-tests for

comparing tests with one degree of freedom (e.g. ‘2 × 1’ and ‘2 × 2’ tests) are generalised to those of

arbitrary size. Finally, we compare our approach with a competing approach offered by Zar (1999),

which, while straightforward to calculate, turns out to be both less powerful and less robust.

Keywords: separability test, contingency test, χ2
 test, Wilson score interval, goodness of fit,

homogeneity, heterogeneity, meta-analysis

1. Introduction

Researchers often wish to compare the results of their experiments with those of others.

Alternatively they may wish to compare permutations of an experiment to see if a modification in
the experimental design obtains a significantly different result. By doing so they would be able to
investigate the empirical question of the effect of modifying an experimental design on reported
results – as distinct from a deductive argument concerning the optimum design.

One of the reasons for carrying out such a test concerns the question of replication. Significance
tests and confidence intervals rely on an a priori Binomial model predicting the likely distribution
of future runs of the same experiment. However, there is a growing concern that allegedly
significant results published in eminent psychology journals have failed to replicate (see, e.g.
Gelman and Loken 2013). The reasons may be due to variation of the sample, or problems with the
experimental design (such as unstated assumptions or baseline conditions that vary over
experimental runs). The methods described here permit us to define a ‘failure to replicate’ as
occurring when subsequent repetitions of the same experiment obtain statistically separable results
on more occasions than predicted by the error level, ‘α’, used for the test.

Let us begin with a real example. Consider Table 1, taken from Aarts, Close and Wallis (2013). The
two tables summarise a pair of 2 × 2 contingency tests for two different sets of British English
corpus data for the modal alternation shall vs. will. The spoken data is drawn from the Diachronic

Corpus of Present-day Spoken English, which contains matching data from the London-Lund

Corpus and the British Component of the International Corpus of English (ICE-GB). The written
data is drawn from the Lancaster-Oslo-Bergen (LOB) corpus and the matching Freiburg-

Lancaster-Oslo-Bergen (FLOB) corpus.

Both 2 × 2 subtests are individually significant (χ2
 = 36.58 and 35.65 respectively). The results (see

the effect size measures φ and percentage difference d
%

) appear to be different.

                                                
1
 A spreadsheet including all the tests discussed in this paper is at www.ucl.ac.uk/english-usage/statspapers/2x2-x2-

separability.xls. As the explanation is quite involved we would recommend downloading it.
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How might we test if the tables are significantly different from each other?

We can plot Table 1 as two independent pairs of probability observations, as in Figure 1. We
calculate the proportion p = f/n in each case, and – in order to estimate the likely range of error
introduced by the sampling procedure – compute Wilson score intervals at a 95% confidence level.

 (spoken) shall will Total χ2
(shall) χ2

(will) summary

LLC (1960s) 124 501 625 15.28 2.49 d
%

 = -60.70% ±19.67%

ICE-GB (1990s) 46 544 590 16.18 2.63 φ = 0.17

TOTAL 170 1,045 1,215 31.46 5.12 χ2 
=

 
36.58

 (written) shall+ will+’ll Total χ2
(shall+) χ2

(will+’ll) summary

LOB (1960s) 355 2,798 3,153 15.58 1.57 d
%

 = -39.23% ±12.88%

FLOB (1990s) 200 2,723 2,923 16.81 1.69 φ = 0.08

TOTAL 555 5,521 6,076 32.40 3.26 χ2
 =

 
35.65

Table 1: A pair of 2 × 2 χ2
 tables for shall/will alternation, after Aarts et al. (2013): upper, spoken, lower:

written, with other differences in the experimental design. Note that χ2
 values are near-identical but Cramér’s

φ and percentage swing d
%

 are different.

The intervals in Figure 1 are shown by ‘I’ shaped error bars: were the experiment to be re-run
multiple times, in 95% of predicted repeated runs, observations at each point will fall within the
interval. Where Wilson intervals do not overlap at all (e.g. LLC vs. LOB, marked ‘A’) we can
identify the difference is significant without further testing; where they overlap such that one point
is within the interval the difference is non-significant; otherwise a test must be applied.

In this paper we discuss two different analytical comparisons.

A. ‘Point tests’ compare pairs of observations (‘points’) across the dependent variable (e.g.
shall/will) and tables t = {1, 2}. To do this we compare the two points and their confidence
intervals. We carry out a 2 × 2 χ2

 test for homogeneity or a Newcombe-Wilson test (Wallis
2013a) to compare each point. We can compare the initial 1960s data (LLC vs. LOB, indicated)
in the same way as we might compare spoken 1960s and 1990s data (e.g. LLC vs. ICE-GB).

B. ‘Gradient tests’ compare differences in ‘sizes of effect’ (e.g. a change in the ratio shall/will over
time) between tables t. We might ask, is the gradient significantly steeper for the spoken data
than for the written data?

Note that these tests evaluate different things and have
different outcomes. If plot-lines are parallel, the
gradient test will be non-significant, but the point test
could still be significant at every pair of points. The
two tests are complementary analytical tools.

1.1 How not to compare test results

A common, but mistaken, approach to comparing
experimental results involves simply citing the output
of significance tests (Goldacre 2011). Researchers
frequently make claims citing t, F or χ2

 scores, ‘p
values’ (error levels), etc, as evidence for the strength
of results. However, this fundamentally misinterprets
the meaning of these measures, and comparisons
between them are not legitimate.

0

0.1

0.2

1960s 1990s

written
spoken

LOB

FLOB

LLC

ICE-GB

B. effect (gradient) test

A. point test

p(shall | {will, shall…})

Figure 1: Example data in Table 1, plotted with

95% Wilson score intervals (Wallis 2013a).

Points are separated horizontally for clarity.
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Consider the following pair of tables, T1 and T2 (Table 2).

A moment’s glance reveals that T1 contains exactly 10 times the data of T2, but data is distributed
identically, and the gradient is the same. Computing the 2 × 2 χ2

 test for homogeneity (Sheskin
1997: 209), we find that T1 is significant (p is very small), whereas T2, with exactly the same
distribution and gradient, is non-significant. Despite the low ‘p value’, it is also incorrect to refer to
T1 as ‘highly significant’. χ2

, F, t and p are estimates of the reliability of results (the likelihood that
results would be found on experimental replication), rather than the scale of results.

