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Executive summary
This report provides a review of technical models, evidence and case studies for decision making relating to the retention 
or demolition of social housing stock. 

Technical assessments of building suitability for refurbishment or demolition are often based on models of building 
performance. These include energy performance of the building compared to standards for new buildings, and assessment 
of environmental and energy impacts of the building over its lifetime from construction to demolition. Decisions can 
also be based on a series of performance and cost indicators. All modelling and indicator based approaches require 
assumptions about the building and the economic and policy context in which regeneration will take place, which need to 
be examined and justified in each case. 

Evaluation of the economic case for refurbishment is sensitive to the institutional factors such as the UK retrofit supply 
chain and market; tenure types and management capacity; access to finance and/or willingness to invest. Typical cost 
indicators are capital expenditure, operational and maintenance expenditure and capital investment appraisal. Estimating 
the costs and impacts of refurbishment or demolition is complex, uncertain and subjective – especially where non-
monetary costs and benefits have to be assigned a value. Finance mechanisms for refurbishment are less well established 
than for construction.  

The energy performance of a building is an increasingly important consideration in decisions to demolish or refurbish, and 
it has a big impact on the health of residents and the cost of their energy bills. Energy is used by residents as they live in a 
building throughout its lifetime. Energy is also used to manufacture building materials and construct the building in the 
first place and then in demolition, reusing, recycling and moving materials to dispose of them. Reducing carbon emissions 
associated with the built environment means reducing the emissions associated with the whole lifecycle of buildings. 
However, refurbishment and retrofitting of buildings, including insulation, replacing windows and boilers, heating 
networks, and installing renewable energy, can improve the performance of existing buildings to near-new standards. 
Decarbonising the UK electricity grid will also reduce the climate change impacts of energy used in buildings, and will 
increase the relative importance of embodied carbon and energy in the lifecycle impacts of a building. Case studies 
demonstrate that even older, high rise or poorly insulated structures, known as hard to treat buildings, can be retrofitted 
to achieve high energy efficiency standards. In these cases, the costs of retrofitting compared to demolition and new 
construction can also be lower, particularly when construction work has been organised so that residents have been able 
to stay in their homes avoiding the costs and disruption of temporarily housing people elsewhere. The carbon emissions 
associated with building use depend on the source of energy used. Increased low carbon sources of energy to produce 
electricity on the grid in the future may reduce the environmental impacts of energy used in homes. Research has shown 
that there are often differences between the predicted and actual performance of buildings (performance gaps) and that 
people sometimes adapt their behaviour in ways that increase consumption after an energy efficiency project (rebound 
effects). Performance gaps and rebound effects are often not taken into account when assessing benefits to residents like 
a reduction in bills or improvements in thermal comfort. If future savings have been over-estimated, it is residents (rather 
than the professionals estimating the savings) who are doubly and disproportionately penalised, firstly, because what has 
been promised is not delivered and, secondly, because they pay the energy bills. 

Relatively simple water efficiency retrofitting can achieve savings of 17.5 litres per person per day, compared with the 
London average of 160 litres of water used per person per day. Sustainable drainage methods can also be cost effectively 
retrofitted into existing buildings and estates, delivering a wide range of benefits including reduced overheating of 
buildings. The construction and demolition sector contributes 35% of all waste in the UK every year. Much of this is due to 
demolition waste. The UK construction sector currently recycles 73% of its waste, but still contributes more than 4 million 
tonnes of waste to landfill each year. Recycling demolition waste reduces the environmental impacts of demolition, but 
refurbishment avoids waste to landfill and many of the environmental impacts of new construction.

Improving the quality of social housing stock is essential to reduce health inequalities in the UK. Housing has significant 
impacts on mental and physical health and wellbeing, and should be a key factor in regeneration decision making. 
Refurbishment can deliver improvements in housing quality at a faster rate than demolition and rebuilding of social 
housing, but health issues such as ventilation and indoor air quality can be complex issues to address in refurbishment. 
Refurbishment of buildings presents opportunities for the creation of jobs requiring a new set of skills that will be in 
demand if the UK is to meet its carbon emission reduction targets. Operation of renewable energy systems also provides 
opportunities for community development through refurbishment of buildings and estates.
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It is clear that the ability for communities to engage in refurbishment and demolition decisions would be enhanced 
by a consistent and transparent approach to the reporting of lifecycle costs, energy and carbon, water and waste and 
monitoring the wellbeing of those affected by refurbishment and demolition. The literature reviewed here is emerging 
from different fields – engineers, energy modellers, planners and public health specialists – and shows some useful 
results but is often hard to disaggregate in a way that shows how the effects of refurbishment and demolition play out for 
different groups of people. However, many aspects of refurbishment and demolition are complex and interact with each 
other: what is needed is a more balanced inter-disciplinary view of what housing interventions mean for people, and who 
the winners and losers are in the short and longer term. 
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1 Introduction
The demolition of homes is amongst the most contentious issues in urban regeneration. Decisions to demolish or refurbish 
buildings are often taken by professional experts and developers, without adequate engagement with local residents 
and communities. Demolition or retention decisions can not only cause conflict between residents and regeneration 
authorities, but can also cause conflict within communities. Where some people see dilapidated, unhealthy, anti-
social buildings that should be knocked down, others see homes, communities and opportunities for renovation and 
refurbishment.

Good decision making in regeneration requires thoughtful assessment of financial and technical information, within a 
context of meaningful engagement with residents and communities. Decisions to demolish or refurbish buildings are 
rarely clear cut, and will invariably involve trade-offs between different objectives and values.

This report provides a review of main factors involved in decision making for refurbishment or demolition of social housing 
building stock. It summarises available evidence for environmental and economic costs and benefits, and provides case studies 
of regeneration schemes that involved refurbishment of social housing. Chapter 2 addresses key technical methods used in 
decision making regarding the retention or demolition of buildings, and Chapter 3 reviews the economic implications of such 
decisions. Chapter 4 reviews the energy and carbon implications of demolition compared to refurbishment, and Chapter 5 
considers issues related to water and waste. Chapter 6 covers key issues related to communities and residents, focussing on 
health and wellbeing. The conclusion outlines key findings.
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2 Regeneration decision making
Regeneration decision making is a complex and contentious area of urban planning and policy making. This chapter 
focusses on the legislation, policies and objectives linked to planning and regeneration in the UK that determine whether 
social housing buildings are demolished or refurbished. These include areas such as energy, climate change, waste 
management, housing quality and health. The frameworks for supporting and evaluating decisions are considered in terms 
of environmental, economic and social outcomes. These different categories tend to be treated differently in the literature 
either because there are fewer data available, the data are uncertain or because the outcomes themselves are regarded 
as difficult to measure or quantify (see Box 1). In particular, this applies to the health, wellbeing, social life and educational 
impacts on individual residents as well as impacts on society at large, such as the costs of health or care services that are 
linked to planning or housing policies (Roys et al. 2010)1. Where possible, this report draws attention to these gaps.

Two general approaches are involved in decisions about existing stock and whether to maintain (repair), refurbish (retrofit) 
or demolish and, possibly, rebuild. The first considers the building stock as a whole while the second addresses individual 
buildings and estates.

2.1 Whole building stock approach
The first approach is designed to support policy decisions and considers the whole (national) building stock or large 
(investor or sector-based) property portfolios. This level of analysis aims to answer questions like: what level of carbon 
emissions come from residential buildings in the UK; how and by how much could UK emissions from buildings be 
reduced; how much would it cost the UK to reduce these emissions?

Typically, models of the whole building stock are based on data such as age and condition of housing by building type and 
location. Tenure type is also included to give an indication of the people or institutions responsible for different categories 
of the stock. Typical housing types can then be subjected to individual building approaches (see Section 2.2) to analyse 
environmental performance.

There is disagreement over how useful any estimates of building lifetimes based on the whole building stock approach are 
for making societal or planning decisions about refurbishment or demolition. Although building lifetimes can be estimated 
by looking at numbers of buildings built and demolished over time in the whole building stock (like using birth rates and 
deaths rates to estimate average life expectancy of people in a population) (Kohler 2007), it has been argued that this 
implicit or effective building life (See Table 1) “has little to do with the actual longevity of housing and, despite suggestions 
to the contrary carry no direct implications for public policy towards the stock” (Lowe 2007 p. 413). 

This is particularly relevant in the often controversial ‘technical’ debates about demolition exemplified by the arguments 
for and against more demolition. Table 1 summarises some aspects of this debate to show how the data is used, how 
arguments are put forward, and why. 

1  This analysis categorises costs as “costs that could be quantified given better data” and “costs that exist but are probably not quantifiable” and identifies: costs to society at large (externalities) such as health care 
and care service costs; and costs to individual residents such as physical and mental health, social isolation, discomfort of living in buildings that need repairs, school achievement, personal insecurity or the costs 
of  damage to uninsured possessions, accidents or hygiene conditions at home and the cost of moving.
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Table 1: Arguments for and against demolition based on Whole Building Stock approaches

For Demolition (Boardman et al. 2005) Against Demolition (Lowe 2007)

Argument

• 26 million properties in total;

• 20,000 demolished per year;

• 20,000 ÷ 26m = 0.1% demolition rate;

• 26m ÷ 20,000 = 1,300 year stock lifetime;

•  Average Standard Assessment  
Procedure (SAP) rating can only improve 
from 44 (1996) to 66 (2050);

• +6% energy consumption change by 2050. 

Argument

•  Heritage value: dwellings that will be the most difficult to 
insulate are likely to be those with the highest heritage value so 
unlikely to be demolished;

•  Embodied investments: significant energy and CO
2
investment 

in infrastructure for demolition and new build (especially high for 
greenfield sites); 

•  Urban systems and interdependence: existing housing, 
particularly the oldest housing, is compact and has co-evolved 
with public transport systems and other systems, which in many 
cases are still operational;

•  Urban design: costs associated with loss of “intimacy and human 
scale of most remaining pre-First World War housing” (p. 425);

•  Decarbonization of energy supply: modelling of plausible 
improvements to buildings and energy supply and conversion 
systems shows level of CO

2 
emissions in 2050 insensitive to the 

demolition rate.

Conclusion 

UK requires a fourfold increase in demolition 
rates from 20,000 per year to 80,000 per year.

Conclusion

“The argument that higher rates of demolition are necessary to 
decarbonize the UK housing sector requires one to assume an 
implausible lack of progress in other areas” (p.422).

2.2 Individual buildings and estates
The second approach is designed to support decisions about individual buildings or estates. This level of analysis aims to 
answer questions like: what are the costs and benefits to different stakeholders of refurbishment versus demolition for this 
building now and in the future; and which are the most valuable refurbishment measures? This approach relies on a variety 
of methods for evaluating environmental, economic and social costs and benefits and prioritising different interventions.

In reality, building performance depends on the behaviour of people, indoor temperatures, energy consumption and 
carbon emissions. Building performance is complex because it:

•  is dynamic (changes over time) because occupancy and weather patterns change from day to day and season to 
season. Although there may be patterns in these changes, they have random (or stochastic) characteristics too which 
means they cannot be fully predicted; 

•  is adapting to feedback from control systems and interacting with the behaviour of occupants with their own cost 
constraints, comfort preferences, ability or willingness to ‘optimise their preferences’, for example, by opening windows, 
turning on heating or setting timers and thermostats;

•  depends on multiple systems that don’t always add up to the sum of their parts, for example, good ventilation might 
mean colder temperatures; and

•  relates to the building’s original design (how well it is ever able to perform) and state of repair (how much performance 
might deteriorate over time or be affected by break downs).
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To make sense of this complexity, mathematical models are used to support decisions. These models attempt to simplify 
complex processes by assuming they can be understood:  

- as inputs and outputs (eg heat in and heat out); 

- as standards (eg typical properties of insulation or key performance indicators); or 

-  over fixed timeframes (eg a period over which a typical weather pattern can be assumed).

Models usually rely on a variety of assumptions and on data that are already collected. 

Box 1: Questioning a technical model

Models do not offer a perfectly accurate measure of performance or a perfect prediction of the future but they can 
help to compare different scenarios or indicate possible trends. Models can be critiqued by double-checking:

•  Diagnosis: Are the parameters (the important factors or inputs in the model) and the relationships between 
different systems a logical and reasonable representation of the physical or social reality? What is included and 
what is excluded in the model? what is given more or less importance?

• Calibration: How well do the results coming from the model match real-life measurements, bills or monitoring? 

•  Benchmarking: Are the results comparable with what might be expected for a similar project or peer group 
sample (average, best practice or an acceptable minimum)?

•  Model sensitivity analysis: Which are the most critical factors and assumptions in the modelling? Does changing 
each input parameter have the effect on output data that one might expect? 

•  Results sensitivity analysis: Which parameters have the most significant impact on the results of modelling? Can 
this be explained by the design of the model itself? Can this be explained by the physical or social reality?

2.2.1 Energy consumption modelling

It is useful to get a score or snapshot of a building’s energy consumption. This helps to compare different buildings 
based on the same typical year of weather data and gives a way to evaluate compliance with Building Regulations. The 
UK’s Standard Assessment Procedure (SAP) Box 2 is based on a model that combines a building’s dimensions, surface 
properties (capacity to store and transfer heat), air leakage rates, efficiency and controls of boilers and other equipment, 
solar gains, hot water consumption and typical annual weather data (BRE on behalf of DECC 2011). The advantage of 
standard procedure is that it is a fast, relatively simple analysis that uses standard software tools. The disadvantage is that 
indoor comfort levels and occupant behaviour are fixed so SAP cannot account for new types of behaviour or adjustments 
to preferred levels of comfort after a refurbishment, particularly in housing where people have had expensive heating 
systems and indoor air temperatures lower than is healthy or comfortable. In other words, a refurbishment may mean that 
people are suddenly able to consume more energy (as much as they would have liked to consume before) and maintain 
higher indoor air temperature for the same cost (CAMCO 2011; Dimitriou et al. 2014). This is also known as the ‘rebound 
effect’ and is explained in more detail in Section 4.

It is also useful to understand how a building might perform in a real year or over its operational lifetime and to compare 
how different designs might compare in terms of performance. For example, modellers can change the overhang of a roof 
in a model or the insulation of a ground floor to see the relative effect that each change might have on overall performance 
and relate this to costs. Dynamic thermal simulation (e.g. TAS proprietary software) uses longer series of weather data and 
model the interaction of control systems and use patterns. This modelling takes more time, computational power and skill 
and experience to develop and interpret.
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Box 2: The Standard Assessment Procedure (SAP) (DECC 2014a)

“The Standard Assessment Procedure (SAP) is the methodology used by the Government to assess and compare the 
energy and environmental performance of dwellings.

SAP works by assessing how much energy a dwelling will consume, when delivering a defined level of comfort and 
service provision. The assessment is based on standardised assumptions for occupancy and behaviour. This enables 
a like-for-like comparison of dwelling performance. Related factors, such as fuel costs and emissions of carbon 
dioxide (CO2), can be determined from the assessment.

SAP quantifies a dwelling’s performance in terms of: energy use per unit floor area, a fuel-cost-based energy 
efficiency rating (the SAP Rating) and emissions of CO2 (the Environmental Impact Rating). These indicators of 
performance are based on estimates of annual energy consumption for the provision of space heating, domestic 
hot water, lighting and ventilation. Other SAP outputs include estimate of appliance energy use, the potential for 
overheating in summer and the resultant cooling load.”

2.2.2 Life cycle modelling

Buildings do not just consume energy and emit carbon dioxide during their operational life: processes of raw material 
extraction, transportation, construction, demolition and disposal all consume energy (see Figure 1). Life cycle modelling 
tries to take account of this consumption and its associated emissions by building an inventory of all the materials used 
and referring to indexes (large data sets of the carbon and energy emissions associated with different materials and 
products based on tests or research, for example, the University of Bath’s Inventory) or rules of thumb (estimates based on 
experience or data from similar projects) (Sweetnam and Croxford 2011). This is covered in more detail in Section 4.3.

2.2.3 Life cycle performance indicators

The analysis and comparison of models often depends on extracting a variety of performance criteria from targets 
established in design standards (see Appendix B) to estimated or predicted performance for different options. These 
performance or comparison indicators are not necessarily included in planning proposals and are not always consistently 
applied in the literature. A glance at the case study summary in Table 2 shows that a variety of different indicators and units 
are used and cannot always be directly compared.

Figure 1: Lifecycle phases and flows (Sweetnam and Croxford 2011)

Elementary Outputs CO
2

CO
2

CO
2

CO
2

CO
2

kWh kWh kWh kWh kWh

Heating Transport Embodied Energy 
Transport

Embodied Energy 
Transport

Heating

£ £ £ £ £Elementary Inputs

Lifecycle Phase
Pre-Intervention 

Operation
Demolition Construction

Post-Intervention 
Operation

Refurbishment 
Demolition
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Table 2: Typical Key Performance Indicators are summarised below and usually involve cost, energy and emissions estimates per square metre (for easy comparison). 

Definition Units Reference or Case 

SAP Scores or Ratings2 See Box 2

Construction cost Cost of construction works (to refurbish or rebuild) £/m2 (Sweetnam and 
Croxford 2011)

Operational cost Annual fuel cost per square metre £/m2/
annum

(Sweetnam and 
Croxford 2011)

Embodied Energy 
(primary)

MJ/m2

kWh/m2

(Sweetnam and 
Croxford 2011)

(Uzsilaityte and 
Vytautas 2010)

Operational energy 
(primary)

Annual total energy consumption per unit of the building area MJ/m2/
annum

kWh/m2

(Sweetnam and 
Croxford 2011)

(Uzsilaityte and 
Vytautas 2010)

Embodied Carbon kgCO
2
/m2 (Sweetnam and 

Croxford 2011)

Operational Carbon kgCO
2
/m2/

annum
(Sweetnam and 
Croxford 2011)

Total energy 
consumption (embodied 
+ operational)

kWh/m2 (Uzsilaityte and 
Vytautas 2010)

Total CO
2
 emissions tCO

2

Saved energy % marginal primary energy savings during renovation measure 
lifetime.

% (Uzsilaityte and 
Vytautas 2010)

Marginal improvement 
on baseline

(Bull et al. 2013)

Avoided emissions

Cost per tonne  
of carbon saved

(Sweetnam and 
Croxford 2011)

Carbon cost 
effectiveness

Cost of carbon abatement for each measure based on the 
capital investment required to save 1 kg CO

2 
in a given year 

(used where annual cost savings will be realised by the resident, 
not the landlord, analysis shows which will deliver the biggest 
carbon saving per unit of upfront capital investment)

£ CO
2
/kg 

CO
2
 saved 

per year

(CAMCO 2011)

The performance of a ‘do nothing’ scenario against refurbishment or against a ‘demolition and new build’ option is usually 
sensitive to assumptions about future prices and the building lifespan. In an analysis of refurbishment in Clapham Park, 
London, Sweetnam and Croxford (2011) found that modelling a shorter lifespan and fixed future fuel prices favoured 
smaller investments that paid back early in the lifecycle ie < 30 years (refurbishment); when they assumed that fuel prices 
would rise the model started to favour rebuilding over a 90 year lifecycle; and modelling based on a low discount rate (this 
is a low inflation scenario which makes money cheaper now than later) the model favoured low cost measures (now) that 
achieved modest savings (soon).

2  Retrofit research by Radian homes suggested that “rdSAP is inadequate to model true benefits of advanced retrofit” and that “kg/m2/yr or CO2 m2/yr makes a better target and gives fairer comparison than % 
emissions reduction targets against baseline” (CAMCO 2011)
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2.3 Assessment frameworks and more complex modelling
Generally, refurbishment decisions and modelling are based on some analysis of the whole building stock and of individual 
buildings. Refurbishment measures for energy, carbon and operational savings typically include: insulation (cavity wall, 
solid wall, roof, loft and floor); high performance windows and doors; draft proofing and air tightness; high performance 
boilers and controls; communal heating; and energy efficient lighting and appliances (Davies and Osmani 2011). 

The review of refurbishment case studies and literature suggests:

•  Deciding on priority measures: refurbishment measures should be prioritised according to an energy hierarchy, ordered 
in terms of reduction and conservation of energy use first and only then considering renewable energy3. 

•  Deciding on technologies: using proven innovation can deliver more positive carbon value or better abatement 
outcomes (CAMCO 2011).

•  Optimising combinations: the case studies report a variety of ways to decide on levels of refurbishment (i.e. how much 
insulation will make the most difference to cost/carbon/energy?) or limited money (i.e. refurbishing which parts of the 
building stock will make the most difference to cost/carbon/energy?). These include: 

 •  scoring against established criteria; 

 •  modelling different combinations of technological measures (possibly including for stylised or reported/
monitored occupant behaviour);

 •   modelling/evaluation a broader set of agreed scenarios over time (including fluctuating or rising fuel prices, costs 
of decanting residents, social costs of capital); and

 •  more complex decision algorithms and Monte Carlo simulations4 (Ferreira 2013).  

This section demonstrates that the chosen assessment approach depends on the questions at stake and the data available. 

