Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: UCL Engineering
    • Study
    • Research
    • Collaborate
    • Departments
    • Active parent page: News and events
    • People
    • About

Dr. Federico Galvanin and Dr. Michail Stamatakis awarded £497K EPSRC grant (overall £2M project)

Breadcrumb trail

  • UCL Engineering
  • News and events

Faculty menu

  • Events
  • Current page: Faculty news
  • UCL News: Engineering

It is an unceasing challenge to reduce the time scale for development of new chemical products to the point of reliable manufacture and entrance into the market place. Any delays will result in both the loss of revenue for companies, and delayed benefit to the consumers, whilst rushed development might lead to quality issues. This can have significant societal implications, for example impacting the availability, or critical quality of crucial medicines to patients. Therefore, there is a real need to minimise the time taken to identify safe and robust chemical manufacturing processes. These processes however, are complex with process outcome being affected by a vast number of chemical and physical parameters; e.g. temperature, pressure, reagent stoichiometry, pH, heat and mass transfer affect quality and scalability making the definition of a chemical process at manufacturing scale a very challenging task. The sheer number of variables means that a systematic, 'change one factor at a time' approach is practically impossible and generally disregards the fact that some factors might be heavily correlated. 

This exciting project combines the expertise of IBM in the development of algorithms for optimisation and the use of automated model generation and discrimination by researchers at UCL with the experimental automation expertise within the Institute of Process Research and Development at the University of Leeds and the use of advanced hydrothermal reactors developed at the University of Nottingham. This research capability will be used to develop new algorithms for machine learning based generation of chemical process design knowledge and coupling these algorithms to a cyber platform for automated experimentation. The combined cyber-physical system will be validated via in-depth case studies related to current manufacturing challenges faced by AstraZeneca, a large UK based manufacturer of Pharmaceuticals who are the UK's fifth largest exporter and Promethean Particles, a SME who have recently opened their first nanoparticle manufacturing facility. 

This project aims to develop an Industry 4.0 approach revolutionising the transfer from laboratory to production using advanced data-rich and cognitive computing technologies. New algorithms based on Bayesian Optimisation and evolving Kinetic Motifs that merge data analysis and the generation of further experiments. Cloud based machine learning services (hubs) will generate experiment setpoints delivered through the cloud to automated laboratory platforms (LabBots). A key novelty is that the analysis services can receive and analyse results, and post further experiments to the LabBots, thus generating a data generation - data analysis closed-loop. This enables the application of machine learning to chemical development: the system will continuously learn, increasing in confidence and knowledge over time, from previous iterations.

Using the same cloud based platform, this process understanding can be rapidly transferred to PilotBots; production scale manufacturing robots that use the same data transfer protocols, but on a 102-105 times larger scale. This fully automated approach has the power to reduce the cost, improve quality and robustness and minimise development time; bringing products to market faster and therefore enabling the beneficial effects to be realised more rapidly.

The approach will enable the design, selection and evaluation of manufacturing process and technology based on mechanistic and statistical data models. Further, and not less important in development, pilot quantities are easily generated, supporting late stage development activities (e.g. efficacy and stability testing) and the same data analysis services can reconcile the pilot and lab data. The anticipated impact of this approach will be demonstrated on real world manufacturing challenges faced by pharmaceutical and nanoparticle producing industrial partners.

More from UCL Engineering...

Engineering Foundation Year
UCL East Marshgate building at dusk

Programme Spotlight

Engineering Foundation Year

We'll help you to gain new knowledge, learn academic and study skills, and develop your confidence levels so you'll have what it takes to transform your life.

Inaugural Lectures
Farhaneen Mazlan delivering a talk at UCL

Event series

Inaugural Lectures

An opportunity to explore ground-breaking research that is shaping the future and transforming the world.

Disruptive Thinkers Video Series
Dr Claire Walsh looking at a human organ in an imaging facility

Watch Now

Disruptive Thinkers Video Series

From making cities more inclusive to using fibre optics in innovative medical procedures, explore the disruptive thinking taking place across UCL Engineering.

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in