T1 x ¬x total T2 x ¬x total

y 290 110 400 y 29 11 40

¬y 220 200 420 ¬y 22 20 42

total 510 310 820 total  51 31 82

χ2
 = 35.27 p ≈ 0.0000 χ2

 = 3.53 p = 0.0604

Table 2: Some illustrative data with the results of χ2
 tests for homogeneity in both cases. ‘p’ represents the

error level, commonly referred to by ‘α’ to distinguish it from other probabilities.

The fact that one chi-square value or error level exceeds another merely means that reported
indicators differ numerically, which can arise simply due to the fact that one experiment was able to
use a larger experimental dataset than another. It does not mean that the results can be statistically

separated, i.e. that tables of observed data can be said to be significantly different from each other
at a given error level.

1.2 Comparing sizes of effect

‘Effect size’ statistics, such as probability difference, percentage swing, log odds, Cramér’s φ,
Cohen’s d, etc. attempt to summarise observed distributions in terms of their absolute difference.
They factor out differences due to the quantity of data observed and may legitimately be employed
for comparison purposes.

Cramér’s φ (Sheskin 1997: 244) is based on χ2
, but it is scaled by the quantity of data N. For a 2 × 2

table with cell frequencies represented as [[a b] [c d]], we can compute a signed score with equation
(1) ranging from [-1, 1]. With larger tables of dimensions r × c, the unsigned score (2) may be used,
where k is the number of cells along the shorter side, i.e. min(r, c).

φ ≡ 
))()()(( dbcadcba

bcad

++++

−
(1)

|φ| = 
Nk )1(

2

−
χ

(2)

In the case of the tables above, both tables obtain exactly the same score, φ = 0.2074.

Effect size measures adjust for the volume of data and measure the pattern of change (the
‘gradient’) observed. However, effect size comparisons are discussed in the literature in
surprisingly crude terms, e.g. ‘strong’, ‘medium’ and ‘weak’ effects (cf. Sheskin 1997: ibid). This is
unsatisfactory.

To claim a significant difference in experimental outcomes between experimental ‘runs’, one
method would be to establish that effect sizes (e.g. ‘gradients’) significantly differ. In the case of
larger tables of more than one degree of freedom, we extend this principle to one in which
distributions are compared in an analogous manner.
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As a shorthand we will refer to a difference in distribution as ‘separability’. In this paper we attempt
to address how the question of ‘significant separability’ may be evaluated.

1.3 Meta-tests

The tests we describe here represent the building blocks for ‘meta-analysis’: they provide a method
for comparing experimental results.

Other researchers have proposed tests for comparing experimental runs. The McNemar test
(Sheskin 1997: 315) translates cross-tabulated scores to a χ2

 test; Cochran’s Q test (ibid: 469)
generalises this to k sets of scores.

The most similar meta-test to the approach we discuss below is Zar’s chi-square heterogeneity
analysis (Zar 1999: 471, 500). Section 5 reviews these tests and compares them with our approach.
The key difference is that Zar’s method assumes that data in both samples have (approximately) the
same prior distribution (i.e. the same starting point), whereas our tests do not. Zar’s test does not
distinguish between tests that compare points and those that compare gradients.

In this paper we discuss contingency tests. A comparable procedure for comparing multiple runs of
t tests (or ANOVAs) is the test for interaction in a factorial analysis of variance (Sheskin 1997: 489)
where one of the factors represents the repeated run.

This paper is laid out as follows. Following some preliminaries, in section 3 we introduce the ‘point
test’ and ‘multi-point test’ for comparing the distribution of data across the dependent variable in
homogeneity tables. Section 4 introduces ‘gradient test’ methods for comparing sizes of effect in
homogeneity tables, commencing with intervals and tests with a single degree of freedom, a test
comparing Cramér’s φ effect sizes, and ending with formulae for generalising tests to compare
larger tables (r × c homogeneity tables).

Section 5 introduces a similar range of ‘gradient’ meta-tests for comparing goodness of fit test
results. In section 6 we compare our methods with Zar’s alternative approach, and section 7 is the
conclusion.

2. Some preliminaries

2.1 Test assumptions

In comparing experimental runs or designs, we assume that both dependent and independent
variables are matched but not precisely identical, i.e., in both tests we attempt to measure the same
quantities by different definitions, methods or samples. Table 1 contains data drawn from different
data sources (corpora) and a different set of queries were employed in each case.

2

The meta-test then compares these test results for separability. This tells us if the effect of changes
in experimental design, or differences between samples, obtain a significantly different result.

Three broad classes of test are summarised in Figure 2: those that distinguish results of goodness of
fit tests (‘separability of fit’), point tests for homogeneity (‘separability of observations’) and those
that compare the gradient of homogeneity (‘separability of independence’).

In this paper we will focus on 2 × 2 and 2 × 1 tests because they have one degree of freedom, so
significant differences in size of effect may be explained by a single factor.

                                                
2
 Aarts et al. (2013) break this comparison into a series of different intermediate experimental design changes to

identify where precisely the significant difference in results arises.
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We will explain how these tests may be
generalised to evaluating larger tables.
However, it is good analytical practice (see
e.g. Wallis 2013b) for such tables – which
have many degrees of freedom and multiple
potential axes of variation – to be analysed
by subdivision into smaller tables in order to
identify areas of significant difference each
with a single degree of freedom. The simplest
tests we describe here may therefore have the
greatest utility.

2.2 χχχχ2
, z and Wilson intervals

The task of comparing two binomial
proportions is a common one. The ubiquitous 2 × 2 χ2

 test and the z test for two independent
proportions drawn from the same population are mathematically equivalent (Wallis 2013b).

These tests employ an approximation of the continuous and symmetric Gaussian (Normal)
distribution to the discrete and asymmetric Binomial distribution. This model is robust except with
small datasets and skewed data, and (as generations of student statisticians have discovered), leads
to advice regarding low frequency cells, employing Yates’ continuity correction, etc. For an
analysis of the performance of these tests, see Wallis (2013a).