Gaps in the case studies included:

•  Lack of analysis of demolition and waste disposal (quantities, embodied energy, costs etc.). One study noted: “The 
construction and demolition industry produces approximately 33% of all the waste from industry in the UK each year. 
An astounding 19% of this waste is a consequence of over-ordering for new build” (Patalia and Rushton 2007).

• Lack of analysis of water consumption and embodied water. 

• Lack of analysis of decanting or temporary housing costs.

• Lack of analysis of other non-technical factors.

3 CIBSE. Activity areas in a building, http://www.cibseenergycentre.co.uk/activty-areas-in-a-building.html

4  Monte Carlo simulations in this case use the same input-output models but generate and then use random input variables to see what happens to the outputs. For example, to look at the effect of fuel price, 
fuel prices over time (along with all other inputs) would be random within a specified range so that the model outputs can be analysed for worst, best and typical scenarios. 
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Table 3: Comparison of Different Modelling Approaches. Compiled using conceptual frameworks and analysis in (Bull et al. 2013; Ferreira 2013; Lowe 2007; 
Uzsilaityte and Vytautas 2010) 

Sc
al

e 
o

f 
In

te
re

st Individual Building 
(multiple criteria)

Individual Building 
(lifecycle analysis)

Investment or Building 
Portfolio (priority or target 
groups and interventions)

Whole Building Stock 
(options appraisal)

Ty
p

e 
o

f Q
u

es
ti

o
n How sustainable is my 

building refurbishment 
project?

What are the carbon 
emissions/energy 
consumption/running 
costs over the lifecycle 
of my building for 2 
scenarios?

Which Energy 
Refurbishment Measures 
and ERM combinations 
result in the greatest

overall reduction to the 
lifecycle carbon footprint 
(LCCF) and lifecycle cost 
(LCC) for typical portfolio 
buildings? 

What refurbishment 
measures have greatest 
impact on CO

2
 emissions 

from existing dwellings? 
What might be the impact 
on CO

2
 of combining 

these measures (insulation 
and strategic tech shifts 
in delivering heat ) with 
partial decarbonization of 
electricity generation? 

M
et

h
o

d Multi-criteria analysis 
based on comparing 
“situations that are flexible 
enough to incorporate 
different criteria based 
on the client’s needs” 
(Uzsilaityte and Vytautas 
2010), for example, 
BREAAM or other building 
assessment tools5

Model of an average unit 
based on:

•  Dimensions/properties 
of dwelling 

•  Scenarios describing 
expected performance  

•  Modelled performance 
using SAP calcs;

•  Estimated lifecycle 
costs using SAP; 
lifecycle inventory; 
indexes; and rules  
of thumb

•  Economic cost  
of scenarios

Parametric model of 
typical unit based on:

•  Dimensions/properties 
of dwelling 

•  Dynamic energy 
simulation

•  Set of parameters with 
assigned options6

•  Estimated lifecycle 
costs using 
simulations; lifecycle 
inventory; indexes;  
and rules of thumb

•  Regression analysis 
for parameters 
with statistical 
significance on energy 
consumption, and size 
of effect

Modelling hypothetical 
‘stock typical’7 based on:

•  UK building stock data 
to inform 2 Standard 
Dwelling Types for  
the UK 

•  SAP 2005 to estimate 
the cumulative 
reduction in CO

2
 

emissions per dwelling 
(t/a) for typical solid 
walled (new boiler, 
super-glazing, re-
roofing, external 
insulation) and cavity 
walled dwellings  
(new boiler, wall 
insulation, super-
glazing, re-roofing)

5 For example: http://www.sustainablehomes.co.uk/shift/; http://www.insidehousing.co.uk/social-homes-a-third-more-efficient-than-uk-average/6527805.article; http://www.insidehousing.co.uk//6528487.article

6 wall; 4 roof; 4 floor; 2 glazing options; various infiltration rates

7  80 m2, semidetached house, heated with gas, with a glazing ratio of 25% (window area to total floor area); 50 m2 edge of a mid-floor flat, heated electrically, with a glazing ratio of 25%. Solid walled dwellings 
constitute 6.6m homes, 31% of total UK stock (Vadodaria et al. 2010)
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C
ri

te
ri

a 
an

d
 W

ei
g

h
ti

n
g Criteria defined,  

weighted and tested  
with stakeholders

Defined performance 
criteria or standards  
for emissions, energy  
and costs

Specified design life

Specified prices and 
Specified rate of inflation

Defined options but 
unspecified performance

Specified design life

Specified prices and 

Specified rate of inflation

Derived building 
performance and 
building type frequency 
in stock (building stock 
data limited8)

Specified efficiencies of 
technology (eg boilers)

Specified carbon intensity 
of energy sources (eg 
from the grid) 

O
p

ti
m

is
at

io
n Maximising scores for 

a “finite number of 
alternatives, explicitly 
known in the beginning 
of the solution process”9 
against established 
criteria

Ranking of scenarios 
for minimised costs and 
maximised performance

Best fit correlation 
between variables 
(greatest significance, 
greatest effect)

Ranking of measures 
for maximised carbon 
savings on individual 
building

Ranking of scenarios 
by emissions (summed 
across stock)

Ty
p

e 
o

f 
A

n
sw

er Score and rating Scenarios with scores, 
ratings, emissions, costs

Best fit combination of 
measures and associated 
marginal lifecycle costs

Scenarios with energy 
consumption and 
emissions

2.4 Performance of building elements and systems
There appear to be limited data that allow refurbishment and demolition scenarios to be compared in terms of the costs 
and lifecycles of different building components.  There is limited data available to allow refurbishment and demolition 
scenarios to be compared in terms of costs and lifecycles of different building components.  Appendix A summarises 
indicative replacement cycles and economic life by building component. In addition, a number of papers mention the 
importance of structure and subsystems in in analysing building lifecycle impacts and performance.

2.4.1 Structures

Architects analysing a high rise refurbishment in the West Midlands note that  longevity “can often relatively easily 
be enhanced by localised remedial works or more expensively over-cladding/over-roofing” and that “the decision for 
refurbishment should typically focus on localised problems, such as: carbonation, chloride content, de-lamination of 
panels or brick slips due to inadequate movement joints on blocks built with traditional frames.” (Patalia and Rushton 
2007). A 1992 survey of high rise refurbishment noted signs of ageing as “spalling concrete, cracked, flaking and stained 
facings and finishes” and also categorised construction typologies (but without further analysis of the implications of 
typology for refurbishment/demolition) (Trim 1992): 

•  traditional method: blocks built using either a traditional in situ concrete frame for taller buildings or load bearing 
brickwork (up to 10 storeys), and employing cavities.

•  direct works: blocks were built by the authorities own direct works departments, usually employing similar methods to 
those of the traditional built blocks.

•  proprietary process: blocks built by in-situ or prefabricated, 40 separate building processes identified including 
Reema10, No fines, Tracoba, Simmcast, Bison, Myton etc. 

8  Lowe (2007) notes: “An absence of empirical data unfortunately make it impossible to be certain that these reductions are being achieved in practice. While total CO2 emissions from dwellings are reasonably 
accurately known, there has been no systematic monitoring of energy use to determine the impact of successive revisions of the Building Regulations, or to determine the split between end-uses within the 
overall total. Some measurements of internal temperatures have been made (Summerfield et al. in press), which appear broadly consistent with SAP 2005,12 but there has been no systematic measurement 
of the thermal properties of dwelling envelopes in the UK stock. There is still less certainty with respect to demand for water heating and cooking.” Lowe also concludes that solid-walled dwellings are not 
“thermally irredeemable” and that the emissions reductions achieved by demolition and new build have been over-stated.

9 Triantaphyllou, E. (2000). Multi-Criteria Decision Making: A Comparative Study. Dordrecht, The Netherlands: Kluwer Academic Publishers. p. 320. ISBN 0-7923-6607-7. 

10  Reema (REED and MALLIK, a company that traded in Salisbury, Wiltshire between 1937 and 1968): system of building using prefabricated reinforced concrete panels which came into being in the late 1940s and 
was still in use well into the 1960s
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2.4.2 Subsystems 

Durability of subsystems is important in refurbishment decisions and in prioritising refurbishment measures because many 
of these measures “involve replacing existing subsystems and are characterized by high fixed and low marginal costs... 
unlikely to be economic unless applied towards the end of the life of each subsystem. Clearly refurbishment strategies 
that recognize this fact and take account of the maintenance cycle of each dwelling or group of dwellings will tend to 
be cheaper than strategies that do not” (Lowe 2007 p. 416). The Subsystems of greatest importance to lifecycle energy 
performance are:

• heating: expected to be replaced in less than 15 years, and may need replacing in less than 10 years. 

•  windows: the physical lifetime of window frames should be many decades, but sealed glazing units may begin to fail 
within 20 years. 

•  roofs: domestic roof coverings are normally expected to require replacement within 50 years;

•  walls: re-pointing and re-rendering may be required every 50-100 years.

2.5 Supply chains and market transformation
The structure of the housing industry, supply chain and housing tenure all have an impact on the perceived and estimated 
costs, benefits, quality and risks of refurbishment projects. A number of structural or institutional aspects emerged from 
the case studies.

2.5.1 UK supply chain and retrofit market 

There is currently low demand for retrofit products and services in the UK market, and a lack of regulatory drivers to 
develop new skills (CAMCO 2011). Social housing providers who decide to pursue retrofit and refurbishment options 
are taking on risk in this underdeveloped market. Risks relate to low levels of skills and knowledge about sustainable 
retrofitting in supply chains and in housing providers. Such risks could result in poor performance of retrofit installations, 
possibly leading to defects in buildings and poor health outcomes for residents (Swan et al. 2013). New supply chains 
contribute to high capital costs for energy efficiency materials compared to better established, conventional materials 
(Davies and Osmani 2011). Perceived inconsistencies in VAT charges by architects and property owners imply a favouritism 
towards demolition and new build over retrofit and refurbishment (Davies and Osmani 2011).

2.5.2 Tenure types and management capacity 

Different landlords have different skills, incentives and control over upkeep. Social and institutional landlords generally 
have higher capacity for undertaking retrofit than individual owner-occupiers or individual private landlords (Thomsen and 
van der Flier 2011; Meikle and Connaughton 1994). Individual owners do not have the necessary information and ability to 
judge the long-term quality of the construction (Kohler 2007). In regards to retrofitting to reduce carbon emissions, there 
is a gap between the scale of the problem (global warming) and the decision scale (private, individual housing) (Debizet 
2012). Market mechanism, incentives and standards are insufficient to shape/maintain the building stock. A combination 
of “public policies combined with differentiated forms of use and property rights and access to qualified information” is 
needed can assure a long-term capital conservation (Kohler and Yang 2007 p. 360)

2.5.3 Access to finance and willingness to invest

A lack of access to low cost finance and the budgeting of retrofit and refurbishment programmes by social housing 
authorities can present a barrier to implementation. The typical value of investment in energy efficiency and low carbon 
measures by social landlords is £5,000 - £12,000 per unit (CAMCO 2011). Social housing providers typically pay for 
refurbishment and retrofit through their maintenance budgets, rather than through borrowing (CAMCO 2011), or by 
cross-subsidising regeneration through the release of higher value land for other types of housing development.  This 
review has not yet found systematic estimates or projections for future refurbishment costs. These will depend on the level 
of refurbishment achieved now and what can be achieved later, future energy supplies and prices, future environmental 
legislation and the mechanisms by which these future costs can be financed. In a future scenario where it becomes more 
common to borrow to finance refurbishment works, the land and housing assets held by social housing providers will be 
an important factor in securing loans – if these assets have been sold now to fund current projects, they can neither be 
sold again to fund projects nor used to guarantee loans to finance projects. 
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2.6 Key messages
It should be noted that there are a number of limitations to the data used in modelling:

•  There is only a limited amount of data that disaggregates the environmental performance of different building 
components when modelling refurbishment and demolishment scenarios, including key factors such as structures 
(including how buildings were originally constructed) and subsystems (such as heating, window, roofs and walls).

• Data are limited on both historic costs and future costs of refurbishment.

•  A variety of different indicators are used in design standards which cannot always be directly compared when assessing 
planning proposals. ‘Do nothing’ scenarios are generally sensitive to assumptions about future prices and building 
lifespan. 

•  There is a lack of analysis of demolition and waste disposal, water consumption and embodied water, and temporary 
housing costs in assessments. 
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3 Economics
Any evaluation of the economic case for refurbishment is sensitive to the institutional factors mentioned in the previous 
section and will be examined against these: UK retrofit supply chain and market; tenure types and management capacity; 
access to finance and/or willingness to invest. This section looks at published case study data, costs and some of the 
perceptions and assumptions around them, and methods for comparing costs and financing. 

The case studies and literature give a variety of pre- and post-project cost estimates for refurbishment and demolition 
projects (see Appendix A). For the purposes of appraising and managing projects, typical cost indicators are: 

• capital expenditures (CAPEX): cost of acquiring, producing or enhancing fixed assets.

•  operational expenditures (OPEX): the cost of supply and manufacture of goods and provision of services in the 
accounting period in which they are consumed. This includes depreciation of fixed assets and maintenance costs. 

•  capital investment appraisal: these are methods for understanding the value over time of an upfront investment 
and are often used by design teams to compare different technical options. Payback Period and Net Present Value 
are commonly used and guidance on their application in the building services industry is provided by the Chartered 
Institution of Building Services Engineers (CIBSE 2008). 

As with the arguments for and against demolition given in Table 1, estimating the costs and impacts of refurbishment or 
demolition is complex, uncertain and subjective – especially where non-monetary costs and benefits have to be assigned 
a value. CIBSE notes that even for ‘technical’ or ‘quantifiable’ building systems and services: “capital appraisal is most 
influenced by items that have an accurate monetary value”, “the advantages [of capital investments in building services] are 
difficult to evaluate financially, while the disadvantages are very easy to cost”. These methods depend on some “tangible 
return” which for building operations are not positive profit or returns on investment over time but rather reductions 
in hypothetical future investments such as energy consumption, maintenance efforts or costs associated with shifts to 
cheaper fuels (CIBSE 2008).

These costs are different from financial indicators that are used to report business performance, profits and losses.  
This review has not yet found any refurbishment case studies that link specific projects to the business plans and  
financing options of owners, housing associations or developers. This review did not look at sources of finance for 
refurbishment schemes11.

3.1 Case studies and cost benchmarks
Table 4 shows the data available for the 6 case studies reviewed for this study. Although cost data are also given per  
metre squared and per housing unit, offering the potential to develop benchmarks and cost comparisons, more data  
and clarity are needed on what costs include. Where these data are less developed - a feature of a less mature market - 
project and product costs estimated at the feasibility and design stages tend to be inflated to allow for this uncertainty. 

11  However, more information on funding is available in the 2013 guide for funding for energy efficiency retrofits http://www.energyforlondon.org/tag/london-green-fund/, http://www.london.gov.uk/priorities/
environment/tackling-climate-change/energy-efficiency/re-new-home-energy-efficiency
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Table 4 Case study cost data
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Time period (years) 30, 60, 90, 120 60 <30 30 50 50

CapEx

✔ ✔ ✔ ✔

OpEx Total

✔

Decanting 

 

No decant No decant No decant

 ✔

Rental loss

     ✔

Staff costs

     ✔

Net Present Value (NPV)

✔      

Payback Period

✔      

Utility bills

✔ ✔     

Savings on utility bills
  ✔ ✔ ✔  

3.2 Maintenance and repair 
Twenty years ago, housing associations were apparently “only just beginning to address the issues of longer term cost 
profiles and financing strategies for major repairs” (Whitehead 1995 p. 2). Since then, the management of repairs and 
maintenance - which also requires and results in growing knowledge about costs - has faced a number challenges 
(Audit Commission 2002) including: allocating resources to the most appropriate stock; delivering planned maintenance 
programmes and spending these budgets on time;  controlling (relatively expensive) responsive repair work; involving 
tenants and leaseholders in decisions; managing and monitoring performance to get the best out of maintenance 
contracts. More recently, a number of the researchers involved in these earlier analyses have noted that Housing 
Associations now have long experience of managing repairs and maintenance so operating and management risks are 
regarded as “fairly easy to price” (Whitehead and Scanlon 2014).

Reliable cost data exist but may be regarded as commercially sensitive. Not all of these data are published or freely 
available to the public. CIBSE references a number of sources including published estimates and rules-of-thumb including 
the Building Cost Information Service12 (data are embedded in an online calculator); Spon’s mechanical and electrical 
services price book (£130); cost models  and case studies in subscription journals (e.g. Building Services Journal); and 
specialist cost consultants. 

12  http://calculator.bcis.co.uk/ 
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Nationally, this means that estimating maintenance costs is more difficult than other operating costs like service charges, 
ground rents and utility bills (at least for the time being) because “there are no wide coverage databases of information 
publicly available to allow comparisons” and what historical data exist have to be “derived from similar installations or 
components and need to take into account various factors that will be specific to the proposed scheme. Some of these 
factors will be difficult to express in financial terms” (CIBSE 2008).

Monitoring, statistical modelling and management of preventive maintenance - of which refurbishment cycles form a 
part - is increasingly sophisticated with methods borrowed from the manufacturing sector and made possible by advances 
in Building Information Management (BIM) systems. These approaches use historical or real-time data on mean-time-
to-repair and mean-time-between-failures for individual system components and then apply algorithms designed to 
automate a manager’s decisions about whether to fix or replace items (CIBSE 2008)13 or to allow maintenance personnel to 
respond more effectively to reports of damage or repair requests from tenants (Briller 2013).

3.3 Costs and impacts for residents
The difficulties associated with estimating the cost and value of better building systems are magnified for the costs and 
impacts on residents and wider society and include: quantifying “tangible” returns; sensitivity or bias to certain factors 
or highly subjective valuations “hidden” in technical models; valuation of future savings; and the complex interaction of 
individual and institutional behaviours. 

3.3.1 Direct costs and benefits to residents

In general, for refurbishment, “[r]ecent studies point at the unwanted environmental, social and economic impacts 
of demolition and conclude that lifecycle extension by improvement, renovation and renewal is a better and more 
sustainable solution”  (Thomsen and van der Flier 2011 p. 360 citing Itard et al. 2006; Power 2010; Thomsen and van der 
Flier 2009b). However, benefits to residents tend to be quantified as savings or reductions in bills (plenty of data but usually 
based on estimating from models) or improved comfort/health associated with warmer and drier homes (an assertion 
based on assumptions about behaviour or health outcomes). Three main issues with the estimation of benefits to residents 
appear to be:

•  lack of quantitative monitoring of bills, internal temperatures and occupancy patterns before and after projects to 
calibrate technical modelling of different refurbishment scenarios

• lack of qualitative or anthropological work on real occupant behaviour before and after projects; and 

•  as a relatively serious consequence of the above, and in an area of analysis where assumptions are highly sensitive 
to user behaviour, there are few possibilities for linking analysis of behaviour and post-occupancy performance with 
resident participation. 

Together these issues may combine to over-estimate energy or carbon savings and under-emphasis on rebound effects. 
As suggested in the Portsmouth case study (Dimitriou et al. 2014): these are scenarios where energy consumption does 
not change after refurbishment because people opt to consume more, cheaper energy in order to be more comfortable or 
continue to consume and pay as little as possible for energy in order to manage strained household budgets. 

Other factors that are particularly relevant for the scrutiny of refurbishment or demolition decisions are the impacts on 
residents of:

•  Delays in refurbishment and demolition works: as with construction in general, there is experience of renewal 
processes taking longer than expected: “Time schedules are prone to delays and elongation due to external 
circumstances: economic cycles, changing housing markets, political change and other developments that cannot be 
influenced at the local level”(Wassenberg 2011 p. 377). This review found little case study evidence on the time needed 
for demolition and clearance or the individual and social impacts associated with these disruptions. Cost models are 
also likely to be sensitive to delays but this review did not find detailed analysis of this when scenarios were compared.

•  Decanting: one of the case studies gives a detailed breakdown of the costs of moving residents out while works take 
place (see Table 5 below). An estimate of the same order, £10,000, but from different data is given for the costs of 
moving people out of poor quality housing to more suitable accommodation by the BRE (Roys et al. 2010). This review 
was not exhaustive but found little data in the refurbishment literature on the costs or time needed for the decanting 
process itself. Planners in Portsmouth rejected decanting based on the assumption that for refurbishment of an 11 
storey high-rise with more than 100 dwellings, it would take 18-24 months to decant plus 12 months to demolish plus 
a period for new construction before residents could move back (Buckwell 2012). Radian Homes had a dedicated staff 
member and a liaison officer as part of the long term resident engagement process involved in refurbishment.

13  Related literature not reviewed here: (Gokce and Gokce 2013; Rankohi 2013)
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•  Mixed tenure inhabitants: this review but found only a few references to this issue in case studies. In one case 
this was referred to as a cost that falls to some residents of “the not-yet-paid-for mortgage for the original housing” 
(Wassenberg 2011 p. 376). Another case study reported that mixed ownership had caused delays as a result of different 
administrative procedures for distributing costs and gaining access to properties, but the delays were not regarded by 
the housing association as significant (Yates 2006).

•  Changes in available floor space: the cost, value and/or impact on convenience and access of lost internal floor space 
or redesigned communal spaces (e.g. more accessible lifts, corridors or entrance ramps) was generally not mentioned, 
with the exception of the Greenock case study (Yates 2006)

3.3.2 Costs and benefits to society

Among the wider societal costs or benefits (see also Section 5.3):

•  Environmental (or project) costs of waste disposal in refurbishment and demolition: This review found only 
limited analysis of the volumes, reuse and costs of dealing with demolition waste, with the exception of: a) a high-rise 
refurbishment case study (Patalia and Rushton 2007) and b) estimates of waste avoided in refurbishing 600 semi-
detached houses in the Daneville Estate refurbishment (WRAP UK 2012). The authors of the Clapham Park study note 
that it was “impossible to obtain accurate information regarding the impacts and costs of the demolition phase of the 
rebuilding scenario, however as the results are already clearly in favour of refurbishment, additional cost, embodied 
energy and carbon are likely to have further confirmed this conclusion”(Sweetnam and Croxford 2011 p.13).

•  Social or market costs of carbon: the social cost of carbon or “the price society should be willing to pay to avoid the 
(global costs of ) damage a tonne of carbon causes over its lifetime by reducing emissions” was included for comparison 
with the ‘cost per tonne of carbon saved’ indicator used to compare scenarios for Clapham Park by combining monetary 
and carbon investment with 30, 60, 90 and 120 year lifetime savings (Sweetnam and Croxford 2011 p.4) 

•  Longer/wider impacts of refurbishment or demolition: a number of (early stage) frameworks for conceptualising 
this were covered in the review (Thomsen and van der Flier 2012; Thomsen and van der Flier 2011; Wassenberg 2011)  
but research into the longer, wider impacts of regeneration projects was not included. 

Table 5 Costs associated with resident decant at Borough Grove (CAMCO 2011) 14 properties in total, each household decanted for 9-12 weeks

Item Cost

Removals and storage for average 3-bed house £2,000

Decant fit-out costs – including re-carpeting – new / relaid as necessary (new in lounge and dining 
room, following removal of chimney breast), also blinds, white goods etc

£3,000

Rent loss from “decant home” for 12 week decant period - £110/week for 3-bed house £1,300

Resident costs (typically between £100-£500 per decant for services reconnection, post forwarding, etc) £300

Inconvenience payment (under Radian decant policy) £500

Resident Liaison Officer (approx £30k per annum averaged across 14 properties) £2,100

Site office and presence office (averaged across 14 properties) £800

Total £10,000



Demolition or Refurbishment of Social Housing? A review of the evidence p21

Table 6 Total costs associated with refurbishment of Borough Grove (CAMCO 2011) 14 properties 

Borough Grove, Petersfield, Hampshire
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Phase Pre-project During Project Post-project Alternatives

Consultation 2004-5 Drum 
Housing Association 
consulted with 
residents of the 
estate 

Resident 
Engagement 
Process (resident 
liaison officer)

Resident Feedback 2004-5 Drum 
Housing Association 
consulted with 
residents of the 
estate 

Modelling SAP 2009, RDSAP 
and BREEAM

 SAP 2009, RDSAP 
and BREEAM

based on previous 
experience of 
demolishing pre-
cast REEMA type 
homes as well 
as construction 
of Code 4-5 new 
homes

Monitoring Air-tightness; 
Thermal 
imaging; internal 
temperatures, gas, 
water, electricity 
consumption

Construction waste Air-tightness; 
Thermal 
imaging;  internal 
temperatures, gas, 
water, electricity 
consumption

 

Occupant surveys   Resident Feedback  

Training/
Dedicated Staff

build capacity among regional agencies, social housing providers, housing professionals 
and policy makers in the SE region,

Supply Chain 
Interventions

map regional activity on low carbon refurbishment exemplars and create a network 
for disseminating results including the establishment of a network of “Refurbishment 
Pioneers” in social housing, develop a conceptual finance model suitable for 
mainstreaming low carbon refurbishment within the region, provide targeted business 
assistance to SMEs and other key organisations.

Si
ze

Form Semi-detached, concrete panel (Reema) construction, E-rated

Average unit size 85m2 (est)

Bedrooms 3

Communal space 
per unit

No. of dwellings 14

Storeys 2

Floor Height     

Total Floor Area 1,190 m2
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Ti
m

e

Date of 
Construction

1950s

Original Design 
Life

30 year (outperformed this life-expectancy)

Construction time     

Decant Period  9-12 weeks 9-12 weeks  

Expected/Assessed 
Design Life

 50 year period 50 year period  

C
o

st
s

Total Cost of Works     

Cost/m2     

Consultancy Fees     

Cost per unit  £91,900  
(£1,089/m2) 

£91,900  
(£1,089/m2) 

£144,700  
(£1,714/m2)

Decanting cost  £10,060 per unit 
(£119/m2)

£10,060 per unit 
(£119/m2)

£10,030 per unit 
(£119/m2)

Rent (loss or 
decant-related)

£110/week for 
3-bed house

   

Sustainability 
features cost

 £79,700 (£944/m2) 
incl VAT and site 
management

£79,700 (£944/m2) 
incl VAT and site 
management

£131,600 (£1,560/
m2)

Internal staff time  2140 (£25/m2) 2140 (£25/m2) £3,070 per property 
(£36/m2)

Bills for residents Bills £1000-1500/
year

   

R
es

o
u

rc
es

Op Total Emissions 
t CO2/yr

7.2 2.1 2.6  

Op Energy kWh/
m2/year

    

Op Water l/p/d 113 92 92  

SAP Rating  (E) 47 (B) 90 (B) 85  

Embodied Carbon     

Embodied Energy     

Embodied Water     

Waste Haulage     

Demolition, 
Excavation and 
Disposal

    

Concrete     

Masonry     

Rebar     



Demolition or Refurbishment of Social Housing? A review of the evidence p23

Box 3: Effect of rising fuel prices on Clapham Park simulation

Capital investment appraisal means weighing up the benefits on making an investment now, given benefits in the 
future. Two methods were used to model the effect of rising fuel prices on a comparison between refurbishment 
and demolition scenarios at Clapham Park (Sweetnam and Croxford 2011). 

These methods are:

•  Simple Payback Period: this gives the number of years it would take to pay for an investment using the savings 
generated each year, in this case savings on gas bills. To work out the payback period you divide the overall 
project cost (CAPEX) by the annual saving in the first year. A high payback period means the investment is large 
compared to the annual savings so the project with the lowest payback period is ranked best. Payback period 
is not based on realistic prices because the method assumes that fuel prices and prices in general don’t change 
over time (inflation is zero) and it gives less weight to projects that might start paying back more in the long-
term, either after other projects have paid back or at a time in the future when there is a dramatic rise in fuel 
prices but the investment has already paid for itself.

•  Net Present Value: this gives an estimate of the value of investing in a project now. To work out the net present 
value, the year on year savings are added together and subtracted from the original capital investment. This is 
different from the payback period because prices in the future change in line with inflation. This reduces the bias 
towards projects that save money early in their lifetime. A low NPV is better than a high NPV because this means 
it is the cheapest current option for saving money in the future.

Sweetnam and Croxford compared 4 scenarios (although costs of demolition were excluded!): refurbishment versus 
rebuilding and with fuel prices steady or rising.

Assumptions in the Clapham Park model

What does this assumption mean?

Gas Price 
Volatility

8% This is the annual percentage rise in the price of gas: 8% is added to the price in the first 
year giving a new, higher price. At the end of the second year 8% is added to this higher 
price and so on (based on compound interest)

Discount 
Factor

2% Discount rate is a way of accounting for inflation. Inflation is the % rise in general prices 
each year. When inflation is high, the money you have this year is worth less next year: 
you can’t by as much stuff with it because stuff costs more.

Current Gas 
Cost (£/kWh)

0.03 This is the price of a unit of gas. The unit, kilowatt hours, is a unit of energy, like a calorie, 
and is the amount of energy in a certain amount of gas. 

Results of the Clapham Park model

Best NPV

Second Best NPV

Worst NPV

Second Worst NPV

Refurbishment Rebuilding

Steady 
Prices

Rising 
Prices

Steady 
Prices

Rising 
Prices

Investment (£ 2010/m2) 847.4 847.4 1678 1678

Annual energy saving from consuming less gas (kWh/m2) 81.49 81.49 111.49 111.49

Annual saving on gas bills in 2010 prices (£/m2) Year 0 2.702208 2.702208 3.697008 3.697008

Simple Payback Period (years) (no inflation) 314  454  

30 Year NPV (£2010) -787 -593 -1592 -1331

60 Year NPV (£2010) -753 1095 -1546 979
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The graph below illustrates the different ways that payback periods and net present values account for savings  
over time. The total future savings are represented by the areas under the graphs but in slightly different ways:

• payback period is the (blue) area under the graph showing constant annual savings each year

•  NPV is the total upfront capital investment minus the area under the graph so the larger the area to deduct  
from the capital cost, the lower (and better) the NPV because the option is the cheapest thing to do now.  
In this case the largest area under the graph is for the refurbishment scenario with high price rises because 
investing in energy efficiency will save so much money in a future scenario where energy is more expensive. 
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30 year NPV = - CAPEX - area under graph 

60 year NPV = - CAPEX - area under graph 

Area under graph = CAPEX at 314 years 

Note: the economic models applied in conjunction with ‘technical’ models are generally very simplistic and used for 
comparative purposes. They are limited in the extent to which they are informed by and might inform a business 
or investment case. In particular, property and land values are not considered and alternative accommodation and 
relocation options are not considered.
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3.4 Financing Investment

3.4.1 UK retrofit supply chain and market 

Reflecting the undeveloped supply chain and market, a variety of technical, economic and social risks and “hidden costs” 
associated with refurbishment and retrofit remain and these appear to deter investment:

•  Prices: the market is characterised by low fuel prices (for now) and so there is only low interest in savings from cutting 
fuel costs. The market is also characterised by low competition which pushes up product and supplier prices (CAMCO 
2011); 

•  Risks seen by designers: a survey of UK architects identified and ranked perceived challenges to low carbon housing 
refurbishment: financial and business, design and technical, legislative, environmental and cultural (Davies and Osmani 
2011);

•  Risks seen by owners, investors and developers: Radian housing reported from stakeholder workshops14 that “the 
amount of investment most social landlords would typically be prepared to make in energy efficiency and low carbon 
measures - is approximately £5,000 - £12,000” and identified: Technical risks (equipment quality lifetime; maintenance 
cost; warranties; efficiency; innovation; controls; perceived dampness; service levels); Economic risks (interest in Pay  
As You Save / Green Deal, small investments – high transaction cost, SMEs dominate the market, different loan products 
for different technologies); Social risks (realise the savings, sabotage projects, loss of space, appliance loads, appearance 
of property) 

These suggest a need (alongside financing mechanisms) for a change in perceptions, awareness and behaviour throughout 
the supply chain. Concrete suggestions for individual projects focused on a “framework for quality workmanship” and 
targeting users with “behaviour change training... at the point of occupancy” (CAMCO 2011).

3.4.2 Tenure types and management capacity 

Ownership and management are relevant to the measurement and perception of costs and risks because they affect how 
these are shared between investors and occupants in ways that can simultaneously:

• allow refurbishment to be financed (covering the cost of borrowing money), 

• allow savings to be realised by tenants (especially those struggling with high energy bills) and 

• encourage energy saving behaviour (especially if the cost of heating dwellings falls).  

Inter-related factors of interest to refurbishment projects are:

•  Recovering investments through rent: Radian homes cite “a lack of flexibility for social landlords to reflect the energy 
efficiency investment costs in rental increases” as well as potential unwillingness of tenants to pay, Radian’s stakeholder 
workshop suggested that at least 50% of energy savings should be passed on to tenants (CAMCO 2011). This figure is 
not (yet) based on occupant surveys or modelling.

•  Long payback periods for energy efficiency measures but short terms of tenure/high churn rates for tenants. This means 
that the community engaged in decisions over refurbishment may not see the benefits if they move elsewhere in the 
short term. 

•  Borrowing: as well as a reported unwillingness of developers to use mortgage-type financing for refurbishment and 
a lack of clarity about how the cost of financing would be shared with tenants, there is a lack of data (see the gaps in 
data on direct savings of refurbishment schemes) and confidence about whether the estimated future savings can be 
realised, which, if future savings are the basis for repaying loans (eg Green Deal), make borrowing difficult and risky.

3.4.3 Access to finance and/or willingness to invest: grants, subsidies and loans

Risky current costs and uncertain future savings limit financing because these are the conditions under which banks 
typically do not want to lend and developers are hesitant to borrow. Alternative sources of investment are grants, 
subsidies and loans that can be backed up or guaranteed in ways that help developers to make future payments, even if 
refurbishment schemes fail to yield expected savings; other costs or problems arise; or tenants are unable to pay. 

14  “stakeholders including NHF, HCA, DECC, EST, PUSH, SEEDA, pioneering housing associations, local authorities, construction companies, energy suppliers, representatives of other private sector organisations  
and banks”
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Box 4: Financing mechanisms proposed by Radian Homes

As part of the Borough Grove refurbishment, Radian Homes looked at different financing options and concluded 
that loan guarantees were “the most cost efficient form of subsidy” and could raise at least £20 from capital markets 
for a £1 subsidy. This is known as a leverage ratio of 1:20 (1 in for 20 out). Loan guarantees for these types of 
investment are not common in the UK but there is EU experience.

Another promising proposal was to set up a revolving loan fund. This operates like a large pool of money created by 
multiple, large investors (like pension funds) who expect long-term, low risk but moderate returns. From this large 
pool, small loans are made to many borrowers. The borrowers are quickly able to start (within 2-3 years, which is the 
time it might take for a refurbishment project to be completed, and quicker than, say, large infrastructure projects 
which typically attract similar types of large investors) and continuously (over quarterly intervals) contributing to 
the pool with their repayments and the pool slowly grows. The risk of investing in this sort of fund are lower than 
one off loans to refurbishment projects because the following flows in and out of the pool are carefully balanced to 
make sure it is never empty (in reality the pool is just a series of constant flows in and out rather than a static pool of 
tangible money):  

• frequency (regularly and predictably), 

• amount of each borrower’s repayment (small size but high number), 

• time between lending and when repayment can start (short) 

• conditions that stop investors dipping in too soon to take out large chunks of investment

There is still a risk (probably accepted by investors) that an individual borrower might fail to repay but it would 
not affect the fund as a whole. This also means that these funds can afford to build in a period of “grace without 
reproach (typically up to 1 year)” which gives borrowers some flexibility. The risk that many borrowers fail to pay 
back would be low but if it happened the pool would be depleted so investors would arrange for this risk to be 
covered by a guarantee that works like insurance but is paid for by a government subsidy (eg 5% of the fund).

Radian suggest that this sort of mechanism is advantageous because for every £1 of subsidy, £150 of investment 
can be achieved over the long term, “(for a social housing provider) borrowing is made against the guarantee fund 
instead of property assets”, it has worked well in the EU, can be based on a “pay as you save” approach against overall 
annual energy savings which means paying more in years where energy savings have been higher (e.g. very cold 
winter with high energy consumption making the savings from energy efficient systems higher in absolute terms).

 3.5 Lifetimes: policy, modelling and finance time frames
Decision making is sensitive to the assumptions and projections made about the life of a building. Expected lifetimes  
and time scales of interest are treated differently by different stakeholders involved in decisions (Figure 2):

• Economic analysis: stock, asset and portfolio analysis (e.g. building “survival rates”  of the order 1,300 years); 

• Research and case studies: longer range modelling (30-120 years)  

• Energy policy: 5, 15 and 35 year timeframes to 2020, 2030 and 2050; 

•  Design: a specified design life (in order to raise and guarantee investment) and potentially cost-benefit analysis or NPV 
for evaluating design options (25-50 years)

• Investment, insurance and liability periods: 25 year mortgages, 6 year contract liabilities, 2-15 year product warranties.
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Figure 2: Time horizons of housing decisions and analysis.

The timeframes used by different decision-makers affect the critical thresholds at which one option wins out over another 
on economic, environmental or social grounds. These notional thresholds are illustrated in the following graphs for a 
number of the scenarios covered in this document. The graphs (Figure 3) on the following pages illustrate that:

•  Markets and prices: whether refurbishment has lower cumulative emissions compared to new build in the long 
run depends on whether the practicable performance standards for refurbishment are the same or better than the 
standards set new construction. It is worth noting that the economic reasons for redevelopment (rising land and 
building values) have historically been largely independent of energy performance because location plays such an 
important role in determining these values and energy performance can be difficult for prospective building owners 
and occupiers to assess. Whether energy performance becomes more important in rent setting depends on how much 
choice occupants have about their housing and whether energy performance is really a driver in those choices15  

(see Figure 3: scenarios I to V)

•  Decarbonisation: investment in decarbonisation of the grid might make a bigger difference in emissions per pound 
spent than improving the energy performance of buildings through refurbishment or new construction (see Figure 3: 
scenario VI)

•  Behaviour and performance: justifications (targeted at building users) for either refurbishment or demolition that rely 
on over-optimistic assumptions about improved energy performance and lower bills, disadvantage tenants because a) 
land and building values rise independently and faster than energy prices so developers gain whether or not energy 
performance is improved and or bills fall; b) the time frames over which tenants see a benefit is longer than typical 
tenancies (see Figure 3: scenario VII).

•  Maintenance and repair: reducing the embodied energy and carbon involved in construction, maintenance and 
repairs and making sure that major refurbishments perform better each time, mean that the cumulative emissions from 
refurbishment fall below those of new construction sooner (see Figure 3: scenario VIII)

3.6 Key messages
In the UK there is a gap in the capacity, willingness and confidence of decision makers to a) make transparent and be able 
to interrogate the assumptions in decisions about refurbishment and demolition and b) to invest in refurbishment (or 
other innovative options). This applies to policy-makers, built environment and planning professionals, as well as tenants, 
housing associations, developers and lenders. Part of this involves collecting cost data and analysing the impacts on 
different people and places over time of “doing nothing”, refurbishment and demolition scenarios. This necessarily means 
research into the behavioural and technical realities of living through refurbishments and feeding what is learnt into 
ongoing relationships with tenants and into the design of other projects.

Figure 3 illustrates some of the relationships between time horizons of decision-makers and the thresholds at which one 
option wins out over another. This is based on notional scenario modelling in the absence of data, models and tools to 
support transparent decision making.  Table 7 summarises the different time periods over which decisions about housing 
and related policy are made.

15  For example, registered social landlords, housing associations and local authorities might expect higher rents where an investment in improvements has delivered better energy performance or hope to use 
higher rents to pay for future improvements. Whether this is realisable or reasonable in practice depends on who is paying rent; how rent is paid; what difference a change in rent or energy bills makes to 
household budgets compared to other factors (for example, changing location might affect associated transport and food costs, people choosing better indoor comfort means no cash savings or using the 
savings for other necessities means no spare cash to pay more rent); and who is able to opt out of the improvements or move to alternative accommodation. Meanwhile, buyers and private renters can in theory 
use energy performance certificates alongside other criteria, like location, when choosing housing but poorly performing buildings in good locations will still command high rents and the difference in rent 
between poorly performing and well performing housing in the same area may come down to other factors like the ‘period features’ in a poorly performing building.
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I  Base Case 
“do nothing”

Assuming:

-  no energy price 
inflation, 

-  low inflation on 
building value (rent)

-  higher inflation  
on land values

II  Demolish and rebuild 
to current building 
standards

Assuming:

- as above

-  relationship between 
new build and refurb 
performance is as per 
Clapham Park case 
study

III Refurbishment

Cumulative carbon 
emissions and tenants 
bills increase over time. 

Land and building 
inflation occurs over 
periods shorter than 
the life expectancy of 
buildings (and people). 
This is within the design 
life but much longer than 
average tenancies. 

The new building 
consumes embodied 
energy in construction 
but generates lower 
operational emissions 
over time. Tenants energy 
bills are lower than “do 
nothing”. In time, the 
cumulative emissions 
from new build are lower 
than the “do nothing” 
scenario. 

The better the energy 
performance of the 
new build, the sooner 
this happens. This may 
happen well within 
the life expectancy 
of existing stock and 
design life of newer 
buildings.

Refurbishment consumes 
embodied energy (but 
less than a new building) 
and tenants bills are 
lower than “do nothing”. 
In time, the cumulative 
emissions from 
refurbishment are lower 
than “do nothing”. This 
happens faster than for 
the new build providing 
a refurbishment can 
perform as well as a 
new build. In the longer 
run, new builds may 
have lower cumulative 
emissions than refurbs, 
if new buildings 
have better energy 
performance. Reducing 
the embodied energy of 
new builds also means 
new builds overtake 
refurbs sooner. 
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Figure 3: Impact of time horizons on decisions and analysis of housing options.
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IV  Land price inflation 
(relative to rent/
building cost 
inflation) 

Assuming:

-  no energy price 
inflation, 

-  low inflation on 
building value (rent)

-  higher inflation  
on land values

V Fuel price inflation

Assuming:

-  moderate energy 
price inflation, 

-  low inflation on 
building value (rent)

-  higher inflation on 
land values

VI  Decarbonisation by 
2030 or 2050

Assuming:

-  no energy price 
inflation, 

-  low inflation on 
building value (rent)

-  higher inflation  
on land values

The decision to redevelop 
may be made sooner 
when land value inflation 
is higher than building 
inflation. Neither 
of these factors is 
directly linked to the 
energy performance of 
buildings but it may be 
correlated if: a) poor 
energy performance 
reduces the ability of 
tenants to pay rent from 
their household budget 
b) poorly performing 
buildings command 
lower rents than other 
buildings in the same 
area.