3

The z test is performed by comparing the difference between two proportions, d = p1 – p2, to
determine whether this difference exceeds a confidence interval. The values p1 and p2 are Binomial
proportions of the form p = f/n, where f is the number of observed instances of a subtype of n cases,
each assumed to be independent and free to take one subtype value or another. The difference
interval is calculated by combining the confidence intervals for each single proportion separately.
The test has one degree of freedom, and the difference can range from [-1 to +1].

A related z test compares two independent proportions from independent populations. In this case
we do not assume that the population probability is the same in both samples. The test is more
appropriate for a ‘between subjects’ experimental design, i.e. one in which the independent variable
partitions data by speaker. This type of test is therefore clearly more theoretically appealing for the
type of evaluation discussed in this paper: we wish to compare different ‘runs’ of the same
experiment, so we do not assume that the populations are identical.

Both types of z test can be expressed in terms of testing a difference against an error threshold ed. In
the case of Gaussian methods, we first compute a standard deviation of the difference, sd, using the
sum of variances rule (also known as the Bienyamé rule).

standard deviation sd ≡
2

2

2

1 ss +  = 
2

22

1

11 )1()1(

n

PP

n

PP −
+

−
, (3)

where P1 and P2 are the population probabilities for each observation. We then take ed = zα/2.sd

where zα/2 represents the critical value of the Normal distribution, z, with a two-tailed error of α to
obtain the interval (–ed, ed). The test is not significant if –ed < p1 – p2 < ed.

                                                
3
 Some statisticians have correctly pointed out that the Binomial model, and thus χ2

, z, etc., rely on the assumption that

data is drawn from a random sample where each datum is independent, rather than (as is common in corpus linguistics)

a random sample of contiguous texts. This may be addressed by adapting variance for random-text sampling using the

method outlined in http://corplingstats.wordpress.com/2015/09/22/adapting-variance. This adjustment, like the

continuity correction, can be combined with the methods outlined in this paper.

A

¬a

A'

¬a'

independence (homogeneity)

fit

observations

a'a

Figure 2: Visualising separability tests. From top:

separability of fit compares fitness of a to A with a' to A';

separability of observations (the ‘point test’) compares a

and a'; separability of independence compares

homogeneity tests for a and ¬a, and a' and ¬a'.
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For the same-population z test (equivalent to the 2 × 2 χ2
 test) we may substitute the pooled

probability estimate p^ for both P1 and P2. We have p^ = F/N, and (3) becomes

standard deviation sd ≡ )()ˆ1(ˆ
21

11
nn

pp +− . (4)

In the case of independent populations, population means P1 and P2 could be different. Sheskin
(1997: 229) simply proposes that we substitute the observed probabilities p1 and p2 into (3),
employing the sum of variances rule.

However, this substitution is an example of an oft-repeated mathematical mistake: the ‘Wald’
interval (Wilson 1927).

4
 The Wald interval (often cited as ‘standard error’) assumes that the

expected probability distribution of the population mean P around an observation p is Normal with
variance p(1 – p) / n.

In fact, the correct approximation is in the opposite direction – the Normal approximation to the
Binomial means that we expect to find p distributed Normally about P. To compute confidence
intervals on p, Wilson derives the following asymmetric score interval:

Wilson score interval (w
–
, w

+
) ≡ 










+














+

−
±+ αα

α
α

n

z

n

z

n

pp
z

n

z
p

2

2/

2

2

2/
2/

2

2/ 1
4

)1(

2
. (5)

In cases ‘at the edge of significance’, where P = w
–
 or w

+
, Wilson’s interval for p obtains the exact

same interval width as the equivalent Normal interval for P (Wallis 2013a). This means that in a
goodness of fit test, it does not matter whether one computes the Normal interval about P or the
Wilson interval about p – the result of the test is identical. But the best measure of the error interval

for an observed p is obtained with equation (5) (or a continuity-corrected version
5
 of it).

Newcombe (1998) uses Wilson’s score interval to obtain an accurate method for estimating a
confidence interval on the difference between two independent observed proportions d = p1 – p2.

6

The Newcombe-Wilson difference interval (wd

–
, wd

+
) is obtained as follows:

wd

–
  ≡ –

2

22

1

11
2/

)1()1(

n

ww

n

ww
z

−−++

α

−
+

−
, wd

+
 ≡ 

2

22

1

11
2/

)1()1(

n

ww

n

ww
z

++−−

α

−
+

−
, (6)

where pi = fi / ni, w
–
i and w

+
i are the upper and lower bounds of the Wilson interval for pi, and wd

–
 and

wd

+
 are the bounds of the new interval.

7
 The related test is not significant if the difference is within

the interval, i.e. where wd

–
 < p1 – p2 < wd

+
.

In practical terms this computation means that if p1 < p2, wd

–
 is considered; if p1 > p2, wd

+
 is relevant.

Although it is common to compute both inner and outer sides with Newcombe’s formula, for testing

                                                
4
 This extremely common mistake introduces substantial errors in practice (Newcombe 1998; Wallis 2013a). The

method also produces absurd results, such as projecting possible values of P outside of the range [0, 1], which leads to

further conservative injunctions to experimentalists to avoid highly-skewed values.
5
 ‘Continuity-corrected’ versions of these intervals are given in Wallis (2013a). This correction is usually recommended

with small samples, and it increases the interval width to compensate for the fact that the continuous Normal

distribution is being approximated to the discrete Binomial. It therefore makes the test slightly more conservative. We

do not present continuity-corrected formulae in this paper, primarily for reasons of presentation, but also because it is

not common to use them in meta-testing. However substitution of the Gaussian and Wilson errors with the continuity

corrected formulae is simple.
6
 Like Yates’ χ2

, this can also employ a continuity correction, and, so corrected, outperforms other methods (except,

arguably, computationally intensive ‘exact’ methods).
7
 Compare equations (3) and (6). Newcombe’s reasoning is that at the lower bound of the difference, the best estimate

of P1 and P2 is at w
1

+
 and w

2

–
 respectively (and vice versa for the upper bound).
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purposes, only the inner side need be considered. In Figure 3, p1

> p2, d is positive, and we compute wd

+
 from the inner intervals

indicated.