Tenants in the “do 
nothing” scenario will 
face much higher future 
energy bills.

When average tenancy 
periods are short, the 
future cost of bills may 
not be paid by or valued 
by current occupants.  

Higher inflation on 
energy prices means 
that people start paying 
higher bills sooner.

If the UK successfully 
decarbonises the national 
grid (relies on low or 
renewable sources of 
energy) and housing 
uses only electricity for 
heating and hot water, 
the emissions from un-
refurbished buildings 
could be lower than new 
buildings that use energy 
from the current supply 
mix.

The bills paid by tenants 
do not take account of 
higher energy costs from 
the process of installing 
new energy generators.

Figure 3: Impact of time horizons on decisions and analysis of housing options.
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Figure 3: Impact of time horizons on decisions and analysis of housing options.

 VII  Behaviour and 
Performance

VIII  Repair and 
refurbishment  
vs building new 
build later

Assuming:

-  new buildings and 
refurbs in 20 years 
time can perform 
10% better

-  repair uses 10% of 
embodied carbon  
of a refurb

If the assumptions about 
energy performance 
are optimistic (there 
is no rebound effect 
and components and 
fabric perform as well 
as predicted), then a) 
the savings to tenants 
in the long run will have 
been over estimated 
(but land and building 
values unaffected); b)the 
moment at which new 
build or refurb perform 
better than doing 
nothing is later and the 
moment when refurb 
performs better.

Regular refurbishments 
would need to make a 
significant improvement 
to energy performance 
to reduce operational 
and embodied emissions 
over the long term. Lower 
embodied energy refurbs 
that improve energy 
performance result in 
lower life time carbon 
emissions.

If the decision to 
demolish and rebuild 
is deferred (eg for 20 
years), the new building 
would still have to 
perform significantly 
better than a refurbished 
building to generate 
lower operational and 
embodied carbon 
emissions.
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Table 7: Range of time periods (in years) over which decisions are made 

Economic analysis: 
stock, asset and 
portfolio analysis

50 1300 Based on English Housing Survey: 50%+ of homes over 50 years old,  
22% over 100 years old; building “survival rates”  of the order 1,300,  
http://www.cotac.org.uk/conf_2012_pres/snicol/snicol2.pdf

Research and case 
studies: longer 
range modelling 
(15-120 years)  

15 120 Range from 6 case studies analysed for this report,  
http://www.legislation.gov.uk/ukpga/1980/58

Energy policy: 5, 
15 and 35 year 
timeframes to 2020, 
2030 and 2050;

5 85 Based on 2020, 2030, 2050 and 2100 appraisal models,  
https://www.gov.uk/government/uploads/system/uploads/attachment_data/
file/48184/3136-guide-carbon-valuation-methodology.pdf

Design: a specified 
design life from the 
client’s brief

25 50 Housing 25-30 years compared to British Library and Portcullis House 250 years. 
These periods are specified in order to raise and guarantee investment.  
They are also used for cost-benefit analysis or NPV for evaluating design options 
(25-50 years)

Investment, 
insurance and 
liability periods: 25 
year mortgages, 
6 year contract 
liabilities, 2-15 year 
product warranties;

2 50 Based on limitation act and white good warranties

Life expectancies: 
average for 2013

78 83 ONS data http://www.ons.gov.uk/ons/rel/lifetables/national-life-
tables/2010---2012/sty-facts-about-le.html

People: median 
length of time in 
current residence  
(UK)

1 11 Social Trends 41 - Housing - Office for National Statistics,  average (median) 
length of time that households in England had lived in their home was 8 years. 
Owner-occupiers had been in their current home on average the longest at  
11 years, followed by social-renters at 7 years
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4 Energy and carbon 
The energy use and greenhouse gas (GHG) emissions associated with buildings are key concerns driving the assessment  
of whether to refurbish housing or to demolish and rebuild it. Chapter 2 has discussed how assessment decisions are 
made.  This section of the report reviews evidence generated from research into the energy used and carbon dioxide  
(CO

2
) emitted through the construction, refurbishment and demolition of buildings (embodied energy) as well as the 

energy used and CO
2
 emitted through the use of the building (operational energy).  It highlights some of the related issues 

associated with reducing energy and carbon emissions through interventions in housing, including potential benefits of 
‘a green economy’ enabled through a retrofit industry as well as unwanted consequences such as inadequately ventilated 
buildings.

Key issues for the Retrofit vs demolition debate are:

• Can old homes be refurbished to the same energy performance standards as new homes?  (Demand equivalence)

•  How much does the embodied carbon of construction materials and processes add to the overall emissions of new and 
refurbished homes?  (Lifecycle equivalence)

• Does new construction offer more opportunities for low carbon generation or supply switching? (Supply equivalence) 

•  Which socioeconomic groups and housing types will be targeted through refurbishment programmes and demolition 
programmes? (Distributional equivalence)

4.1 Operational vs. embodied energy 
The energy consumption associated with buildings can be analysed in two ways; operational and embodied. A building’s 
operational energy is incurred through the use of the building.  It refers to the energy used in heating, ventilating, lighting 
and appliances to maintain comfortable conditions in the building.  The operational energy of a building depends on the 
condition of the building, the systems installed in it and the occupants’ use of the building (Ibn-Mohammed 2013).

The embodied energy of a building refers to the energy used to extract, manufacture, transport, and assemble the 
materials for its construction.  It sometimes also includes energy to deconstruct buildings and dispose of the materials 
(see Figure 4). There are also other environmental impacts of material use, including impacts on human health (see 
Section 6), and lifespan and maintenance requirements (see Section 2) which are aspects included in a building’s Life Cycle 
Assessment (LCA). 

Lifecycle assessment of UK houses shows that the global warming potential of energy and emissions during the lifetime 
of the building (operational) is significantly greater than the impact of construction of the building and demolition at the 
end of its life (embodied energy) (Cuella-Franca and Azapagic 2012). This means much research and policy is focused on 
understanding and reducing operational energy, however the embodied energy of construction materials and processes 
becomes more important if we increase low carbon sources of energy to provide the operational energy required. 
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Box 5: Energy, carbon, carbon dioxide and greenhouse gases

Energy In physics, energy is defined as the capacity to perform work. It takes various forms, such as 
electrical, thermal, kinetic or nuclear. 

Inside homes we use two types: electrical energy for lighting and appliances and thermal energy 
to keep rooms warm and supply hot water. 

Electrical energy is typically generated at remote power plants and delivered to the home 
through the electricity grid.  However generating electricity on residential sites is becoming 
more common through technologies that use renewable sources, like as roof mounted solar PV 
cells or wind turbines.  

Thermal energy is more typically produced in homes and most of us use boilers to produce 
central heating and hot water.  Boilers burn fuel (usually gas from the national grid) to produce 
the thermal energy we use.

Carbon (C) Carbon is an organic chemical element which becomes carbon dioxide (CO
2
) when combined 

with oxygen. It is the carbon content in fossil fuels that burns to produce energy. 

Carbon is neither the same as carbon dioxide nor a greenhouse gas, but is often used as a 
shortened form of the term of ‘carbon dioxide emissions’.  

The term ‘Carbon’ is used today as a scale to make comparisons across different types of energy 
sources and energy uses. We talk about the ‘carbon intensity’ of different fuels which means how 
much CO

2
 is produced from different sources to perform the same work. Or we impose ‘Carbon 

limits’ to cap the amount of CO
2
 and GHG produced within a defined area or activity.  

Carbon 
dioxide (CO

2
)

Carbon dioxide is a gas which is produced through plant and animal respiration, decaying 
materials and through burning organic matter such as fossil fuels.

Burning fossil fuels such as coal, oil or gas to create energy to support human activities and 
energy demand, produces excessive amounts of CO

2
 that cannot be absorbed through natural 

processes such as plant respiration. CO
2
 remains in the atmosphere and is one of the main gasses 

contributing to global warming.   

Greenhouse 
gases (GHG)

Greenhouse gases are present in the atmosphere that absorb radiation and reflect it back to 
the Earth as heat. This process raises the earth’s temperature and induces climate change. Most 
common GHG are carbon dioxide, methane (CH4) and nitrous oxide (N2O) and fluorinated 
gases. 
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4.2 Carbon vs. energy 
The two terms, ‘energy’ and ‘carbon’ are not interchangeable.  The carbon dioxide (CO

2
) and other pollution emitted in 

the air, depends on which fuel is used to provide energy. If the fuel is from a renewable source (a ‘clean’ fuel) than the 
carbon emissions are zero or close to zero.  A building’s ‘operational carbon’ can be high or low depending on whether 
the operational energy (used during the use of the building) is from a high or low carbon source.  Likewise, if the fuel 
used to produce and transport building materials is from ‘clean’ fuel, its ‘embodied carbon’ (used during the construction, 
refurbishment and demolition of buildings) is lower than if a fossil fuel is burned or more carbon intense materials are 
used.

To date, a great deal of effort has been made to reduce the operational energy of buildings and the carbon emissions 
associated with this. For example, the UK government announced in 2006 that all new residential buildings will be net zero 
carbon buildings by 2016, that is, carbon emission from operational energy of buildings should be zero. This means that 
the operational carbon emissions need to be offset with renewable energy production on site and by other measures.  It is 
easier (and cheaper) to offset a building’s entire operational carbon when it is a low energy building and uses little energy 
to begin with.  

Material choices are usually defined and considered at the early stages of a construction project. By planning carefully for a 
building’s future maintenance and eventual end of life demolition, embodied carbon can be reduced. However at present, 
unlike operational carbon, there is no embodied carbon regulation or policy. Yet when considering the environmental 
impact of a building, as we reduce operational carbon, embodied carbon’s impact will proportionally increase. 

4.3 Embodied carbon and energy
Embodied energy has been a low-profile issue when it comes to the energy efficiency of buildings, compared to 
operational energy. 

A number of recent review papers of the literature on embodied energy found:

• Difficulties making comparisons between reported estimates: 

 –  “The majority of the studies cited are not comparative, lack the level of detail required to make any comparisons 
and have inconsistent boundaries” (Monahan and Powell 2011) 

 –  This is because of inconsistency in methods of analysis, geographic location, age of data and its completeness and 
the time period over which energy consumption was modelled (Dixit et al. 2012)

• Embodied Energy as a % of lifetime energy use: 

 –  Sartori and Hestnes attributed the wide variation in the percentages reported for embodied energy as a 
proportion of total lifetime energy to different energy supply and industrials systems and climates concluding 
that “The differences [between 60 studies in 9 countries] are, indeed, simply too great to allow any further general 
conclusion” (Sartori and Hestnes 2007)

 –  the percentages that are routinely cited for embodied and operational energy as a proportion of lifetime energy 
should not be applied generally and their reference and source material have to be carefully checked 

• Embodied energy estimates in the UK construction sector: 

 –  There appears to be consistency in the estimates reported in research for the embodied energy of different 
materials and processes in the UK (Monahan and Powell 2011) 

 –  High rise buildings may have higher embodied energy than other types of building (Sustainable Homes 2014; 
Atkins Carbon Critical Masterplanning Tool reproduced with permission from Atkins in RICS 2012 p. 9)

Table 8 shows a comparison of several studies on embodied energy to show that embodied energy as a proportion of 
lifetime energy should be reported with care.
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Table 8: Embodied energy as a proportion of lifetime energy

Source Assumptions Model Results

Cuella-Franca and Azapagic 
2102

•   Common existing UK housing: 
detached, semi-detached and 
terraced

•  Cradle to grave

•   Based on 2008/9 energy mix  
and energy end uses

•   Modelled over 50 years but 
assuming no change in energy mix, 
energy efficiency 

Global Warming Potential from these houses 
proportionally: 

• 90% in use, 

• 9% embodied and 

• 1% end of life

Monahan and Powell 2011 •  3 bedroom semi-detached house

•  Cradle to site

•   Compared embodied energy 
between traditional (masonry 
cavity wall) and modern methods 
of construction (timber frame with 
larch cladding or brick veneer)

•   Modelled only embodied and 
primary energy consumed before 
operation and occupation so no 
modelling of operational energy

Detailed estimates of embodied energy for 
different materials that were consistent with 
previous estimates from the UK.

Sustainable Homes 2014 •   No models, boundaries or time 
periods specified

•   Refers to  BRE research from 1991 
for typical 3-bed detached houses 
stating that energy in use would 
overtake embodied energy

Extrapolates from (out of date study on  
one type of UK housing) to claim that over  
60 years, embodied energy accounts for  
only about 10% of the lifetime energy use  
of the building

Plank 2008 cited in Dixit  
et al. 2012

“Plank (2008) concluded that in the 
United Kingdom, a heating dominated 
region, the embodied energy accounts 
for only 10 percent of the total lifecycle 
energy.”

No details given in citation and original  
paper is pay-per-view. Unclear what type  
or age of housing, what year the data applies 
to, the projected lifetime of the building 
under discussion.

With improvement in energy efficiency potentially contributing to reductions in operational energy use (new buildings 
may be more energy efficient than older buildings but this does not automatically mean that their occupants will use 
less energy than those in older buildings) and a shift to renewable sources of energy and electrification of the grid, the 
percentage of embodied carbon and energy as a proportion of the total life time energy use is increasing. It is particularly 
significant for design and construction of sustainable homes (Thormark 2002 cited in Monahan and Powell 2011). 

In addition, absence of regulations and policy to oversee embodied carbon and energy means that this is a challenging 
area for the UK’s successful transition to a green economy. Indeed, in 2010 the UK Government Low Carbon Construction 
Innovation and Growth Team recommended to develop a methodology to measure impacts of embodied carbon and 
energy at design phase of building construction. During 2011 and 2012, a voluntary standard to measure environmental 
impacts of buildings, the European Standards TC350, which includes British Standards EN 15978:2011 for the assessment  
of the sustainability construction works, was published (Moncaster and Symons 2013).
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There exist various ways to calculate embodied energy of buildings. Amongst the various methodologies, adopting  
a Life Cycle Assessment model is a recent trend. However, Dixit et al. (2012) point out inconsistency and incompleteness  
of data used in the LCA based analysis and summarize the reasons why it is difficult to obtain data thoroughly for the LCA 
in following ways:

•  Difficulty and complexity in tracing all environmental impacts of building materials due to physical characters of 
buildings, variety of building materials used and complexity of construction process

•  Difficulty in data collection and interpretation due to long life span and the dynamics of buildings such as alteration, 
renovation and replacements

• Lack of standards and reliable information in building production and delivery processes

Despite the controversies over a LCA based analysis, the BS EN 15978:2011 which is the most used method for embodied 
carbon and energy calculations in the construction industry (RICS 2012) as well as the European TC 350 Standards bases on 
the LCA model. 

In BS EN 15978:2011, embodied energy measurement is delimited by ‘cradle-to-gate’, ‘cradle-to-site’, ‘cradle-to-end of 
construction’, ‘cradle-to-grave’, or ‘cradle-to-cradle’ boundaries, which are referred to as ‘system boundaries’ in a lifecycle 
analysis of buildings (Figure 4). System boundaries show which processes of building construction works are to be included 
in embodied energy calculations. Cradle-to-gate measures energy use from raw material extraction till manufacture of 
the finished materials at factory, cradle-to-site from the extraction till transport of the materials to construction site, and 
cradle-to-end of construction form the extraction to transport, construction and assembly on site. Cradle-to-grave includes 
all processes over the total lifecycle of buildings encompassing raw material extraction, production, delivery to site, 
assembly, construction, refurbishment and replacement, demolition, and disposal at the end of building lifecycle.  
And, cradle-to cradle includes cradle-to-grave plus the process to convert the demolished products into new materials.

Natural building
components break
down to natural
elements

Deconstruction

Demolition

Reprocessing/recycling

New

Cradle to grave

Cradle to cradleCradle to (factory) gate

Figure 4: System boundaries in embodied energy analysis of buildings (adapted with permission from Pelsmakers, S., (2012),  
The Environmental Design Pocketbook, Riba Publishing)

Dong et al. (2005) compared the embodied carbon for retrofitting or rebuilding three example houses from the 1930s, 
1960s and 1980s. They modelled the effects of insulating the attic and basement walls and sealing air leakage. The results 
should that for a “40-year lifecycle, the rebuild option has a lower lifecycle energy, global warming potential, and air 
pollution, which are predominantly associated with building operation. But the retrofit options have lower water pollution, 
solid waste generation, and weighted resource use, associated with material flows. The retrofit options alo have lower 
lifecycle economic costs than rebuilding” (Dong et al. 2005 p. 1051)



Demolition or Refurbishment of Social Housing? A review of the evidence p37

Box 6:  LCA based embodied carbon calculation at design stage (RICS 2012)

Step 1. Breakdown of building components:

The following building components are embodied carbon-critical and therefore embodied carbon analysis should 
be carried out by quantity survey and considered primarily when targeting embodied carbon reduction at design 
stage.   

• Foundations

• Basement retaining walls

• Grounds

• Frame

• Upper floor

• Roof

• Stairs and ramps

• External walls

• Windows and external doors

• Internal walls and partitions

• Finishes

Step 2. Cradle-to-gate calculation 

When types of building components, their size and number, and building materials are not yet known:

Calculation of embodied carbon of buildings is carried out by multiplying the floor area by the benchmark 
embodied carbon value. The benchmark embodied carbon values in CO

2
e per m2 is shown in figure 2 (with 

residential buildings boxed in red).

When types of building components, their size and number, and building materials are known:

A building material specific cradle-to-gate embodied carbon values are required for the calculation. The value is in 
the form of kg CO

2
e per kg material. It is provided in the product’s Environmental Product Declarations (EPDs) or can 

be obtained from the Inventory of Carbon and Energy (ICE) database from the University of Bath.

The quantity of material to be used can be estimated by multiplying the material density by the building 
component’s volume. Then, embodied carbon is calculated by multiplying the quantity by the embodied carbon 
value. At last, the sum of the embodied carbon of each building components is the embodied carbon in the 
designed building.

Step 3. Utilising the LCA outcome

To identify embodied carbon intensive components and materials (RICS 2012).

The outcome of the LCA of buildings can be used to identify materials and building components whose 
contribution to the overall amount of embodied carbon is relatively high. Also, the building industry provided 
benchmark value can be used to evaluate the performance of construction project in comparison. However, the 
benchmark database from the industry is at premature stage, lacking reliability in the data used. 
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A building’s lifecycle impacts on environments are greatly associated with decisions made at early building design 
stages. A study (Cofaigh et al. 1999 cited in Basbagill et al. 2013) showed that wise decisions made on material selection, 
building shape and dimensioning, and orientation at the early design stage could reduce environmental impacts by 40% 
comparing to an exemplar of design. An LCA can be used as a tool to assist building designers in optimizing and making 
decisions about material selection and dimensions of building components to mitigate embodied carbon impacts. 
However, caution should be paid when utilizing cradle-to-gate embodied carbon analysis. Some cases, even cradle-to-gate 
embodied carbon of material is low, transport of material to site might increase cradle-to-site embodied carbon of material 
significantly. Also, though using large thermal mass materials could result in high cradle-to-gate embodied carbon, this 
may reduce the overall lifecycle carbon emissions from buildings because it will reduce the need for cooling and heating. 
(RICS 2012).

4.3.1 Reducing embodied carbon

One of the common measures recommended for reduction of embodied carbon is to cut down the quantity of building 
materials. Additionally, RICS (2012) recommends to use “products with high recycled content, e.g. cement replacement 
materials such as GGBS (ground granulated blast furnace slag) or PFA (pulverised fuel ash)”, to implement “low carbon 
design details, e.g. exposed concrete ceilings; aerated block work; rotary piles; voided biaxial slabs” and to replace with  
“low carbon alternatives to traditional building products”. Figure 5 provides benchmark values for the carbon intensity of 
different building types.
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Villa

Detached Family Home

Semi Detached

Mid Terrace/Row House

End Terrace/Row House

Courtyard House

Townhouse – mid row

Townhouse – end row

Maisonettes 4 storey

Low Rise Apartment (3-5 storey building) 

Medium Rise Apartment/Condo (6-10 storey building)

Medium Rise Apartment (11-15 storey building)

High Rise Apartment (16-25 storey building)

High Rise Residential Tower (16-25 storey building)

High Rise Tower (Residential) (26+ storey building)

Communal Dwelling (nursing home, hall of residence)

Business Park

Low Rise Offices (1-4 storey building)

Medium Rise Office Block (5-10 storey building)

Medium Rise Office Block (11-15 storey building)

High Rise Office Block (16-25 storey building)
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Mixed Use City Block (ground floor commercial, offices, leisure)

 Mixed Use City Block (ground floor commercial, residential above)
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Hospital (general, acute teaching specialist)

Hospital (community, mental health)
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Figure 5: Embodied carbon benchmark values (Atkins Carbon Critical Masterplanning Tool reproduced with permission from Atkins in RICS 2012 p. 9)
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4.4 Operational carbon and energy
The operational energy used in homes generates around 25% of the UK’s greenhouse gas (GHG) emissions and reducing

these is a key strategy for the UK (Palmer and Cooper 2012). Figure 6 below shows carbon dioxide emissions generated 
in UK homes by different energy services (called ‘end uses’) including space heating, water heating, cooking and lighting. 
Different fuels types generate different amounts of carbon dioxide emissions and these figures have been adjusted for the 
fuel types that UK homes typically use for each of these end uses. 