2.3 Example data and notation

We will use the data in Table 1 to exemplify what follows, but
first we need to introduce some notation. Each table contains a
dependent variable A (columns: modal shall vs. will) and an
independent variable B (rows: time period). In Table 3 we
simply represent this data and relevant terms.

The Binomial proportion (probability) of selecting the first value
in column i in subtest t is pt,i ≡ ft,i/nt,i (thus p1,1 = 124/170 =
0.7924). We will use dt to represent the difference in proportions in each subtest (dt ≡ pt,1 – pt,2), and
st for the standard deviation of the difference.

f1,1 = 124 f1,2 = 501 F1 = 625 f2,1 = 355 f1,2 = 2,798 F2 = 3,153

46 544 590 200 2,723 2,923

n1,1 = 170 n1,2 = 1,045 N1 = 1,215 n2,1 =  555 n2,2 = 5,521  N2 = 6,076

p1,1 = 0.7924 p1,2 = 0.4794 p^1 = 0.5144 p2,1 = 0.6396 p2,2 = 0.5068 p^2 = 0.5189

Table 3: Table 1, revisited, with notation and probabilities calculated as a proportion of column totals.

Difference measures can be easily visualised, as in Figure 4. The question we are concerned about
is determining the appropriate confidence interval for D, and thus a significance test.

These tests compare a pair of χ2
 tables, each table with data drawn from different populations. The

data within each separate contingency table may come from the same population (the optimum test
being Yates’ continuity-corrected χ2

) or from different populations, e.g. different time periods. In
the calculations that follow we will use an error level α = 0.05.

 8

3. Point and multi-point tests for homogeneity tables

3.1 The Newcombe-Wilson point test

If data is plotted with Wilson score intervals, the most natural next step is simply to carry out a
Newcombe-Wilson difference test. This tests whether the observed difference between two points,
d = p1,i – p2,i, is greater than a difference interval (wd

–
, wd

+
) computed from the two Wilson intervals

with equation (6).

Consider the 1960s data in Table 1 (Figure 1). We draw data from row 1 in both tables ({shall, will}
= {124, 501} and {355, 2798}), to obtain probabilities p1,1 = 0.1984 and p2,1 = 0.1126. The
difference in probabilities, d = 0.0858.

At α = 0.05, we compute a Newcombe-Wilson difference interval of (-0.0347, 0.0312) from the
inner Wilson score intervals (see Figure 3), an interval that d exceeds. The difference is therefore
significant.

                                                
8
 When applying multiple tests, researchers should divide the error level α by the number of independent tests to be

carried out. We do not do this here for reasons of simplicity.

0.0

0.1

0.2

0.3

p1 p2

d

w2
+

w1
–

Figure 3: Identifying the inner

interval (arrows) for a difference d.
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3.2 The Gaussian point test

We can also employ the z test or χ2
 test to perform the same comparison. These tests assume that

both observations are Binomially distributed about the pooled probability estimate, and we compute
a standard deviation from that figure using equation (4).

9

In our data we obtain a pooled probability estimate p^ = 0.1268 and standard deviation sd = 0.0146.
The Gaussian error ed = zα/2.sd = 0.0285, which obtains an interval that d = 0.0858 exceeds.

An alternative computation that achieves the same result employs the standard homogeneity χ2

formula, χ2
 = Σ(ft,j – Et,j)

2
/Et,j, where Et,j = nt × nj / N. The χ2

 computation for the point test is then
carried out by arranging data to create a new 2 × 2 contingency table, DV × table t, [[124, 501]
[355, 2798]]. This obtains χ2

 = 34.69, which exceeds the critical value for one degree of freedom.

Using χ2
 has one advantage: it can be extended to variables with multiple values, and applied to

multiple experimental runs. For dependent variables with c values, over t runs, we may employ a
homogeneity test for t x c tables.

3.3 The multi-point test for r × c homogeneity tests

We can generalise the ‘point test’ to a ‘multi-point test’ by simply applying the following formula.

χ2

d
 ≡ ∑

=

χ
r

i

i
1

2 )( , (7)

where χ2
(i) represents the χ2

 score for homogeneity for each set of data at position i in the
distribution. This has r × df(i) degrees of freedom, where df(i) is the degrees of freedom for each χ2

point test.

Note that whereas χ2
 is generally associative (bi-directional), equation (7) is not. The multi-point

test factors out variation between tests over the independent variable – so if there is a lot more data
in one table in one particular time period, it does not skew the results – but does not factor out
variation over the dependent variable. (After all, this is precisely what we wish to examine.)

In brief, the calculation is applied over the dependent variable, e.g. {shall, will}; {shall, will, BE

going to}, etc. and table t, and summed over the independent variable.

We will discuss the Binomial case with c = 2 below and use it to examine the data in Table 1.

In 2 × 2 homogeneity tables the z score is the square root of the χ2
 score (Wallis 2013b), so we can

also apply the following substitution:

χ2

d
 ≡ 

( )
∑

=

−r

i i

ii

s

pp

1
2

2

,2,1
. (8)

where

• variance s
2

i ≡ p^ i(1 – p^ i) (1/n1,i + 1/n2,i)
• expected (pooled) probability p^ i ≡ (f1,i + f2,i) / (n1,i + n2,i)
• observed probability pt,i ≡ ft,i / nt,i ,

and ft,i represents the observed cell frequency in the first column of test t, and nt,i the row sum for
that column. The formula sums r point tests, so it has r degrees of freedom.

                                                
9
 Since data is drawn from two independent populations, strictly speaking the Wilson method is to be preferred, but it

does not make a substantive difference to the result.
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Table 4 shows the computation for the data in Table 3.

shall will shall will p1 p2 p
^

s
2 χ2

1960s 124 501 625 355 2798 3153 0.1984 0.1126 0.1268 0.0002 34.6906

1990s 46 544 590 200 2723 2923 0.0780 0.0684 0.0700 0.0001 0.6865

170 1045 1215 555 5521 6076 35.3772

 Table 4: Table 1 revisited, with the generalised point test calculation (equation (8)). χ2
 = 35.38 is significant

with 2 degrees of freedom and α = 0.05.