The majority of emissions are produced from heating our homes followed by emissions generated by lighting and 
appliances and then heating hot water in bathrooms and kitchens. Lighting and appliances represent a high proportion 
of carbon emissions because they use grid electricity which has higher emissions per unit of energy generated than other 
forms of supply.

Heating is currently a key UK policy area with a number of policy and incentive schemes that attempt to reduce the 
amount of energy needed to keep homes warm, and change the way this energy is generated and supplied (see Appendix 
B for a list of policies and measures). 

DECC’s 2013 report on heating states that ‘the proportion of household energy [not emissions] used for water 
heating reduced from nearly 30% in 1970 to just 18% in 2011’ (DECC 2013 p. 67). This is attributed to energy efficiency 
improvements such as lagging (of water tanks and pipes) and more efficient boilers. However, presenting operational 
energy figures as percentages instead of totals or as carbon emissions is confusing because another reason for the fall in 
percentages reported by DECC is that we are using a larger proportion of household energy to heat our homes making the 
energy proportion used for hot water look relatively smaller. Water efficiency improvements can also reduce the energy 
needed for our hot water systems, as is discussed in Section 5.  

Cooking
7,323,327 tonnes 
CO2e, 4%

Water, 21,097,322 tonnes CO2e,
11%

Lights and appliances,
78,997,526 tonnes 
CO2e, 42%

Space 82,647,189 
tonnes CO2e, 43%

Domestic energy consumption by end use and fuel, in tonnes of carbon dioxide equivalent 
2012 data, converted to CO2e using Carbon Trust conversion factors for each fuel type

Source: DECC, Energy Consumption in the UK, Domestic data tables (2013 Update)

Figure 6: How homes generate CO2 when we consume energy: A breakdown of carbon dioxide emissions by operational energy end use for the UK housing stock  
in 201216 

16 Carbon Trust conversion factors available at http://www.carbontrust.com/resources/guides/carbon-footprinting-and-reporting/conversion-factors
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The second largest part of a home’s carbon emissions is from appliances. This is rising as we have more appliances in the 
home. Air conditioning systems are also included as domestic appliances. Cooling is not currently a major demand in the 
UK and the majority of residential stock uses natural ventilation. Electric air-conditioning currently accounts for less than 
1% the energy used in the housing stock’s (DECC 2013 p. 71) but this is likely to rise. The issue of ventilation becomes more 
critical when thinking about the summer overheating. Over-heating has adverse health implications, and raises energy 
costs through the need for cooling.

4.4.1 Reducing operational energy 

Tackling operational energy focusses on two questions:

• How much energy does the building require to keep it warm, dry, lit and ventilated?  (operational energy)

•  What level of emissions are produced by the energy sources used by these systems that are keeping the building 
habitable? (operational carbon)

Question one relates to demand side research and focuses on the energy and carbon emitted by the systems in homes 
and can include studies on specific technologies as well as studies on how people use them; such as behavioural studies 
focussing on attitudes and awareness of people using appliances (Abrahamse et al. 2005; compared with Darby 2001) and 
practice theory research focusing on the cultural factors that shape energy use in the home (Shove 2010; Shove et al. 2014; 
Wilhite 2008). Question two relates to supply side research and draws attention to the fuel sources used to produce the 
electrical and heat energy used in homes. Currently for UK housing this is predominantly natural gas, which accounts for 
70% of the energy supplied to residential buildings (Pyrko and Darby 2010).  

The UK government’s strategy to reduce CO
2
 emissions from the housing sector addresses both questions.  It aims to 

reduce demand through energy efficiency programmes and building regulations, and it aims to switch to lower carbon 
supply through decentralised energy schemes which build up renewable generating capacity close to the housing source, 
and through decarbonising the grid supplied energy, for example by generating electricity from lower carbon fuels (e.g. 
natural gas), or renewables (e.g. wind turbines). 

Supply side and demand side policies affect the amount of energy used and GHG emissions produced by new and 
refurbished buildings, but to different extents. This is discussed in the following sections. 

4.4.2 Tackling operational energy through new build

New residential buildings can be designed to use very low levels of energy and make use of low carbon sources.  UK 
building regulations specify the energy performance of new buildings and have become increasingly more stringent since 
first introduced in 1965. The newest buildings regulations will require all new buildings to be ‘Carbon Zero’ from 2016. This 
means the operational energy for new builds should be low and supplied from renewable sources. 

The operational energy and associated CO
2
 emissions of new buildings is lower than existing buildings. However, as 

discussed above, when considering the embodied energy and CO
2
 emissions associated with the construction, the gains of 

improved operational performance can be lost over the lifetime of the building. This is particularly important if an  
old building has been demolished in order to be replaced by a new one. In addition as we switch to renewable sources  
to supply our operational energy we produce few CO

2
 emissions, and the operational carbon of our buildings become  

less critical.

The reality of constructing enough new houses to accommodate the population also presents an overwhelming 
challenge, and has significant carbon consequences. New construction will not deliver the number of homes needed by 
the population, and research suggests that by 2050, 70% of the homes in use will be ones that already exist today (Power 
2008).  This means retrofitting established building also plays a key role in reducing the amount of energy consumed in the 
UK and the volume of GHG emitted. 

4.4.3 Tackling operational energy through retrofit

It is technically possible to retrofit homes to have the low operational energy and carbon of new builds, as shown by the 
following case studies in Box 7.
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Box 7: Case studies of retrofitting: economic, environmental and social benefits

These examples show that retrofitting, even for older, multi-storey buildings, can cost less than demolition  
and new construction particularly when residents are able to stay in their homes during construction work.

1)  Wilmcote House, Portsmouth City Council: retrofitting 1960s tower blocks to high energy standards  
with residents able to stay in-situ 

Portsmouth City Council refurbished 3 tower blocks, from 1968 with 11 storeys each. The decision not to demolish 
was based on the high costs of rebuilding and the difficulties of decanting and rehousing residents in the local area. 

The total budget for the project was £13 million, including ECO funding. 

The buildings were retrofitted to achieve very low operational energy levels equivalent to current building 
standards for new buildings (EnerPHit standard). The retrofit included external wall insulation, new heating systems, 
roof insulation and high performance windows. The life of the buildings was extended by a minimum of 30 
years, and heating and hot water costs reduced by 90%, saving around £750 each year for each dwelling.  In 
addition the refurbishment also rectified structural problems, improved the look of the buildings, expanded living 
space by enclosing walkways, provided secure communal space and 2 new units on the ground floor (ecda.co.uk, 
n.d.).

2)  Victorian Terrace, Oxford (Retrofit for the Future project): retrofitting older housing stock to high  
energy standards

Two bed terrace owned by Oxford City Council. The retrofit included external and internal wall insulation, loft 
sunpipe, mechanical ventilation with heat recovery, new gas boiler and solar PV and thermal panels. The results 
produced an 80% reduction in operational energy, calculated by monitoring post retrofit consumption, and 
compared to modelled pre-retrofit consumption levels. Annual energy bills are estimated to be under £500 

3)  Edward Woods Estate, London Borough of Hammersmith and Fulham: retrofitting a housing estate  
to high energy standards and avoiding costs and disruption of temporarily housing people elsewhere

Three, 24 storey blocks with 176 homes built in the 1970s. The total budget for the project was £16.3 million,  
with the money generated from the sale of 12 new penthouse flats constructed in the project and grant funding:

• GLA targeted Funding for energy saving £5.24m

• CESP Funding for energy saving £0.60m

• s106 (from previous regeneration scheme) £1.67m

• HRA capital £3.52m

• Capital Receipts £5.10m

Retrofitting existing buildings can provide other benefits, by maintaining the cultural heritage offered by the built 
environment and the personal attachment people feel for their homes and local communities. Unlike building from new, 
retrofitting can be quicker, less disruptive to residents and less dependent on dry weather conditions (Power 2008).  

The residential sector has been seen by governments as easier to transition to a lower carbon future in comparison to 
transport and industrial sectors, however implementing a national programme capable of delivering this transition is 
proving difficult and predicted savings are not being achieved at the required rates (Davies and Oreszczyn 2012).  Two 
key reasons are; firstly the difficulty in achieving the widespread changes needed for the built environment, and secondly 
the failure of installed improvements to achieve the anticipated savings. The former reason is associated with the need to 
establish a market and supply chain capable of delivering energy efficiency upgrades and total building refurbishments 
on a broad scale. The second reason is associated with the complexity of getting the technologies to function as designed 
(often called ‘the performance gap’) and understanding how households adjust to living in more energy efficient homes 
(often called ‘the rebound effect’) (see Box 8).   
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Box 8: Performance gaps and rebound effects: the difference between expected and actual operational 
energy reductions from refurbishment

There is typically a difference between the energy savings expected from energy efficiency upgrade and the 
savings achieved in practice.  For example if an old boiler is replaced with one that is 20% more efficient, the energy 
needed to heat the home is expected to fall by 20%.  However this is often not the case and research specifically on 
household heating pre and post thermal retrofits identify a set of reasons. These include the complexity of installing 
and operating low energy technologies in different types of buildings, poorly modelled predictions, different ways 
that residents understand and use new systems, and how they spend the financial savings they gain (Galvin 2014; 
Hong et al. 2006; Sorrell et al. 2009).  

The Performance Gap: focusing on the technologies 

The ‘performance gap’ refers to the difference between the calculated energy performance of the building as 
designed, and the actual performance of the building which is measured by monitoring how much energy is 
consumed by the technology or the building post-retrofit.  The difference between the design (or modelled 
performance) and the energy can vary dramatically, over 200% in one study of thermal retrofit examples in Germany 
(Galvin 2014). A study of UK homes found that the introduction of new gas central heating systems, although 
theoretically more efficient had no impact in reducing the amount of fuel consumed (Hong et al. 2006). The Zero 
Carbon Hub found that issues affecting the performance gap for new construction were: the design process, 
procurement, construction, commissioning and completion, construction joint details and knowledge and skills 
(Zero Carbon Hub 2013). 

Evidence of the performance gap is helpful in identifying potential problems with a retrofit, but is less helpful in 
identifying the causes of such problems.  Reducing the performance gap requires more research into modelling 
techniques as well as more research on the design, installation and operation of energy efficiency upgrades. 

The Rebound Effect: focusing on the consumers  

The ‘rebound effect’ refers to consumer reactions to energy efficiency programmes.  From an economics perspective, 
energy efficiency improvements make energy services (like heating) cheaper, and so may encourage people to use 
more, or spend the financial savings on other energy consuming activities (e.g. a household spends less on energy 
bills, so takes more flights).  This means incentivising energy efficiency may not deliver expected energy savings 
(Sorrell et al. 2009).

Empirical studies of energy efficiency in homes have shown that part of the rebound effect can be explained by 
occupants choosing to heat their homes more.  Milne and Boardman (2000) have argued that ‘most households 
in the UK are not warm enough’ and making heat more affordable will help households heat their homes more 
adequately.  This portion of ‘rebound’ is called ‘comfort taking’ by DECC (2012) can be recognised as a positive 
outcome of energy efficiency programmes which are evaluated for their impact on fuel poverty and reducing ill 
health and not only on carbon savings generated. 

However empirical studies have also found that not all increased levels of heating post-retrofit rises in heating  are 
intentional but some are due to poorly installed controls rather than choice (Love 2013; Milne and Boardman 2000).  
These studies show that the rebound effect can be reduced through better engagement with residents about 
efficiency upgrades in their homes. 

4.5 Demand
Research analysing how to reduce the energy demand of the residential buildings sector includes:

• increasing the uptake of energy efficiency measures;

• improving the technical efficiency of the system, e.g. installing a new boiler;

•  improving the operation of an installed system, e.g. by improving the system’s controls and helping people understand 
how to program their heating efficiently;
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•  switching to a different form of heating system, e.g. removing electric heaters installing a wet system and connecting  
to a communal boiler or CHP unit; and

• a combination of these.  

4.5.1 Space heating

Studies looking specifically at retrofitting heating technologies have found some disappointing results.  Analysing the 
impact of the government scheme ‘Warm Front’ example more efficient gas central heating did not produce expected 
reductions in fuel use, even after discounting the ‘comfort taking’ of fuel poor residents (Hong et al. 2006).  

4.5.2 Domestic hot water

This is typically covered as part of domestic heating systems. Water efficiency measures can also deliver energy savings  
as people use less hot water in their daily activities (discussed in Chapter 5).

4.5.3 Cooling

Overheating problems can be created or increased when high energy performance standards for buildings are achieved 
that reduce winter fuel costs but which fail to address the impact of summer sun (AECOM 2012).

• Residential buildings built around the 1960s and small top-floor purpose-built flats are prone to overheating. 

•  Newly constructed highly insulated houses have also been found to have the potential to be at higher risk of 
overheating than older, less well insulated houses.

Overheating is a risk for both new builds and for refurbished housing unless summer solar shading is provided in the 
building’s design or refurbishment.

4.5.4 The importance of controls

Currently 90% of UK homes have central heating, but of these only 49% have a full set of controls (TVRs, timers and room 
thermostats) and private rented accommodation is the least likely housing type to have controls (Munton et al. 2014). 
There is an assumption that improving heating controls (e.g. having easy to use thermostatic radiator valves, timers and 
room thermostats) will reduce energy used in homes, but the evidence is weak.  DECC’s 2011 Energy Follow Up Survey 
found that installers rather than residents are more likely to decide about the controls installed and where they are put. 
When residents do use their controls the evidence suggest it is to adjust their thermal comfort, rather than save energy 
(Munton et al. 2014).

This suggests that improving residents’ understanding of the equipment in their homes is critical to achieving energy 
savings and improving thermal comfort (Love 2013). This is an issue which exists for residents in new buildings as well as 
existing ones, therefore the retrofit process offers an opportunity to engage residents and help them understand 
how their homes use energy.  This may not be the case if residents are relocated or purchase newly built flats.  

4.5.5 The whole system approach

In addition to investing in individual technologies, upgrades or energy efficiency installations, an alternative approach to 
refurbishment is to adopt a ‘whole system approach’ which views the building as a system and seeks to comprehensively 
rework all aspects to achieve the maximum reductions in operational energy.  This approach has been taken on individual 
homes, as well as on estates such as Wilmcote House and Edward Woodward Estate. 

The Technology Strategy Board (TSB) guide to making retrofit work suggests that taking a ‘whole system approach’ is 
necessary to achieve significant CO

2
 savings (Technology Strategy Board 2014). Through this approach three of the 40 

buildings they studied were retrofitted to achieve an 80% reduction of C0
2
 and another 23 achieved 50-80% reductions. 

With the Green Deal and new Energy Company Obligation, current government policy is trying to encourage a whole 
system approach, but there are problems with the way assessments are carried out. The assessments should identify a  
set of measures, but have been found to exclude high cost measures such as solid wall insulation, or floor insulation.  
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4.5.6 Energy Performance Certificates

Energy Performance Certificates (EPCs) rate a building on an A to G scale (similar to energy labelling for white goods) to 
reflect fuel costs under standard occupancy conditions. In January 2013 it became mandatory for landlords and owners  
of new buildings and existing buildings to provide EPCs when homes are sold, leased or rented.  

The regulations require an EPC to be given free of charge to the person who becomes the buyer or tenant of the building. 

• An EPC shows the energy efficiency rating on an A–G rating scale for a building 

• The EPC includes recommendations on how to improve energy efficiency. 

•  The EPC may also include information showing which of the recommendations would be eligible for finance under  
the Green Deal scheme. 

Social and private landlords must provide new tenants with an EPC for their home. 

4.6 Supply

4.6.1 Decarbonising the grid

The energy used in homes can produce different levels of GHG emissions depending on the fuel source (also referred  
to as the carbon intensity of the fuel). Technologies like heat pumps use electricity to provide heating in homes.  These can 
be lower carbon than using oil burning stoves and so can help homes which are not connected to the gas grid become 
lower carbon.  

There are concerns about increasing electricity powered heating given the proportionally high level of coal used in the 
UK to generate electricity, however Pyrko and Darby (Pyrko and Darby, 2010) have argued that rising UK dependency on 
carbon intense electricity is pushing renewable energy generation up the political agenda.

4.6.2 On-site renewables

There are a range of technologies that can be used to generate heat or electricity from renewable sources and which 
are small enough to be used on individual buildings or estate.   These include solar photovoltaic cells which generate 
electricity and solar water heating systems to supply hot water for bathrooms and kitchens. 

The government is supporting the development of on-site renewables through building regulations which allow on site 
renewables to offset the carbon emissions from the energy used by the building’s operation. The government is also 
providing feed in tariffs which means that groups or home owners can earn income by generating low carbon heat or 
power (see Appendix B for details of the policies)

Box 9:  Dumfries and Galloway Housing Partnership (DGHP) and Air Source Heat Pumps (ASHP)

DGHP is a registered social landlord with 10,300 homes, 1 600 of these are off gas grid. In 2011 DGHP successfully 
competed for the Renewable Heat Premium17, winning £175 000 to trial renewable heat technologies in 17 off grid 
rural homes.  DGHP retrofitted the homes and trialled individual biomass boilers, Ground Source and Air Source heat 
pumps.  All homes achieved the 2020 CO2 targets of 42% emission reductions and generated savings on household 
bills. Tenants with heat pumps were happy with comfort and cost savings, but the biomass boilers were also well 
liked and were lower carbon.  This is because the heat pumps are powered by electricity from the grid which has a 
higher carbon intensity than biomass. 

DGHP decided to install air source heat pumps throughout their off grid stock because it was the most affordable 
option at £6,000 per installation.  Households can expect to save around £340 a year on bills.  The housing provider 
could not afford to spend more on lower carbon technologies like biomass boilers.

If the carbon intensity of the electricity grid is reduced, the homes will also see their operational carbon reduce.   
An air source heat pump lasts up to 20 years, and grid decarbonisation may take longer than this.    

17 This scheme has been replaced with the Renewable Heat Incentive, see Appendix B
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4.6.3 Decentralised energy and heat networks

Decentralised energy and heat networks provide an alternative option to reduce GHG emissions from the housing 
sector and the UK government is currently supporting the development of heat networks throughout urban areas of the 
UK (Hawkey et al. 2013; Hawkey 2012). These are not limited to residential buildings, but can include them, providing 
opportunities for lower carbon heating for new and existing residential buildings. Providing central heating and hot water 
on a large scale for buildings can be more energy efficient and more cost effective than using individual boilers to heat and 
provide hot water to every home in a building.  However the upfront costs of investing in the infrastructure can mean that 
this option is excluded from the start, even if the operational and user costs are lower following the installation and the life 
span of the generating system is longer.

It is easier to lay the underground pipes for a heat network when building from scratch, however new low energy buildings 
should not require much heat in comparison to existing buildings.  This means heat networks can be considered as a 
retrofit option to help existing buildings reduce their operational carbon levels. Heat networks can provide heating more 
efficiently and with lower emissions than other sources like electric heating.  The network infrastructure has a longer life 
span (60 years+) than the generating plant used to supply the heat (25 years for gas combined heat and power) and can 
transition to lower carbon sources over time.  

Box 10: Pimlico district heating network 

The Pimlico district heating network pipework has lasted for over 60 years and during this time the generating 
plant has been changed three times. The carbon intensity of the heating supplying these buildings has changed 
according to the fuel source and efficiency of the generating plant.  Today the service provider uses combined heat 
and power technology which is more efficient than heat only boilers, and which generates income by selling the 
electricity to the national grid.  This keeps the costs down and today residents in Pimlico connected to the system 
benefit from low heating prices. 

Communal heating systems often already exist in social housing, but typically are provided by a ‘heat only boiler’. It is more 
efficient to use a combined heat and power (CHP) unit which generates both heat and electricity. The electricity generated 
can be used on site, or sold to the national grid with revenue subsidising the cost of the heat produced.  The most cost 
effective time to replace a boiler is when it comes to the end of its life, but investment decisions should take into account 
the projected savings on fuel use, revenues generated and carbon emissions reduced, not only the upfront capital costs of 
the technology. Heat networks become more cost effective when including mixed developments and the heat market in 
the UK is growing, and extending beyond its current focus on social housing. 

District heating is an established technology and European markets have developed low cost domestic heat exchangers 
that give residents control over their individual heating supply and reduce existing concerns around freeloading, 
overheating and distributional losses. The EU directive on metering and billing transparency comes into force in June 2014 
and provides further incentive to upgrade existing communal heating infrastructure (DECC 2014b) (see Appendix B for 
details of heat policies).  

DECC is supporting CHP uptake and currently has a £6million fund (November 2103 – April 2015) for Local Authority  
grants for heat network feasibility studies.  A £10million Urban Communities Energy Fund (UCEF) will be launched this  
year to support communities wanted to generate their own heat and power. Further support takes the form of regulation, 
for example the London Plan requires developers of new buildings consider the feasibility of connecting to District  
Heating schemes.

More research is needed to answer: 

• Are existing residential estates suitable for heat network extension and what are the costs? 

•  What are the carbon and financial costs and benefits of removing heat only boilers and adding buildings to  
heat networks?  

• What life time? 
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4.7 Research on associated issues

4.7.1 Energy efficiency programmes and uptake of measures

As well as regulating building standards, the current UK government approach to increase energy efficiency (EE) uptake in 
the residential sector relies on the private sector marketing achievable EE gains as cost effective. There are also obligations 
on energy companies to supplement the lower-income and more rural areas where measure may be less market viable 
(Hamilton et al. 2014).  Innovative financial products (e.g. the Green Deal) have been created to reduce market barriers, but 
concerns have been raised that other uptake barriers exist (for example the inconvenience of installing EE measures) and 
that a voluntary programme will not achieve sufficient coverage (Mallaburn and Eyre 2014).

Studies focused on the decisions taken by owner-occupiers have confirmed that home renovations tend to be carried 
out as part of daily life and fitted into a cycle of wear and tear maintenance. This means measures which improve internal 
aesthetics such as retrofitting a kitchen or bathroom are more widespread than the installation of measures that are 
purely for energy efficiency gains such as window fittings and insulation (Gram-Hanssen 2014).  However, focusing on the 
uptake and prevalence of energy efficiency measures in the UK between 2000 and 2007 Hamilton et al. (2014) have shown 
the impact of regional schemes targeting fuel poverty and social deprivation on getting building fabric interventions 
(such as wall and loft insulation) into the UK housing. The study also identifies the role of industry standards and building 
regulations, relating the increase in condensing boilers to the 2005 building regulations amendments.

Research has found that tenure helps explain different levels of energy saving measures installed.  Homes belonging to 
Registered Social Landlords (RSLs) have proportionally more loft insulation installed than other public and private sector 
housing (Utley and Shorrock 2008).   After this group come owner occupiers then local authority renters, and the worst 
performing housing is currently owned by private landlords. This illustrates the ‘tenant-landlord problem’, ‘the mismatch 
between the party paying the costs of installing energy efficiency measures (the landlord) and the party receiving the 
benefits (the tenant)’ (Druckman and Jackson 2008 p. 3179)

This problem is being addressed by incentives such as the Green Deal which spreads the costs of the energy efficiency 
improvements over the lifetime of the installed upgrade. This means that renters receive the benefits of EE improvements, 
and contribute to the costs through their bills.  When they move on, the next renter will continue to pay for the 
improvement.  Renters can now find out in advance what the energy performance of their home is because Energy 
Performance Certificates are now mandatory for all new and existing homes that are sold or rented.

 From a retrofit or demolish perspective these findings raise a number of issues: 

•  Cheaper measures may have already been installed by RSLs and Local Authorities (LAs) making the cost of future  
upgrading higher

•  Demolishing existing buildings in the public sector and not-for-profit is less likely to get rid of the worst  
performing stock.

•  Demolishing existing buildings in the public and not profit sectors may have higher embodied carbon because these 
homes may have proportionally more energy efficiency materials already installed

4.7.2 Deep or shallow retrofit

Without established standards, there remains uncertainty over the level of retrofit that should be aimed for and is 
achievable. Retrofitting buildings for energy efficiency can range from low cost measures such as loft and cavity wall 
insulation, to complete refurbishment of the building and energy systems.  As discussed above, the cheaper measures are 
likely to have already been installed by RSLs and LAs.

The Energy Savings Trust has analysed different options in its report ‘Roadmap to 60%: eco-refurbishment of 1960s flats’, 
which divides retrofit in low, middle and high cost activities.  They find that a 60% reduction in CO

2
 emissions by 2050 can 

only be achieved by ‘deep retrofit’ measures, requiring extensive work to the building fabric. Their study finds this costs 
£10,000 per unit, with a turnaround time is six to eight weeks and that there will be additional costs to relocate residents 
through this period. However deep retrofitting standards were achieved in Wilmcote House without having to relocate 
residents (see Box 7).  

When achieving deep retrofit levels, the embodied carbon of the construction materials and processes becomes more 
significant, however deep retrofit demands a bespoke design and complex mixture of technologies, structural changes and 
user engagement to ensure the levels of savings are achieved (Konstantinou and Knaack 2011).  
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The need for an integrated approach that can bring together the different stakeholders from the construction sector,  
the housing sector and residents, is recognised as critical to rolling out a wide reaching retrofit programme. Achieving this 
in practice is hard (BRE and Energy Saving Trust 2012). 

In their 2012 report ‘Refurbishing the Nation’ BRE and the Energy Saving Trust highlight the following points as key to 
increasing the roll out of refurbishment programmes at the scale required to meet UK climate change commitments:

• Develop refurbishment standards

• Improve skills among smaller and local construction sector contractors

• Design refurbishment in line with local housing types

• Promote easy-to-use and low tech solutions

• Improve funding streams and business case

4.7.3 Retrofit and the green economy

An energy efficient refurbishment industry needs to be developed which is capable of meeting this challenge for the UK 
building stock to contribute significant emissions reductions and energy savings. A report by BRE and the Energy Savings 
Trust on this challenge states:

The government estimates that 5,00018 homes will need to be refurbished per day, in order to meet its 2050 carbon 
reduction target. Equally, this presents massive employment opportunities, with the Energy Saving Trust estimating that 
more than 100,000 insulation jobs could be created (BRE and Energy Saving Trust 2012).

4.7.4 Generating income through retrofit

Deep retrofit provides an opportunity for landlords and tenants associations to generate additional income.   In the case 
of the Edwards Woods estate, the refurbishment process added 12 penthouse flats to the buildings which were sold to 
help subsidise the refurbishment works. The project added solar PV panels to generate electricity for the lifts and corridor 
lighting so saving the costs of buying this electricity from the grid. It also created new commercial premises on the ground 
floor let to voluntary organisations (Bates et al. 2012). 

Box 11: Feed-In-Tariffs in Brixton Renewable Energy Project

In Brixton, the social enterprise ‘Repowering London’ is generating income by installing solar panels on the roofs of 
tower block housing and selling the power to the grid. This community owned renewable generation is supported 
by government ‘feed-in-tariffs’ which supplement the sale of electricity (see Appendix B for details and links to the 
policies, and  http://www.repoweringlondon.org/ for details of the project).

4.7.5 Unintended consequences

Using the building stock as the vehicle to deliver the UKs carbon savings has some consequences.  (Davies and Oreszczyn 
2012) suggest there are 7 ‘known, but poorly understood’ consequences:

1.  Indoor Air Quality (IAQ) problems associated with reduced ventilation: for example, particulate matter, radon, VOCs, 
moisture (resulting in mites and mould) and environmental tobacco smoke in domestic buildings. This is why good, 
controlled ventilation is crucial when upgrading or building more airtight dwellings.

2.  Higher energy prices due to increased use of decarbonised supply leading to fuel poverty and associated health effects.

3.  Energy efficiency improvements without adequate solar shade increasing the risk of summer-time overheating which 
can result in impacts on health

4. Energy efficiency improvements resulting in increased GHG emissions due to the ‘rebound effect’.

5.  Changes to the hygrothermal properties of building fabric resulting from ill-considered or executed improvements  
in thermal properties, causing cold bridges, condensation, mould growth and decay.

18 Other calculations put this figure at 2,000 buildings a day (26 million buildings over 35 years, every 365 days)
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6.  The use of distributed energy technologies moving energy generation into urban areas and hence potentially 
intensifying the urban heat island.

7. Health and safety issues associated with refurbishment increasing the potential for elevated fire risk.

4.8 Key messages
This chapter has reviewed the energy and carbon issues relevant to the debate over whether to retrofit existing housing 
stock or demolish and rebuild it.  The key messages are: 

• Existing buildings can be retrofitted to achieve the same energy performance standards as low energy new builds.

•  The energy performance of both retrofitted and newly built low energy buildings depends on residents’ understanding 
the systems in their homes.  Retrofit may provide opportunities for user engagement, but these opportunities are not 
currently being taken.

•  The carbon emissions associated with the energy used in homes depends on the fuel sources used.  Policies to 
decarbonise the national grid and to encourage on site and community based low carbon are currently in place and as 
these increase the relative contribution of embodied carbon of the construction materials and processes for demolition 
and rebuild become more significant.

• Retrofitting existing buildings can provide income generating opportunities.

• Social housing currently has more energy efficiency measure installed than housing stock in the private rented sector.
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5 Water and waste
Most of the debate about the cost and environmental impacts of demolition compared to refurbishment focuses on 
energy and carbon, but it is important not to lose sight of other environmental impacts and costs. Construction of new 
buildings requires water, concrete, steel, timber, glass and many other materials, which all have environmental impacts 
during their production. A detailed lifecycle assessment of buildings should cover a range of environmental impacts, 
including impacts on biodiversity and the use of materials from local and sustainable sources. This review does not address 
the full environmental impacts of refurbishment or demolition, but focusses on the key issues of water and waste.

5.1 Water
Water is often overlooked in regeneration schemes, but it is a very important environmental issue to be considered in 
construction, refurbishment and use of buildings. Water is used in construction and by residents during the lifetime of the 
building, and it is also important to consider how sewage and storm water are dealt with in new or refurbished buildings.

The south-east of England is a water scarce region. London receives less rainfall each year than Rome and Istanbul. On 
average, water consumption in London is 162 litres per person per day. With a growing population it is important to reduce 
the amount of water each person uses every day by improving water efficiency. Reducing the amount of water used by 
the construction sector, particularly in producing concrete, will also help relieve pressure on stressed water resources. A 
study of an Australian home, with much higher per capita daily water consumption than the UK, showed that water used 
in construction was greater than the water used directly by the occupants over the lifetime of the building (Crawford and 
Pullen 2011). ‘Embodied water’ is therefore more significant than water use in the home throughout its lifetime, in contrast 
to the current situation for ‘embodied carbon’ compared with lifetime carbon emissions.

At the same time as we are dealing with water shortages, London’s drains and sewers are overflowing because of increased 
volumes of water running off roofs and hard surfaces during storms. This is caused by paving and building over green 
spaces, which stop the water infiltrating the ground, and more intense storms, which are consistent with climate change 
predictions. This additional runoff causes sewers to overflow into the Thames and other rivers, and contributes to local 
flooding. 

Improving how water is managed in housing estates can have many benefits for residents and the local environment. 
Improving water efficiency in homes can reduce water and energy bills. Better management of storm water can improve 
local green spaces, reduce overheating and improve residents’ health and wellbeing. 

This review will consider two water issues in relation to refurbishment or demolition and construction of social housing: 
water efficiency; and drainage.

5.1.1 Water efficiency

Water efficiency is unlikely to be considered in decisions to demolish or retain housing in regeneration schemes.  
However, water efficiency should be considered in designs for new buildings and in retrofit and refurbishment 
programmes. Water efficiency is covered by Part G of the Building Regulations, requiring all new homes to be designed  
for an average consumption of 125 litres per person per day. Considerable reductions in water use from the current London 
average of 162 litres per person per day can also be achieved in existing buildings by retrofitting and refurbishment, 
particularly of kitchens and bathrooms. Bathrooms and kitchens have shorter lifespans than buildings, providing 
opportunities to install more efficient appliances. There are also a number of measures that can be implemented without 
the need for full renovation.

Waterwise and the Energy Savings Trust (2012) calculated that retrofitting homes with water efficient shower heads, tap 
aerators and cistern displacement devices on existing toilets can save 5.5 – 17.5 litres of water per person per day. These 
devices can be easily installed by homeowners or during a short visit by a trained installer, and they are often provided free 
of charge by water companies, who are obliged to help customers reduce water demand. For an average household paying 
for water via a water meter, with 2.3 people these simple measures can result in savings of £29 on their annual water and 
energy bills, 8,380 litres of water and 36kg of carbon dioxide produced by heating water. For a family of four the annual 
financial saving is estimated to be around £56.   

Higher water savings can be achieved when bathrooms are renovated, such as during Decent Homes improvement 
programmes. A report by Waterwise (2009) for the GLA showed that approximately 80% of social housing properties 
had at least one bath but no shower installed. Retrofitting a shower into social housing properties has been shown to 
save 39 litres per property per day, and replacing old toilets with dual flush toilets can save 61 litres per property per day. 
Waterwise recommend that mixer showers are preferable to electric showers, which can increase residents’ electricity bills. 
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Box 12: Tap Into Savings 

The Tap Into Savings programme was run by Waterwise and Global Action plan, in partnership with water 
companies and social housing providers in Surrey, the West Midlands and Essex in 2010 and 2011. Working with 
EcoTeams of residents, more than 4,500 homes were visited and provided with water and energy efficiency devices 
and advice. The programme resulted in an average daily saving of 40 litres per home (Waterwise 2012).   

5.1.2 Drainage

Overflowing drains and localised flooding during rain storms can be amongst the most unpleasant and dangerous 
experiences for residents. Broken, blocked or under-capacity drains can be part of the justification for demolition of 
housing where repair or replacement is costly. Replacing and repairing drains can be difficult and expensive where they  
are buried underground or difficult to access within buildings. 

Social housing providers are responsible for drains on their properties and must maintain them in good order, but these 
drains connect to sewer networks owned by Thames Water. Managing surface water is also the responsibility of Local Flood 
Authorities, and Local Authorities also have an increasing role to play in managing drainage through the planning process.

New developments and regeneration schemes will be required to include Sustainable Drainage Systems (SUDS) wherever 
possible. SUDS aim to reduce the amount of water flowing into the sewers, which helps to prevent flooding and overflows. 
SUDS measures include green roofs, rainwater harvesting systems, permeable paving, rain gardens and using green spaces 
to store water temporarily during storms.  These measures can also provide water for gardening or toilet flushing, reduce 
overheating in summer and improve the quality of the local environment. Islington Council is also promoting SUDS as a 
means of reducing subisdence, which affects a number of Homes for Islington properties. 

Retrofitting SUDS to existing buildings and estates should be considered in any regeneration scheme. Retrofitting SUDS 
can alleviate drainage and flooding problems by reducing the volume of water flowing into local drains, thus reducing  
the need for demolition as a means to solve drainage problems. For instance, if the volume of water flowing into drains  
can be reduced by retrofitting a green roof or rainwater harvesting systems, then existing drains will be able to function 
more effectively. 

The GLA, Local Authorities, Local Flood Authorities and Thames Water are all interested in promoting SUDS in London, and 
can provide guidance and funding for SUDS schemes on social housing properties. SUDS measures can be cost beneficial 
over their lifetime compared with conventional drainage solutions. Permeable paving and green roofs have been shown 
to be less costly than conventional options over their full lifecycle due to extended lifetime and lower maintenance costs 
(Gordon-Walker et al. 2007, livingroofs.org n.d). Rainwater harvesting provide an economic benefit through reduced water 
charges (Gordon Walker et al. 2007). Subsidies and grants for improving adaptation to climate change and reducing storm 
water runoff can contribute to financing SUDS schemes.  

Box 13: Ethelred Estate Green Roof

In 2005 the roofs of 10 buildings, comprising 253 flats, on the Ethelred Estate in Kennington were replaced 
with green roofs. The Ethelred TMO opted for green roofs as they offered a lower lifecycle cost compared with 
conventional roofs. They also provide additional benefits including reduced storm water runoff (livingroofs.org n.d.). 

5.2 Waste
Construction and demolition in the UK generate the largest amount of waste each year of any sector. In 2008 the 
construction sector generated more than three times as much waste as households, accounting for 35% of all waste 
generated in the UK (DEFRA 2011). A further 30% of all UK waste in 2008 came from the mining and quarrying industries, 
with approximately 84% mineral extraction used to provide materials for construction (Cuella-Franca and Azapagic 2012).  
Waste management in the construction sector has improved considerably in recent years due to policy changes related to 
the EU Landfill directive. In 2010 73% of construction and demolition was in the England was recycled as aggregate (DEFRA 
2012), with 4.28 million tonnes sent to landfill (Hobbs 2012). 
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Using recycled aggregate in new construction reduces waste to landfill and the environmental impacts of new 
construction. A study of UK houses showed that recycling materials at their end of life reduced global warming potential 
by 2-3% (Cuella-Franca and Azapagic 2012). Refurbishing existing buildings avoids demolition waste to landfill and reduces 
the need for new materials, particularly concrete, steel and bricks. This also avoids costs associated with landfill, recycling 
and new materials. 

Box 14: Daneville Estate, Liverpool

The Daneville Estate is owned by Liverpool Mutual Homes (LMH) and consists of 600 properties. Tenants and 
residents of the Daneville Estate were consulted regarding options for regeneration and it was decided to refurbish 
rather than demolish all properties, including 63 homes which had been vacant for 30 years. Refurbishment was 
shown to be cheaper than demolition and new build, and avoided producing 45,000m3 of demolition waste. 
Structurally unsound homes were refurbished using a structural external wall insulation system, which avoided 
demolition as well as improving energy performance (Wrap UK 2012)    

5.3 Key messages
Water and waste are often overlooked in decisions about retrofitting or demolishing homes as part of urban regeneration 
schemes. This section has addressed these issues and the key findings are:

• Considerable reductions in water use can be achieved by refurbishing bathrooms and kitchens. 

•  New developments and regeneration schemes will be required to include Sustainable Drainage Systems (SUDS) 
wherever possible in order to reduce the amount of water flowing into the sewers. This in turn can reduce the need 
for demolition to solve drainage problems. Retrofitting SUDS and other green infrastructure to existing buildings and 
estates should be considered in any regeneration scheme.

•  The construction sector generates 35% of all waste in the UK; waste reduction is thus a key priority. Waste management 
has improved considerably, with 73% of waste from construction and demolition recycled as aggregate. Using recycled 
aggregate in new construction reduces landfill waste and the environmental impacts of new construction. Additionally, 
recycling materials at the end of houses’ lives may reduce the potential to contribute to global warming by 2-3%. 

•  Refurbishing existing buildings is the best way to reduce waste: this avoids demolition waste and reduces the need for 
new material, avoiding associated costs of landfill, recycling and new materials.
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6 Residents, communities and wellbeing
The decision to demolish or refurbish housing is not solely governed by technical and economic factors. Implications for 
individual and communal health and wellbeing must also be considered.  This section explores the impacts of demolition 
and refurbishment on residents and communities from this perspective. 

In reviewing literature for this section a clear distinction has emerged between the health and wellbeing impacts of 
targeted housing improvements (for example energy efficiency improvements) and those impacts on health from wider 
regeneration strategies (decanting, relocation). This distinction is reflected in the structure of this section.  

Of the two, the health and wellbeing impacts are easier to understand when considering targeted housing improvements. 
The health impacts of wider housing regeneration strategies are comparably harder to understand. This is perhaps due 
to the broad notions of wellbeing in neighbourhoods and their subjective nature, and the interaction between types of 
housing, location and the process of change over time.

The decision to demolish and relocate residents in social housing is contentious – particularly in the London context where 
population growth, rising property prices, lack of affordable housing and gentrification mean that social housing residents 
are often displaced. Demolition of social housing often leads to relocation and permanent displacement as residents 
cannot afford to move back when the new housing has been built or may have settled in another area. 

In this section a brief review of health and wellbeing literature has been covered to gain understanding of the relationship 
between demolition, refurbishment and wellbeing. The literature review is based on searching the PubMed database19 and 
personal communication with and written feedback from experts in the field (pers. comm. Peter Craig and Hilary Thomson 
at the Social and Public Health Sciences Unit on 14/05/14, and Matt Egan and Mark Petticrew at the London School of 
Hygiene and Tropical Medicine on 21/05/14).  Literature included meta-analyses, in-depth case studies and review or 
comment pieces in peer-reviewed journals and reports.  A number of search results returned literature related to housing 
and health and not necessarily demolition or refurbishment; these have been omitted. 

Some of the studies in this review have denoted positive health and wellbeing factors for those residents that move away. 
However these findings cannot be taken at face value in the same way that results from housing interventions can be due 
to the multi-level and various complex factors associated with regeneration strategies. In examples where demolition has 
led to positive health impacts for residents, these have to be considered in relation to the socioeconomic opportunities in 
the existing area. If the socioeconomic opportunities of the area where demolition has happened were better, a different 
outcome may have been reported.

In this section we focus specifically on health and wellbeing, setting aside these additional factors. However we realise that 
by doing so we may be disconnecting these findings from wider indicators. What this review shows is that the evidence for 
improved wellbeing as a result of demolition is insufficient and that there are established links between improved health 
and wellbeing when buildings are refurbished. 