Since the computation sums independently-calculated χ2
 scores, each score may be individually

considered for significant difference (with df(i) degrees of freedom). Hence the large score for the
1960s data (individually significant) and the small score for 1990s (individually non-significant).

 10

4. Gradient tests for homogeneity tables

For each table we calculate the pooled probability estimate and standard deviation using equation
(4). The differences in proportions in this case are d1 = 0.2500 (0.7924 – 0.4794) and d2 = 0.1328
(0.6396 – 0.5068). By subtraction we obtain the difference in differences (Figure 4), D = d1 – d2 =
0.1171.

4.1 The 2 × 2 χχχχ2
 test for homogeneity

We compute standard deviations with equation (4) and error intervals for d1 and d2 with α = 0.05.
Employing the equivalence e ≡ zα/2.s, the symmetric error interval about zero may be computed as

eD = 22

21 dd ee + = √0.0810
2
 + 0.0436

2 
= 0.0920. (9)

In our case, difference D = 0.1171 exceeds the interval (-0.0920, 0.0920), and therefore the test is
deemed significant at error level α. The gradients are different.

4.2 The 2 × 2 Newcombe-Wilson test

The optimum 2 × 2 test for samples obtained
from independent populations is the
Newcombe-Wilson test with continuity
correction. It may be used in preference to
Yates’ test where values of the independent
variable (‘samples’) are obtained from distinct
data sources (Wallis 2013a). Exactly the same
data is applied, and D is computed as before,
but the confidence interval we obtain is
calculated differently.

In this evaluation, we use Wilson’s (1927)
asymmetric score interval for p (equation 5)
with α = 0.05, to derive Wilson score intervals
(see Figure 1). The difference interval is
computed with equation (6). In our shall/will
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tables. We want to focus only on differences between tables.
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 In Figure 2 we have centred these intervals on the observation, rather than the zero axis. The upper bound of D, w
D

+
,

is therefore on the lower side of D, i.e. instead of testing D > w
D

+
, we test D – w

D

+ 
> 0.

0.0

0.1

0.2

0.3

d1 d2 D

D

N
ew

co
m

b
e-

W
il

so
n

G
au

ss
ia

n

wD

+
eD

wd

+

2

Figure 4: Gaussian (dashed) and Newcombe-Wilson

difference intervals about zero for d1, d2 and D, centred

on the observations. Where an interval does not include

zero (eD < D, wD

+ 
< D), the difference is significant.

11



Comparing χ2
 tables for separability - 10 - © Sean Wallis, SEU 2017

data, this obtains the Newcombe-Wilson difference intervals for d1 and d2. We can write these as
follows:

d1 = 0.2500 – (-0.0682, 0.0775) > 0, and
d2 = 0.1328 – (-0.0410, 0.0429) > 0.

We then apply the sum of variances rule to two instances of Newcombe’s interval, substituting
appropriate pairs of Newcombe-Wilson w values for e1 and e2 (Zou and Donner 2008). The upper
bound is the inner side of the interval when D is positive, respectively wd

+

1
  and wd

–

2
.

wD

+
 = 22 )()(

21

−+ + dd ww  = 22 0410.00.0775 + = 0.0877. (10)

Similarly the lower bound wD

–
 = 0.0805, obtaining an interval of (–wD

–
, wD

+
) = (-0.0805, 0.0877).

Again, D = 0.1171 exceeds this range, and the difference of differences is significant.

4.3 Cramér’s φφφφ interval and test

The methods we have seen thus far in this section estimate intervals for differences in differences
(gradients). We will briefly consider an alternative approach that uses an alternative, widely-used
measure of effect size.

Cramér’s φ measures the degree of perturbation of the 2 × 2 matrix in a well-defined linear manner
(Wallis 2010). It combines gradient and starting point in a single statistic with one degree of
freedom. We have already seen the signed 2 × 2 measure of association, φ, in equation (1), which
ranges from –1 to +1.

φ ≡ 
))()()(( dbcadcba

bcad

++++

−
 =

)(

)()(

21

112221

FNFnn

fnffnf

−

−−−
. (1')

The second formula adopts the notation in Table 3, discarding subtest indices (t) for clarity. Using
our contingency tables this formula obtains φ1 = 0.1735 and φ2 = 0.0766. The difference φ1–φ2 =
0.0969. (Differences range from –2 to +2.)

An alternative method for comparing 2 × 2 test outcomes is to compare this difference with a
difference interval for φ. The standard deviation of φ is given by Bishop, Fienberg and Holland
(1975: 386) as:

s(φ) ≈
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2 , for φ ≠ 0 (11)

where pij = fij /N and pi+, p+j, etc. represent row and column (prior) probabilities.

Applying this formula to our data obtains standard deviations of s(φ1) = 0.0265 and s(φ2) = 0.0125.
In each case φ exceeds the respective error interval (e(φ1) = 0.0519; e(φ2) = 0.0244), confirming that
each 2 × 2 table is individually significant.

Second, we create an interval for comparing values of φ using the Bienyamé equation (9). This
assumes that the error around φ is Normally distributed.
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ed = 2

2

2

1 )()( ϕ+ϕ ee  = 22 0.02440.0519 +  
= 0.0573.

Since φ1–φ2 = 0.0969 exceeds this interval, the difference is significant.

In principle, this formula is extensible to comparing larger r × c tests and even tests of different
design. However, with multiple degrees of freedom in each test, it is not clear how meaningful
results would be.

Unfortunately, even for 2 × 2 tests, the φ method has three further disadvantages over difference
methods. For φ = 0 it fails. It employs a conservative Gaussian (Normal) approximation. Thirdly, φ
is ‘associative’, so directional information is factored out. In Wallis (forthcoming) we show how
Newcombe-Wilson differences (section 4.2) may be compared across both variables in a 2 × 2 table
using a separability test to decide if one variable obtains a greater difference than the other. This test
is simply not possible with φ, because the difference between φ scores in either direction is always
zero.