Further research is needed on what happens to the health and wellbeing of those who stay and those who move. Like the 
best examples presented here, this needs to be based on what is reported by residents and what can be disaggregated 
from larger health studies, so that clearer conclusions of the relative benefits of refurbishment compared to demolition and 
rehousing.

6.1 Health, wellbeing and housing improvements 
Refurbishment generally tends to have more positive associations to health with few reports showing any unwanted 
effects of refurbishment (Fenwick et al. 2013; Thomson et al. 2009). A number of studies have measured the effects of 
warmth and energy efficiency improvements on health and have shown these to be positive after completion of the works 
(Bryson et al. 2007; Chapman et al. 2012; Gilbertson and Green 2008; Howden-Petticrew et al. 2009; Thomson et al. 2013). 
There has also been a considerable amount of research related to fuel poverty that highlights this link (Maidment et al. 
2014). 

Studies have reported positive impacts on mental health after refurbishment works (Thomson et al., 2013). There are a 
number of reports analysing the impacts of the Warm Front Scheme on mental health, all of which found improvements  
of mental health for residents (Gilbertson and Green 2008; Howden-Chapman and Chapman 2012; Webb et al. 2013). 

19  Pubmed is a free search engine that can be used to access various medical databases. Search terms can be used to find references and abstracts on topics in life sciences and biomedicine. Twenty seven 
combinations of search terms were entered into the database, ‘demolition and wellbeing’ resulted in the largest number of hits (224) although a large number of these were deemed as irrelevant. Demolition, 
refurbishment, social capital, social networks, social cohesion, health and wellbeing were all searched for in various combinations.
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There are fewer studies that link health impacts of demolition or refurbishment to specific physical conditions, most 
probably due to the difficulties around measurement. Respiratory health is often discussed in this area as it can 
be measured through air quality. Studies in this area tend to focus on links between warmth and energy efficiency 
refurbishment with findings often indicating positive effects for respiratory health (Thomson et al. 2013) (although some 
have highlighted negative impacts and again emphasise the specific context of the evidence (Thomson and Petticrew 
2005)). 

Refurbishment case studies have demonstrated an ability to improve social relationships (Lawson and Egan 2012), this 
is especially particular of warmth improvements. This may be due to improvements in usable space although causal 
links between warmth improvements and improved social relations are not completely clear (Thomson et al. 2013; 
2009)20.  Moreover, a stronger sense of community may result after housing improvements could contribute to health 
improvements (Ambrose 2000). Whether and how these impacts might translate into health improvements has yet to be 
determined (Thomson and Petticrew 2005). Refurbishment of housing has also led to reductions in reported absences 
from school and work (Thomson et al. 2013). 

Attempts have been made to quantify the impacts of housing improvement on health.  The BRE Trust commissioned a 
report to create a methodology of calculating the health costs of poor housing. The report found that if works were done 
targeting the worst health and safety hazards in the poorest homes in the UK the NHS could make savings of £56 million a 
year (Garrett et al. 2014). 

Box 15: ‘A Drop in The Ocean’: Health assessment of improvements to the Oceans Estate in Stepney, 
London

Between 1995 and 2000 research was conducted on the health gain arising from improvements to housing 
conditions on the Limehouse Field and Ocean estates in Stepney, East London.  Findings from the research suggest 
improvements in the health of residents on these estates. Self-reported illness days were reduced in addition to the 
call for health services in these areas (Ambrose 2000).  

6.2 Health, wellbeing and regeneration 
Establishing clear links between regeneration is complex because these projects may involve day to day disruption, 
demolition and rehousing, relocation or changes to the wider neighbourhood. Distinguishing between the impacts that 
these changes have on health is complex because they are inter-related. 

To assist with this exploration we have used a wellbeing framework - Whitehead and Dalgren’s (1991) holistic ‘determinants 
of health and wellbeing’ on neighbourhoods. 

20 Although it should be noted that this could only be because warmth and energy efficiency was studied – there may be additional social benefits from other refurbishment interventions.
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Figure 7. Holistic framework of health and wellbeing (adapted from Whitehead and Dahlgren 1991) 

The six domains outlined in this framework (natural environment, built environment, activities, local economy, community 
and lifestyle) have been used as indicators against which to collate the literature on demolition or refurbishment from a 
regeneration perspective. 

6.2.1 Natural Environment

While this report has focused on the built environment and its relationship to wellbeing, the natural environment also 
plays an important role. Literature linking demolition and refurbishment to wellbeing from the perspective of the 
natural environment is limited. This may be obvious given the fact that any demolition of housing is likely to be replaced 
with housing rather than additional green space.  There appears to be limited evidence on the short and long term (or 
intergenerational) impacts on wellbeing of waste entering the natural environment as result of demolition. 

6.2.2 Built Environment

Any literature specifically linking physical properties of buildings to health and wellbeing is relevant for regeneration as it 
may affect the decision to demolish housing. For example, if there is evidence indicating that terraced houses are optimal 
for wellbeing then this may form part of the discussion on whether to demolish existing terraces. 

The physical attributes of housing estates are often discussed in connection with social problems and social unrest. 
A recent example of this can be found in the ‘It Took Another Riot’ report (Lipton 2012) in which links were suggested 
between the riots, social unrest and social housing estates. However such links are questionable as will be suggested from 
some of the literature reviewed in this report. In this section we explore how the physical attributes might affect wellbeing 
and thus how this impacts on the decision to demolish or refurbish. 
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High rise

While research on the relationship between housing typology and wellbeing is limited (Thomson and Petticrew 2005) high 
rise buildings have received considerable attention. A number of sources have suggested a link between high rise, poor 
mental health and stressful conditions including social isolation, crime, reduced privacy and a lack of opportunities for 
children to play safely (Thomson and Petticrew 2005). 

However, positive impacts of living in high rise have also been indicated. In one study, interviews with residents showed 
that they enjoyed the views and security offered as a result of living on higher floors, citing this as their main reason for 
wanting to stay in their accommodation (Kearns and Darling 2013; Lawson and Egan 2012). In addition, high rise living 
reduces commuting time (where it is located close to employment) and can ensure sufficient density to support local 
businesses (Thomson et al. 2013), which can improve social integration (Power 2010). It is important to note that the 
literature in this area stressed the limited evidence base, lack of clarity and ability to establish any causal link between high 
rise and poor health and wellbeing (Thomson et al. 2013;Thomson and Petticrew 2005).This confirms a lack of evidence 
that high rise negatively effects wellbeing, and provides some indications that it may actually have positive outcomes. 

Space

There are links between overcrowding and health and wellbeing (Thomson et al. 2013). However, given that demolished 
social housing is rarely replaced with the equivalent number of housing units, combined with the issue of a lack of 
affordable housing units, particularly in London, it seems unlikely this fact can be used to support demolition.  Moreover, 
the spatial standards of older housing tends to be more generous (Power 2010), as demonstrated by houses that were built 
to the Parker Morris standards; further reducing the likelihood that residents will move into larger homes when relocating 
after demolition. 

Perceptions

In addition to physical attributes, demolition or refurbishment impacts the aesthetic quality of the wider built 
environment. It would seem obvious that if you live in an area with a lot of demolition and poor maintenance where 
buildings are not improved that this may contribute to your overall life outlook. Two studies from our review commented 
on the negative impacts demolition has in terms of sense of place. Demolition sites are often unsightly and generate 
poor perceptions of an area which affects resident morale and local businesses (Power 2010). The physical deterioration 
associated with demolition sites can also be detrimental for social relations (Mason and Kearns 2012). 

6.2.3 Activities

Although some residents after demolition and relocation report improved educational opportunities (Thomson et al. 
2013), demolition can also be detrimental to local services and community facilities as a number of these services may be 
relocated of forced to close as a result of demolition (Power 2010). One case study looking at demolitions in Chicago noted 
that demolition and relocation may have net zero effect on education (Jacob 2003). In contrast, refurbishment may be less 
disruptive as area services can usually continue to operate (Power 2010). 

6.2.4 Local Economy

If residents are relocated as a result of demolition to areas with better socioeconomic opportunities it is likely that their 
economic opportunities will improve. Indeed, in some studies those that move from deprived areas to improved housing 
in middle-income areas report an increase in employment opportunities (Thomson et al. 2013). This is to be expected, 
particularly if the area of demolition was already suffering from poor socioeconomic opportunities. However if the existing 
deprived area were invested in other ways to improve socioeconomic opportunities this may not be the case. 

Refurbishment is one method of supporting local economic development, particularly if it involves reinvestment in 
declining neighbourhoods using local building firms that hire local workers. There is evidence from research, practitioners 
and policy makers that refurbishment of buildings significantly contributes to job creation, skills and motivation within 
demoralised communities (BMVBS 2007; Winkler 2007). The Energy Saving Trust’s Home Economics Report from 2011 
estimates that over 100,000 jobs can be created via the insulation industry for existing housing (Energy Saving Trust 
2011).  Furthermore a study commissioned by the European Climate Foundation in Hungary found that employment 
benefits are higher when the refurbishment of the building has higher energy saving specifications.  Job creation 
through the refurbishment market could potentially benefit small to medium businesses as these are the ones most 
involved in refurbishment and retrofitting interventions in the UK (Killip 2013). These sources provide good evidence 
that refurbishment can improve economic opportunity. Improving economic outlook in deprived areas can significantly 
contribute to wellbeing. 
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6.2.5 Community 

This section of the review treats the term ‘community’ as a broad theme covering notions of social capital, social cohesion 
and networks. 

General community impacts

Some studies suggest residents see demolition as an opportunity for a fresh start in a new area with new social relations 
(Patalia and Rushton 2007), although this has to be considered with respect to the declining socioeconomic opportunities 
in the area of demolition. In Glasgow, the GoWell study conducted across six regeneration areas found that aspects 
of community were rated higher for those that moved out of the area after demolitions (Go Well 2011). This suggests 
relocation after demolition can stimulate neighbourliness and greater social support (Mason and Kearns 2012), a finding 
that runs contrary to the more typical opinion that demolition leads to or further intensifies existing social blight and 
fragmentation of communities (Lopez 2009; Power 2010). 

In the GoWell study in Glasgow, residents that remained in areas where the housing was demolished experienced decline 
in their social environment with reduced social contact, degradation in levels of trust in each other and a loss in their 
sense of safety (Mason and Kearns 2012). This is something which may have been different if the buildings had not been 
demolished and instead refurbished. In some instances those residents who moved away also expressed increased levels 
of anxiety when leaving an area where they had existing social relations. This was in spite of the improvements expected 
from the demolition (Lawson and Egan 2012). 

Perception and Satisfaction 

Demolition is not always perceived negatively by residents. As already mentioned, some residents have perceived 
relocation as an opportunity for a fresh start and have reported a greater likelihood of being able to make changes such as 
starting a new job as a result of this new start (Lawson and Egan 2012).  Indeed, improvements in general appearance of an 
area after demolition are linked to increased levels of neighbourhood satisfaction (Petticrew et al. 2009; Kearns and Darling 
2013; Go Well 2011).  Negative perceptions of an area may also be a driver for residents to be happy to move (Kearns and 
Darling 2013). 

Residents’ perception of control is an important factor in overall perceptions of demolition. The Go Well study found people 
were less satisfied with demolition and relocation if they had a limited capacity to make choices. One study noted how 
residents often felt the decision to demolish had already been made before they were consulted (Kearns and Darling 2013). 
This could affect satisfaction as residents may have already resigned to the notion of demolition. The temporal relationship 
between demolition and residents’ perception and satisfaction may also be of interest, however few studies have mapped 
how this changes over time. 

Living in an area of poverty or decline can have a self-perpetuating effect on resident satisfaction (Davidson et al. 2008) 
and may be a reason why those who relocate have positive perceptions of demolition. There are a limited number of 
case studies assessing perceptions of refurbishment works  after completion. Some studies have sought to understand 
which aspects of regeneration have the biggest impact on resident perception. One report found that the extent to 
which residents view demolition or refurbishment negatively depends on their own housing intentions, the process of 
movement, the degree of control they have, and their own personality and disposition (Lawson and Egan 2012). 

6.2.6 Lifestyle

This section focuses on physical and mental health indicators in the context of demolition and refurbishment from a 
regeneration perspective, an area which remains poorly understood with a significant lack of research (Thomson et  
al. 2013). 

There is evidence of positive impacts of relocation following demolition on self-reported health, although there are few 
studies (Petticrew et al. 2009) and again this has to be considered in the context of the socioeconomic deprivation that 
the resident may have left behind. If these factors could be improved would the resident still report an increase in health? 
Furthermore there is uncertainty in these findings around who benefits from demolition: some studies report increased 
improvements in health but do not highlight that this increase is experienced by a different population (Thomson et al. 
2013).The health impact of demolition on the elderly has been described as negative (Power 2010) with the importance 
of being able to age in place emphasised (Windle et al. 2006). Concerns about the health impacts of gentrification and 
displacement in the US have moved up the local government agenda and led to calls for much more detailed health 
impact assessments linked to the costs and benefits of urban planning (Phillips 2014).
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6.2.7 Mental Health 

The relationship between mental health and housing is poorly researched with practitioners advocating for further 
research and the establishment of a new field in this area (Popkin et al. 2002) In terms of demolition, improved 
psychosocial health has been suggested. This was the case in the Go Well study in Glasgow (Go Well 2011). An American 
study of residents in Atlanta found significant improvements in depressive symptoms for those who relocated, although 
the authors  are cautious about the validity of this evidence as they had no control group to compare their results with  
Cooper et al. 2014).

However, these positive links associated with demolition are countered by a number of studies. Deterioration in feelings 
of vitality, increase in self-reported stress, anxiety and depression have been acknowledged in existing literature reviews, 
particularly when feelings of control are limited (Mason and Kearns 2012). A lack of information and control leads to 
uncertainty and feelings of powerlessness by residents which have knock on impacts on mental health (Bryson et al. 2007; 
Cole and Flint 2007). The announcement of demolition has been shown to have a detrimental impact on health. One study 
recorded the changes in GP consultation after announcement of demolition, claiming that after adjustments had been 
made for other changes in health that consultations increased by 20% (Halpern and Reid 1992). The process of moving has 
been described as a stressful and health damaging event by some literature, this is compounded if residents are not fully 
informed due to a sense of uncertainty and lack of control (Thomson and  
Petticrew 2005). 

Box 16: Go Well Project, Glasgow

Go Well is a research programme investigating the effects of housing renewal strategies in Glasgow on the health 
and wellbeing of communities. It is collaboration between Glasgow Centre for Population Health, the University of 
Glasgow and the MRC/CSO Social and Public Health Sciences Unit.

The programme is planned to take place over the course of 10 years (2005 – 2015), this provides opportunities for 
much needed studies into health and wellbeing that take place over a longer term period. A large number of studies 
have already been published and can be found online at www.gowellonline.com. 

The studies focus on six regeneration areas in Glasgow and compare impacts between 2 cross sectional samples 
of residents. The ‘outmovers’ are those residents that have moved out of the regeneration areas and the ‘remainers’ 
are those that have lived in the same regeneration area since 2006. As part of the regeneration strategy 19,100 
demolitions are planned. 

This study found that the relationships between regeneration and health are very complex. Housing improvements 
on their own are probably beneficial but the effects of being relocated or left behind following demolition were 
hard to disentangle. What this study did find was that: “Many of the factors that residents considered to have 
important health consequences were not directly linked to the physical condition of their homes – although homes 
considered too small, damp and costly to heat were perceived to have adverse health consequences in terms of 
mental wellbeing, childhood asthma and related illnesses.” Instead it was “social relationships and support structures 
within and beyond the local neighbourhood” that were seen as important and need to be better understood case 
by case for weighing up the costs and benefits of regeneration.

6.2.8 Discussion

A number of issues have emerged as a result of conducting this review.

Weak evidence base

This review has highlighted the weak evidence base linking the impacts of demolition and refurbishment to resident 
wellbeing. Although this study has found some sources indicating impacts of demolition and refurbishment on wellbeing 
many of these sources, particularly those that conducted systematic literature reviews, noted that the evidence base 
linking housing improvement to health is weak (Petticrew et al. 2009). Additionally, the ‘extreme heterogeneity’ and poor 
quality of data limits opportunities to synthesise existing data, and while the quantity of studies has increased in recent 
years, the difficulty in synthesising remains (Thomson et al. 2001; 2006; 2009; 2013). 

Housing renewal, demolition and refurbishment are poorly distinguished
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There was difficulty distinguishing between refurbishment and demolitions when reviewing some of the literature. Many 
sources include housing demolition as part of their assessment of housing improvements thus making it difficult to draw 
any clear conclusion. This was the case with a number of sources that were systematic reviews including Thomson et al. 
(2013) and Thomson and Petticrew (2005). 

Short term vs long term 

A number of sources indicate the differences in long term and short term health impacts and the need to distinguish 
between them.  One study describes their inability to detect long term health impacts as a limitation and recommends 
more studies with longer follow up periods (Thomson et al. 2013). This study also recommends looking at impacts on 
socioeconomic determinants of health as a valuable indication of the potential for longer term health impacts. The 
long term and short term health impacts may be an important distinguishing factor when considering demolition or 
refurbishment. 

Box 17: Fusion 21, Merseyside

Fusion 21 are a procurement consortium based in the Wirral, Merseyside. They provide training and skills to the local 
community in retrofitting buildings. For example, their work with the Helena Partnership generated 119 jobs:  
www.fusion21.co.uk/casestudies/procurement/helena-partnerships-founder-member/

6.3 Resident empowerment and involvement 
In this chapter we have searched literature to find any health impacts related to this lack of engagement. Can a lack of 
meaningful engagement or sense of control lead to detrimental health impacts? 

Studies linking mental health to regeneration strategies, both for demolition and refurbishment,  have noted the stress 
and anxiety invoked on residents as a result of poor or little information and uncertainty in regeneration plans for the area 
(Bryson et al. 2007; Cole and Flint 2007; Halpern and Reid 1992; Kearns et al. 2012; Mason and Kearns 2012).  A number of 
case studies further demonstrate this: 

•  Residents in East Baltimore reported a lack of notifications and awareness around the plans for large scale urban 
development, this prompted a report into residential demolition practices (Bowie et al. 2005) 

•  The majority of tenants interviewed as part of one of the Go Well studies had not been involved in the consultation 
process on plans for the area. Most residents seemed surprised about being asked whether they had been involved 
in demolition proposals and options for the area as they saw this something the Glasgow Housing Association would 
decide. A number of residents felt the decision to demolish had already been taken and that their participation in 
meeting would not have made any difference (Egan and Lawson 2012; Kearns and Darling 2013). 

A number of the studies reviewed advocated for improved community engagement in housing renewal projects, 
emphasising that this is an essential component in ensuring residential wellbeing. This was highlighted in a number 
of reports reviewed as part of the WHO survey on housing and health (Thomson and Petticrew 2005). Information 
campaigns have been shown to be an important component when involving residents (Lawson and Egan 2012; Popkin 
et al. 2002; Howden-Chapman et al. 2005). Addressing the concerns of residents reduces the negative short term impacts 
on mental health and helplessness (Egan and Lawson 2012) while also contributing in the long term to more sustainable 
communities (Howden-Chapman and Chapman 2012). In the US, one response to calls for health impact assessments 
(Phillips, 2014) has been community-led health impact assessments Approximately twenty examples of these assessments 
have been reported by the non-profit organisation Human Impact Partners (Human Impact Partners, 2014).
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Box 18: Hope VI, USA

The HOPE VI housing plan is a scheme instigated by the US department of housing and urban development in 
1992 and still in operation. Its aim is to regenerate social housing projects in America that are considered to be 
the worst in the country. A core driver of the scheme is to relocate residents from this housing into mixed-income 
developments. A number of sources found in this review studied HOPE projects in different US cities and have come 
to various conclusions.

•  A report on the demolition of public housing in Atlanta under the HOPE VI project found that while there 
was strong support for demolition and redevelopment from HUD department and Atlanta city officials, there 
was strong opposition from public housing resident groups. Despite this opposition, plans were approved 
for the demolition (Oakley et al. 2013). While the study found that residents were happy with their housing 
improvements after relocation, it also advises policy makers that resident satisfaction is not linked to perception 
of neighbourhood level characteristics. 

•  Another study identified the concern residents had as to how they were treated as a group of public housing 
tenants. The level of appropriate treatment from authorities affected residents overall satisfaction with the 
scheme. This was found to be of greater priority than their individual situations and outcomes (Goetz 2013).  

•  Some respondents in studies have also been found to express a wish to return to the regenerated development 
after completion. This was more likely to be the case for residents who had been living there longer, were 
receiving disability benefits or were older. Confusion, suspicions and mistrust were identified as major challenges 
at different HOPE schemes. Further research into the mental health impacts associated with displacement and 
relocation were recommended (Popkin et al. 2002). 