Considering alternative approaches, in comparing 2 × 2 contingency tests for gradient, the
Newcombe-Wilson method is to be preferred over the Gaussian or φ. It makes no assumptions
about the permissibility of pooling probability, and it does not ignore directional information.

The tests we have discussed so far in this section have one degree of freedom only – that concerning
the difference between two differences, and are therefore unambiguous in their interpretation.
Simply stated, the null hypothesis is that the two tests have the same effect size.

4.4 r × 2 homogeneity tests

In this section we briefly discuss how gradient tests can be extended to larger tables with multiple
degrees of freedom. Here, this notion of differences in size of effect (gradient) might be better
defined as differences in ‘patterns of effect’, i.e. the distribution of individual differences between
the two test evaluations. We will demonstrate Gaussian solutions to this problem using χ2

.

For r × 2 tables we can use equation (12). The difference Di = d1,i – d2,i is squared and divided by
the sum of the two variances; and each term is summed over the table.

χ2

D
 ≡ 
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1 , (12)

where

• difference dt,i ≡ pt,i,1 – pt,i,2,
• variance (equation (4)) s

2

t,i ≡ p^ t,i(1 – p^ t,i) (1/nt,i,1 + 1/nt,i,2)
• pooled probability p^ t,i ≡ Ft,i / Nt,i.

This test has a particular application. In analysing large r × c tables it is often helpful to plot data in
a column (or row) as a series of probabilities with confidence intervals.

It is common to plot the probability of selecting a value of the dependent variable (e.g. the chance
of selecting shall out of the set {shall, will}). With two values, probabilities are mutually exclusive
(p(shall) = 1 – p(will)). But if there are three or more values of the dependent variable (e.g. {shall,
will, BE going to}), then it is useful to plot each line separately.

Consider the example data in Table 5. We will label each row, which represents values of an
independent variable, A, B and C for clarity. We plot the data with Wilson score intervals in
Figure 5.
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A f1,1,A = 20 35 F1,A = 55 f2,1,A = 20 35 F2,A = 55

B 40 40 80 2 10 12

C 1 2 3 3 23 26

n1,1 = 61 77 N1 = 138 n2,1 =  25 68  N2 = 93

Table 5. A pair of 3 × 2 tables with example data.

Although our test statistic is calculated using row
totals (n1,1, etc), this fact does not matter. For gradients
the χ2

 homogeneity test is ‘associative’, i.e. it obtains
the same result if it is summed in either direction.

12

Our meta-test compares the two tables, or plot-lines,
against each other, averaging error intervals. In this
instance we obtain χ2

 = 7.6110, which is significant
for α = 0.05 and two degrees of freedom. This means
we can state that the pattern of effect illustrated by the
two lines are significantly different, without
necessarily specifying where differences lie.

If we examine Figure 5, we can then see that most of
the difference between the lines is attributable to row
B. Row A observes identical probabilities. In row C,
the probability p2,C falls within the confidence interval
for p1,C, so it cannot represent a significant difference
at this point.

4.5 r × c homogeneity tests

For arbitrary-size r × c tables, we sum over both r and c, for (r – 1)(c – 1) degrees of freedom. This
gives us the formula:

χ2
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1 , (13)

where

• difference dt,i,j ≡ pt,i,j – p^ t,i,
• variance s

2

t,i,j ≡ p^ t,i,j(1 – p^ t,i,j) / nt,j

• pooled probability p^ t,i,j ≡ Ft,i,j / Nt,i.

4.6 Interpreting gradient meta-tests for large tables

This illustration bears on a more general point. As tables increase in numbers of cells and degrees of
freedom, the meaningful interpretation of a single significant result calculated across many data
points becomes more difficult. A single number has to express the total ‘difference’ between two
test runs – a difference that could be due to variation at any point.

Large tests are thus more usefully analysed as a series of independent tests. First, we can divide
values of the dependent variable into plot lines and employ the r × 2 test (section 4.4) to consider
each value in turn. Second, we may carry out the multi-point test, comprising a series of point-by-
point comparisons, each with a single degree of freedom, to explore where differences lie. Plotting
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 Summing over the independent variable (rows) may make residuals or ‘chi-square contributions’ misleading, but the

total sum will be the same.
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Figure 5: Plotting data from Table 5 with 95%
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data with Wilson score intervals leads us naturally to the Newcombe-Wilson point test (section 3.1)
and, if required, the Newcombe-Wilson meta-homogeneity test (4.2).

Note that meta-tests require both tables to possess an identical structure. They cannot be
meaningfully applied if tables are structured differently. If one or other table has been reduced in
dimension due to the application of Cochran’s rule for low frequency cells,

13
 the same procedure

must be applied to the other table before the test is applied.

5. Gradient tests for goodness of fit tables

A 2 × 1 ‘goodness of fit’ chi-square test evaluates whether the distribution of a subset is consistent
with (it ‘fits’) an overall expected distribution of a superset. It can be computed using the chi-square
statistic where expected values are simply the scaled total, or rewritten as a single-sample z test for
population proportions (Sheskin 1997: 118; Wallis 2013b).

Let us apply this test to the first column in our example data. Table 3 is reprised for clarity.

f1,1 = 124 501 F1 = 625 f2,1 = 355 2,798 F2 = 3,153

46 544 590 200 2,723 2,923

n1,1 = 170 1,045 N1 = 1,215 n2,1 =  555 5,521  N2 = 6,076

p1,1 = 0.7924 0.4794 p^1 = 0.5144 p2,1 = 0.6396 0.5068 p^2 = 0.5189

Table 3 revisited: for a goodness-of-fit test, compare an observed column with the expected total column.

Expressed as a z test, we must determine whether an observed proportion in column 1, p1,1 = f1,1/n1,1,
differs from the same proportion for the entire set, p^1 = F1/N1. From Table 3, we obtain p1,1 = 0.7294
and p^1 = 0.5144; p2,1 = 0.6396 and p^2 = 0.5189.

We obtain the following differences between probabilities drawn from column 1 and the ‘total’.

d1 = p1,1 – p^1 = 0.2150, and
d2 = p2,1 – p^2 = 0.1207.

In this test condition we compare differences between d1 and d2. This is still a ‘difference of
differences test’, not a point test (comparing p1,1 and p2,1).

However, like the point test, variation exists only at observed probabilities, e.g. p2,1. The intervals
for d1 and d2 are computed assuming the
expected prior is ‘true’.

5.1 The 2 ×××× 1 goodness of fit χχχχ2
 test

The standard deviation of the goodness of fit
test is based on the population probability, so,
employing our notation, s1 = √ p^1(1 – p^1)/n1,1.
This gives us e1 = zα/2.s1 = 0.0751 and e2 =
0.0416 at the 0.05 error level. These errors are
smaller than the equivalent differences, and
each individual test is significant (Figure 6).

These samples are drawn from independent
populations, so to evaluate the difference of
these differences we employ the sum of
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 This is the rule that says that where an expected cell in a table has a frequency of less than 5 it should be collapsed.
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with the difference intervals derived from them.
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variances rule (6) to combine e1 and e2. This gives us a confidence interval of eD = (-0.0859,
+0.0859). The difference of differences, D = d1 – d2 = -0.1207, is outside this interval and is
therefore significant.

However, just as the Newcombe-Wilson test is to be preferred over the standard z test for
independent population proportions, a Wilson-based approach is liable to be more accurate and
informative (data should be plotted with Wilson score intervals). We turn to this model next.

5.2 The 2 ×××× 1 Wilson interval test

We compute Wilson intervals for each observed probability p1,1 and p2,1 (recall that the second
subscript ‘1’ refers to the first column in each table in Table 3). The Wilson score intervals for each
single difference d1 = p1,1 – p^1 (etc.) are then

(w1
–
, w1

+
) = (0.6581, 0.7906); and (w2

–
, w2

+
) = (0.6785, 0.5989).

Again, we may combine intervals using equation (6). As the difference is positive, the inner side of
the interval is simply based on the lower bound of p1,1 and the upper bound of p2,1. We may
substitute e1

–
 = p1,1 – wd

–

1
 and e2

+
 = wd

+

2
 – p2,1 into Zou and Donner’s equation:

wD

+
 = 2

2

2

1 )()( +− + ee  = √0.0713
2
 + 0.0389

2
 = 0.0812.

Similarly the lower bound wD

–
 = √0.0612

2
 + 0.0408

2
 = 0.0735.

We obtain an interval of (–wD

–
, wD

+
) = (-0.0735, 0.0812). D = 0.1207 is outside this range, and the

difference is significant.

5.1 r × 1 goodness of fit tests

We can generalise the paired 2 × 1 goodness of fit test to a paired r × 1 goodness of fit χ2
 test with r

– 1 degrees of freedom. The Gaussian formula for the goodness of fit test uses the Normal
approximation to the Binomial about cells in the ‘total’ column.

The 2 × 1 test can be rewritten to give us a z statistic. In the following t and j represent the test and
column indices respectively.

z
D
(j) ≡ 
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ss

dd
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−
,

where dt,j represents the difference between the probability in column j in test t and the probability
in the equivalent ‘total’ column (the ‘pooled probability estimate’, p^ t,). See equation (4). The
standard deviation, st,j is computed with the Gaussian st = √ p^t(1 – p^t)/nt,j.

To extend this test to an arbitrary number of rows, r, we will need to evaluate the sum of these
scores. If we use i to represent a row, (i.e. i = 1…r), the equation above becomes
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where

• difference (observed – expected) dt,i,j ≡ pt,i,j – p^ t,i,
• variance s

2

t,i,j ≡ p^ t,i(1 – p^ t,i) / nt,i,j,
• expected (pooled) probability p^ t,i ≡ Ft,i / Nt,i.
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The summation is similar to that applied to the r × 2 test for homogeneity. Pearson’s χ2
 is the square

of the z distribution extended over any number of degrees of freedom (Wallis 2013b). We may
convert a sum of r squared z scores to a chi-square score. We obtain equation (12), a formula whose
form we have already seen, although in this case the terms refer to those above.

χ2
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2
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Observant readers may note that this formula differs from Pearson’s χ2
 by computing variance with

the Gaussian s
2
 = p(1 – p) / n, and dividing by 2. We divide by two because the summation ‘sums

the z test twice’. The test is evaluated against the critical value of χ2
 with r – 1 degrees of freedom.

6. Heterogeneity χχχχ2 tests

The tests we have performed thus far do not assume that data from each subtest is drawn from the
same population. On the contrary, we do not know whether data derives from the same source, or is
sampled in the same way, or that variables that we use to refer to linguistic concepts are
operationalised in the same manner (Aarts et al. 2013).

An alternative approach to the gradient tests described here is Zar’s heterogeneity analysis (1999:
471, 500) method.

14
 We therefore discuss this test as a potential alternative candidate to ours.

Zar’s formula is very simple. It can be summarised as

χ2
het ≡ χ2

sum – χ2
pool (14)

where χ2
sum is simply the sum of individual χ2

 tests and χ2
pool the result of a χ2

 test after summing
paired cells. The number of degrees of freedom is the same as each single table, i.e. (r – 1)(c – 1).
This method is generalisable to t>2 test runs (the degrees of freedom being multiplied by t – 1).

First lets us consider how Zar’s method performs with the paired 2 × 2 homogeneity test (section 3).
The pooled table sums cells across the two tables (the first cell is f1,1+f2,1 etc.). Using our example
data (Table 3) we obtain χ2

pool = 65.49, χ2
sum = 36.58+35.65. To four decimal places the

heterogeneity chi-square χ2
het = 6.7394, which is significant at the 0.05 error level.

Our Gaussian gradient test (see section 3.1) can be converted to arrive at a χ2
 statistic with one

degree of freedom for comparative purposes using equation (14).

χ2

D
  = ( )2

2/ DezD α⋅ (15)

This obtains χ2
 = 6.2273. How do we explain this difference?

Zar’s method does not reliably measure significant difference in cases where tables have different
prior probabilities p^  (or distribution of row totals). It assumes that data is drawn from the same
population, and then tests whether this is the case! Our tests do not make this assumption.

The easiest way to see this is to examine the simplest test of all, the 2 × 1 goodness of fit test, a test
that is particularly sensitive to the prior distribution.

Consider two 2 × 1 tables defined so that the total number of cases N1 = N2 = 100. These tables have
one degree of freedom, whether we are considering tests of goodness of fit, as here, or
homogeneity. We will consider two further parameters for each table: skew π and prior p^ .
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We can define a general contingency table T as:

N p^  α N p^  (1 – α) N p^

T(N, π,  p^) = N(1 –  p^)(1 – α) N(1 –  p^)α N(1 –  p^) ,

N (1 – p^  – α + 2α p^) N (p^  + α – 2α p^) N

where α = (π+1)/2. By creating two tables T1 and T2 we can then compare the effect of different
values of N, π and p^  to create testing conditions for comparing the performance of equations (14)
and (15). Both equations obtain identical results if the prior is identical, i.e.

χ2
het = χ2

D
if p^ 1 ,1  = p^ 2 ,1 .

Zar’s test assumes that the priors are identical, i.e., as if they come from the same population. It
does not accurately measure separability when priors are different.

Changing N or π in either case does not affect this equality. However, if we consider the
substitutions T3(100, 0.5, 0.5) and T4(100, 0.5, 0.1), we can clearly see the problem. The second
table has a visibly different prior distribution ({90,10}) than the first.

37.5 12.5 50 67.5 22.5 90

T3 = 12.5 37.5 50 T4 = 2.5 7.5 10

50 50 100  70 30  100

Zar’s test obtains χ2
sum = 15.7143, χ2

pool = 17.5, and therefore χ2
het = -1.7857.

So, according to Zar, these two tests are not significantly separable. Indeed the negative sign
implies that the question is not even applicable!

However, if we apply our gradient methods we obtain a different result. Equation (13) obtains χ2

D
 =

5.4870, significant at α = 0.05. We obtain significantly different results with both Gaussian
(equation 6) and Wilson formulae (7), and can plot graphs with confidence intervals, etc.

15

This difference in outcome is not due to the absence of a Yates’ correction being applied to the χ2

(note that the number of cases, N, plays no role). It is entirely due to differences in prior
probabilities.

7. Conclusions

Researchers often wish to make statements about their results relative to others. However, as
Goldacre (2011) notes, experimental science papers in highly prestigious journals frequently fail to
perform this analysis correctly. As we have discussed, this is because a difference in effect sizes, or
‘difference of differences’, is a stochastic property that can only be properly evaluated by a
statistical test.

It is far preferable to cite standardised effect sizes such as Cramér’s φ over values of the χ2
 test

statistic (or ‘p values’ computed from them), because the former normalises the statistic to a
probabilistic scale, making comparison more straightforward. However, whereas φ may be cited, an
observed difference between values of φ is not necessarily a significant one, even if both tests are
found to be independently significant.
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 Difference in differences D = 0.1857, Gaussian interval = (-0.1554, 0.1554), Wilson interval (-0.1624, 0.1429).
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The common practice of citing χ2
 scores or error levels combines two distinct concepts: the size of

the effect (e.g. φ) and the size of the data (N). The correct approach is to construct significance tests
for the comparisons you wish to make.

One approach, applicable to homogeneity (independence) tests, is to employ a ‘point test’, or
‘multi-point test’, to compare points or datasets. This allows us to claim that the data in one table
(sample) is distributed significantly differently than in another table. A point test is an independent
homogeneity test expressed across the dependent variable and table. The multi-point test simply
sums these tests along an independent variable.

Why then might we wish to employ a ‘gradient test’? There are two circumstances. First, because
we have already expressed experimental claims in terms of change: “the dependent variable has
increased/decreased in our data”. We wish to compare this claim with other similar claims in the
literature. Second, in order to compare goodness of fit test results, the only option is a gradient test.

With one degree of freedom, effect sizes differ in one dimension: there is a single difference of
differences. If this difference is greater than a certain limit then we can say that ‘the difference is
significant’, i.e. the difference of differences is non-zero, within a given probability of error.

We derived a method for comparing values of Cramér’s φ. This method requires a complex
Gaussian approximation that is vulnerable to inaccuracy in small skewed datasets. Moreover, φ
averages change across the diagonal and disposes of directional information. As there is only one
degree of freedom in comparing 2 × 2 tables, the φ test can be replaced by either of the other two
tests plus the point test. With the fewest assumptions, the Wilson-based test retains the most
information and is likely to be more accurate than the Gaussian test.

We also demonstrated how the same approach can be applied to 2 × 1 goodness of fit tests (where a
gradient test is mandatory): here the Wilson method is to be strongly preferred. The methods
described here are included in the online spreadsheet (see note 1) and users are encouraged to
experiment with these.

For all tests except φ, we proposed generalisations by employing χ2
 to generalise over multiple

differences of differences.

In reviewing the performance of our methods, we discussed heterogeneity χ2
 analysis (Zar 1999).

This test is conceived in terms of the legitimacy of pooling samples (hence the interest in scalability
to m samples), whereas we wish to determine whether one experimental outcome is significantly
different from another. Zar obtains the same results as ours if the prior distribution for each table is
identical, but in all other cases the results differ.

This might be a positive attribute – in our case we have to consider point tests as well as gradient
tests – if it were not for the fact that Zar’s method, whilst simple, is not robust. The method obtains
negative (meaningless) χ2

 results in some cases and substantially higher estimates than ours in
others. As such, this method can only be tentatively recommended for the more limited purpose Zar
suggests: of deciding on the legitimacy of pooling results from multiple sources. To reliably test for
significant differences between experimental runs we need to employ the methods derived in this
paper.

We end with a caveat. In this paper we compared solutions to the problem of comparing the results
of two contingency tests. As we noted at the outset, a statistical method is an adjunct to a process of
experimental refinement based on underlying theoretical principles. Significance tests cannot fix
problems of poor experimental design, although they may draw attention to them. They cannot
guarantee that the phenomenon measured has real theoretical meaning, that baselines for
comparison are meaningful, or that observations are free to vary.
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