6.4 Health inequalities 
Poor housing quality has long been known to have a negative impact on the health of individuals and the public. The 
analysis of health inequalities in the UK shows reduced life expectancy and poorer health outcomes for those on lower 
incomes in the UK compared to those who are better off. The Marmot Review was one of the key reports analysing this 
problem, and strongly advocates improving existing housing conditions as a means to reduce health inequalities in society 
(Marmot 2010)

Various studies reviewed for this report also highlighted the potential that housing interventions carry in reducing health 
inequalities (Ambrose 2000; Thomson et al. 2009; Macintyre et al. 2003). However, failure to report the differential impacts 
of housing interventions on social and economic inequalities makes current evidence base in this area weak (Thomson et 
al. 2013). This is important to note for future studies into the impact on housing improvements. 

6.5 Key messages
It is difficult to draw clear cut conclusion in favour of refurbishment and against demolition as a result of this review. 
This is due to the poor evidence base and poor reporting of the distinctions between demolition and refurbishment in 
regeneration programmes. While the community impacts of demolition and refurbishment are especially mixed, the lack 
of evidence of adverse impacts on mental and physical health indicators due to refurbishment provides some support for 
housing improvements favouring refurbishment over demolition. 

Refurbishment increases comfort for the individual. Reports show improved physical and mental health as a result of 
refurbishment, particularly around energy based improvements. At the community level, reports suggest a reduced sense 
of isolation and that social capital can be maintained as a result of refurbishment. However this is not always guaranteed 
particularly if the neighbourhood and surroundings remain in decline. Housing improvements have to take place 
alongside other area based interventions in order to be truly effective and to reach maximum potential.  
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There is some evidence that relocation as a result of demolition can improve wellbeing, particularly if the resident moves 
to an area with improved socioeconomic characteristics. Challenges have also been made to traditional perceptions of 
breaking up community networks as a result of demolition with some studies showing an improvement in social relations. 
However, demolition and relocation can also compromise the mental health of residents with evidence of increased 
reporting in stress, anxiety and depression. This stress is linked to feelings of powerlessness and the lack of control or 
opportunity to engage with the housing authority about the move.   This suggests that involvement of the community in 
the decision making process, regardless of the outcome, is essential in order to reduce impacts on wellbeing, particularly 
mental health. Social factors therefore must be incorporated into the decision making process. 

Understanding the impact of demolition or refurbishment on residents is complex as health and wellbeing is broad  
and interdependent on many different factors. Most of the studies surveyed have addressed this and made clear  
that there is an apparent gap in understanding this. Research is needed to clarify mixed findings and ambiguity on  
the literature. 
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7 Conclusions
The case studies and evidence reviewed in this report indicate that refurbishment of social housing can deliver significant 
improvements in energy, environmental and health performance, leading to costs savings and improved living standards 
for residents. The overall lifetime costs of refurbishment may be lower than demolition and construction, with less 
disruption to local communities and residents. Engaging residents in regeneration decisions has resulted in successful 
refurbishment of a number of hard to treat social housing properties and estates in different parts of the UK.

7.1 Evaluating the economic case for refurbishment
Estimating the costs and impacts of refurbishment or demolition is complex, uncertain and subjective. The typical cost 
indicators used in assessment refurbishment and demolition projects are: capital expenditures or CAPEX (the cost of fixed 
assets); operational expenditures or OPEX (the costs of goods and services); and capital investment appraisal (understanding 
the value of an investment over time).

As more experience has been gained in managing repairs and maintenance, management risks are easier to estimate, 
although estimating maintenance remains difficult. Key issues for management of repairs and maintenance include:

• allocating resources to the most appropriate stock;

• delivery of maintenance programme on time and on budget;

• controlling responsive repair work; 

• involving tenants and leaseholders in decisions; and

• managing and monitoring performance.

There is a growing body of research suggesting that extending the lifecycle of buildings by refurbishment is preferable  
to demolition in terms of improved environmental, social and economic impacts. 

In the literature covered by this review, benefits to residents are mainly confined to assessment of potential reductions 
in bills or improved thermal comfort. This means that the performance gap (differences between predicted and actual 
performance of buildings) and the rebound effect (where people adapt their behaviour in ways that increase consumption 
after an energy efficiency project) both of which would reduce projected savings are not included in the modelling. 
Where future savings are over-estimated, it is the occupants who are penalised, firstly, because what is promised is not 
delivered and, secondly, because they pay the energy bills By contrast, there is usually no automatic or direct penalty for 
designers, developers or facilities managers whose buildings do not perform as they predicted.  The limited scope of such 
assessments in the literature is partly due to a lack of quantitative monitoring of before and after refurbishment projects, 
and of qualitative work on occupant behaviour. 

There are also difficulties in estimating the costs and impacts on residents, particularly around: quantifying tangible 
returns; valuing future savings; and the complex interaction of individual and institutional behaviours. Key issues affecting 
residents include:

• delays in refurbishment and demolition work (which generally takes longer than expected);

• moving residents during works taking place (there is little comprehensive data on the cost or time involved); 

• complications of mixed tenure and sharing costs fairly between residents and over a wide variety of occupancy periods.

•  The costs of rehousing tenants, the time taken to do so, and the resulting pressure on other local housing resources 
should be included in economic analysis of demolition compared to refurbishment.

Assessing the impacts on wider society remains difficult. Key issues are: 

• the environmental costs of waste disposal

• the social or market costs of carbon 

• longer-term impacts of refurbishment or demolition
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Further work is needed to gather more data and analysis in all these areas. 

The UK supply chain and retrofit market is under-developed and suffers from increased risk due to lack of knowledge. 
There are a variety of technical, economic, and social risks and hidden costs associated with refurbishment. Prices and 
perceived risks amongst architects and designers, owners, investors and developers are all factors in the undeveloped 
supply chain and market. There is a need for a change in perceptions, awareness and behaviour throughout the supply 
chain, supported by appropriate policy frameworks.

Tenure types and management capacity, in particular the different skills and priorities of landlords, affects how costs and 
risks are shared between investors and occupants; how refurbishment can be financed; how savings can be realised by 
tenants; and how energy-saving behaviour can be encouraged. Particular issues include recovering investments through 
rent, and the tension between short-term tenures and long payback periods for energy efficiency.

Access to finance and willingness to invest in refurbishment: the risk of current costs and uncertain future savings mean 
there is a reluctance to both lend and borrow. Grants, subsidies and guaranteed loans could address this.

There is a need to address the capacity, willingness and confidence to make and explain decisions about refurbishment 
and demolition and to invest in refurbishment on the part of tenants, housing associations, developers and lenders. In 
part, this can be tackled through: collecting more data on costs; undertaking further analysis of the impacts of different 
scenarios on different peoples and places over time (‘do nothing’ / refurbishment / development); and research into 
behavioural and technical realities and wellbeing outcomes of living through refurbishments to inform other projects. 

7.2 Improving energy performance and reducing carbon emissions
Residential buildings generate greenhouse gas (GHG) emissions through two processes: occupants’ use of a building 
(operational energy); and the extraction, manufacture and transportation of materials for a building’s construction and 
demolition (embodied energy). The greatest impacts on global warming are likely to be through the energy consumption 
and emissions of a building during its lifetime rather than its construction and demolition. However the embodied energy 
of a building will become more significant as the UK achieves more stringent building standards and takes steps to 
decarbonise electricity generation.

Current buildings standards mean that newly constructed homes are likely to be more energy efficient than older buildings 
but this does not automatically mean that their occupants will use less energy than those in older buildings. However 
refurbishment of buildings can achieve similar levels of energy performance to new buildings whilst avoiding the GHG 
emissions of demolition and construction of new buildings. Major refurbishments of existing residential buildings will need 
to comply with nearly zero energy emission standards from 2016. 

The operational energy of residential buildings contributes 23% of the UK’s greenhouse gas emissions. Retrofitting to 
reduce energy consumption can also deliver other benefits, including reduced fuel bills and increased thermal comfort, 
and can be done by: 

•  Improving energy performance through improvements to the building fabric, installing more efficient appliances and 
controls, and improving occupant understanding of how energy is used in the home;

•  Switching fuel sources, such as using renewable resources on-site to generate heat or power, or connecting to 
neighbourhood energy supplies such as low carbon heat networks.

7.3 Water and waste
The environmental impacts of refurbishment compared to demolition are not only about energy and carbon, but also 
about the environmental impacts of the production of water, concrete, steel, timber, glass and many other materials used 
in the construction of new buildings, and the impact of the waste that is generated through demolition and construction.

Water is often overlooked in regeneration schemes but is a vital issue in terms of: how it is used in construction; how it is 
used by residents; and how sewage and storm water are dealt with. Water efficiency should be considered both in designs 
for new buildings and in refurbishment programmes. In London – a water-scarce region – average water consumption 
is 162 litres per person per day. Reducing the amount of water used by individuals and by the construction industry will 
help to alleviate pressure on scarce resources. Improvement of water management in housing estates will also benefit 
communities and better management of storm water using green infrastructure to tackle runoff can create local green 
spaces with advantages for residents’ health and for biodiversity.



Demolition or Refurbishment of Social Housing? A review of the evidence p64

The construction sector generates 35% of all waste in the UK; waste reduction is thus a key priority. Waste management 
has improved considerably, with 73% of waste from construction and demolition recycled as aggregate. Using recycled 
aggregate in new construction reduces landfill waste and the environmental impacts of new construction. Additionally, 
recycling materials at the end of houses’ lives may reduce the potential to contribute to global warming by 2-3%. 
Refurbishing existing buildings is the best way to reduce waste: this avoids demolition waste and reduces the need  
for new material, avoiding associated costs of landfill, recycling and new materials.

7.4 Social factors 
Understanding the impact of demolition or refurbishment on residents is complex, as health and wellbeing are broad  
and interdependent on many different factors. Because wellbeing is a highly subjective concept, it can be used to support 
cases for demolition even where strong evidence is lacking. Further research into the impacts of demolition  
and refurbishment on wellbeing is therefore needed. 

There is evidence to show improved physical and mental health as a result of refurbishment, particularly around energy 
based improvements. At the community level, refurbishment can lead to a reduced sense of isolation and maintenance of 
social capital. However, these positive impacts are undermined if the neighbourhood and surroundings remain in decline. 
Housing improvements need to take place alongside other area-based interventions in order to be truly effective and to 
reach maximum potential. Such an approach requires multidisciplinary collaboration with different departments in local 
authorities and other stakeholders working together. 

Whilst refurbishment has been shown to improve individual mental and physical health, it is also important to bear in 
mind unintended consequences, such as retrofitting ventilation units leading to poorer indoor air quality which can have a 
detrimental impact on respiratory health.

There is some evidence that relocation after demolition can improve wellbeing. However, demolition and relocation 
can also compromise the mental health of residents, with increased reporting in stress, anxiety and depression post 
demolition. This stress is linked to feelings of powerlessness and the lack of control or opportunity to engage with the 
housing authority about the move.

The retrofit industry and the decentralisation of energy offer considerable opportunities for local development and 
community engagement, which in turn can lead to local regeneration, lower energy costs, generation of local income,  
and improved trust:

•   Refurbishment of buildings significantly contributes to job creation 

• Small and medium businesses involved in refurbishment and retrofitting in the UK can particularly benefit; 

•  Employment benefits have been shown to be higher when the refurbishment of the building has higher energy  
saving specifications. 

Involvement of the community in the decision making process, regardless of the outcome, is essential in order to reduce 
impacts on wellbeing, particularly mental health. This should include actively engaging residents so that they feel a sense 
of ownership and participation and keeping them fully informed of the process.
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Appendix A: Definitions of building life

 (CIBSE 2008) (Thomsen and 
van der Flier 
2011)

(Kohler 2007) (Sweetnam and 
Croxford 2011)

(Lowe 2007)

Economic Life Estimated 
number of 
years until that 
item no longer 
represents the 
least expensive 
method of 
performing its 
function (life 
expectancy, 
economic life 
factors, indicative 
life factors.

 An assumed 
period of time 
over which costs 
and benefits of 
buildings are 
assessed - not 
necessarily 
related to the 
likely service 
lifetime or 
physical lifetime 
but to tax 
regulations, legal 
requirements 
or accounting 
standards.

  

Technological 
Life

Estimated 
number of years 
until technology 
causes an item to 
become obsolete

Obsolescence 
as a process 
described 
as growing 
divergence 
between the 
declining 
performance 
of buildings 
and the rising 
expectations 
of users and 
proprietors  

  

Service Life 
or Estimated 
Service Life 
or Useful Life 
(CIBSE) (single 
building or its 
parts)

Estimated 
number of years 
during which an 
item will perform 
its function 
according to 
some established 
performance 
standard (at least 
as long as the 
design life)

Period of time 
during which 
a building or 
its parts meet 
or exceed 
performance 
requirements 
(ISO)

Period of time 
after installation 
during which 
a building or 
its part meet 
or exceed 
performance 
requirements; 
can be the end 
of the physical 
life of a building 
but also the 
indication of 
what a client 
expects 
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Design Life This is a period 
of time decided 
by a building 
owner/developer 
and written in 
to the Client’s 
Brief. It guides 
engineers and 
assures investors 
and insurers 
about the quality 
and durability 
that has been 
specified for the 
building and 
its equipment. 
Over this time 
a building or 
component 
of a building 
is expected 
to function 
adequately 
without the need 
for major repairs 
or replacement 
if properly 
maintained.

    

Service Life 
Replacement 
Date or 
Replacement 
cycles

Time intervals 
when 
components or 
subsystems have 
to be replaced 
because their 
service life is 
less than design 
life of the whole 
building or 
system

    

Effective service 
life 

  Time for which 
a certain 
probability of 
survival (effective 
lifetime) can be 
guaranteed

  



Demolition or Refurbishment of Social Housing? A review of the evidence p72

Effective 
(physical) 
lifetimes or 
Implicit Life 
(whole building 
stock) 

 AKA life span, 
building 
pathology and 
mortality of 
buildings as 
average period 
of physical 
existence, 
including the 
usage and end-
of-life phase

Estimated from 
buildings that 
have been built/
destroyed in 
whole building/
infrastructure 
stock over time; 
lifetime of stocks 
of building 
typologies  
(relates to 
societal or 
planning 
decisions to use 
the complex 
resource of 
the building 
stock in a 
sustainable way). 
AKA Survival 
Functions

 Implicit dwelling 
life based on 
the ratio of 
total household 
numbers 
to annual 
demolition rate 

Lifecycle Phases 
(products or 
projects)

1. Acquisition

2.  Use and 
maintenance

3.  Renewal and 
adaptation

4. Disposal.

 

Development 
phase, including 
the design and 
the construction 
phase, and the 
usage phase, 
consisting 
of the actual use 
and the reuse or 
end-of-life 
phase 

New 
construction, 
operation, 
maintenance, 
refurbishment 
and disposal 

1.  Pre-
refurbishment

2. Demolition

3. Construction

4.  Post-
refurbishment

5.  Refurbishment 
or demolition 
for a 
refurbishment 
scenario and 
a new-build 
scenario
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Building Components Patalia and Rushton Tabe 4 CIBSE Guide 
M

Lowe

Replacement 
Cycle (years)

Cost 
%

Economic Life 
Factor (years)

Replacement 
Cycle

Technological  
Life

In
te

ri
o

r

Decorations  5 2    

Floor Finishes  10 2.5    
Kitchen and 
Bathroom 
Fittings  15 7.5    
Sanitation and 
Drainage

Below ground 
drainage (plastic)   40   
Internal waste, 
foul and rainwater 
drainage (plastic)   20   

Sanitary ware   25   

M
ec

h
an

ic
al

 a
n

d
 E

le
ct

ri
ca

l S
ys

te
m

s

General 
Mechanical and 
Electrical  30 24.5    
Space heating cast iron sectional 

boilers (MTHW/
LTHW)   25 10 15
condensing boilers 
(MTHW/LTHW)   20   
domestic boilers 
(combination)   10   
domestic boilers 
(condensing)   15   

pumps   15   

mild steel flue   15   
Storage heaters 
(electric)   10   

Hot water 
system

Domestic gas-fired 
hot water (storage 
and continuous)   12   
Electrical water 
heaters   12   

Water system Mains cold water 
booster   15   
Shower mixer and 
head   10   

Distribution 
systems

Radiators (steel)   20   
Heating pipework 
system (plastic)   35   
Pipework thermal 
insulation   30   

Ventilation
Extract fan (e.g. 
domestic)   10   

Cooling Not considered      
Electrical Sub-main 

distribution (most 
components)   20   
External lighting 
installations   15   
switched socket 
outlet (SSO)   15   

CFL   3   

Lifts
Electric traction 
lifts (packaged)   15   
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R
en

ew
ab

le
s

PV PV Panels   25   
lead–acid batteries 
(sealed)   5   
 nickel–alkaline 
batteries (vented)   20   

Wind Turbines    20   

Renewable Heat
Solar panels (water 
heating)   25   

        

En
ve

lo
p

e

Walls External walls 60 17.5    
Render and 
Pointing (masonry 
walls)   50-100 centuries

Roof  60  50  
Windows Frames 60   many decades

Sealed Glazing 
Units 60   20

        

St
ru

ct
u

re Substructure  60+ 46    

Frame  60+    

Floors  60+    
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Appendix B:  Buildings codes, targets and regulations

Building codes
The energy performance standards for buildings in England are covered by the technical documents – Part L (Conservation 
of Fuel and Power). This separates buildings into four types:

• L1A New dwellings (residential buildings)

• L1B Existing Dwellings

• L2A New Buildings other than Dwellings (non-residential buildings)

• L2B Existing Buildings other than dwellings  

New 2013 versions of Approved Document L1A and L2A (ie for new residential and non-residential buildings) come into 
effect from 6 April 2014.  These regulate different energy using aspects of a building including heat loss through walls, 
roofs, floors, doors and windows, the energy performance of lighting, ventilation and heating systems.

Renovation work and extensions to existing buildings must comply with the approved document L1B.  These regulations 
apply when the work will affect how much energy is being used is and covers:

• An extension

• A change of use (from non residential to residential)

• A change or extension of the windows and lighting, heating or ventilation systems. 

•  The replacement or renovation of an external wall, floor or roof, or an internal one which separates the  
conditioned area of a home (the rooms that are heated or cooled) from a non-conditioned area (for example a garage 
or unheated corridor)

The UK has a target for all new residential buildings to be zero carbon by 2016 and all other new buildings to be zero 
carbon by 2020. To help the construction sector meet this stretching target, an off-setting system called ‘allowable 
solutions’ has been designed, and will come into practice in 2016. This means that developers who cannot make their new 
buildings ‘zero carbon’ can contribute to other carbon abatement strategies. Retrofitting existing buildings could be one of 
these allowable solutions and local authorities “either individually or in multi local authority partnerships, or in partnership 
with the private sector, [can come] forward with Allowable Solutions’ projects or measures” for private sector developers 
(Department for Communities and Local Government 2013 p. 41).

Heat polices and regulation

EU Directive on metering and informative billing

The UK is addressing the need to provide meters and billing information to residents whose homes are connected to 
district heating systems or shared heating and hot water supplies. For existing buildings, changing from a rated to a 
metered service is discretionary and depends on the cost and technical feasibility of adding meters and changing the  
billing system. 

For new buildings and renovations it is mandatory to provide meters and charge according to metered supplies. 

Renewable Heat Incentive (RHI) (text from Energy Saving Trust Website)

The domestic RHI provides financial incentives to owners of eligible, renewable heating systems on their homes. 
It supports air source heat pumps (ASHP), biomass systems, ground source heat pumps (GSHP) and solar thermal 
technologies with tariffs varying depending on the technology.

The domestic RHI is open to owner occupiers, private landlords, Registered Providers of Social Housing and self-builders 
who have installed an eligible technology since 15th July 2009, provided they meet the scheme criteria.

Successful applicants will receive quarterly payments for seven years. Any public grants previously received, including  
the Renewable Heat Premium Payment (RHPP), will be deducted to avoid a double subsidy. The scheme covers England, 
Wales and Scotland only.
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Ofgem is responsible for administering the scheme which opened in Spring 2014. Find out about eligibility criteria and  
the application process by visiting Ofgem.

Feed-in tariffs
The government is providing support for home owners and community groups who install equipment that generates 
energy from renewable sources.  Once installed, groups receive payments for the electricity generated by any of the 
following technologies: Groups can be paid for the electricity they generate, even if they use it themselves, and for any 
surplus electricity they export to the grid.  Groups will also save money on electricity bills, because they use their own 
electricity rather than buy it. 

The following technologies can be used:

• Solar photovoltaic (usually called PV) with a total installed capacity (TIC) of 5MW or less

• Wind with a TIC of 5MW or less

• Hydro with a TIC of 5MW or less

• Anaerobic digestion with a TIC of 5MW or less

• Micro combined heat and power (CHP) installations with a TIC of 2kW or less

The tariffs vary, but can be found on Ofgem’s website. 

Labelling and certificates (voluntary and compulsory)
The Energy Saving Trust explains the different indicators that landlords can use to measure the energy performance of  
their buildings:

1)  Energy use ratings indicate how much energy a dwelling uses, similar to the way that miles per gallon unit can be used 
to compare how fuel efficient cars are.  It typically includes the energy needed for heating, hot water, lighting and 
ventilation under set conditions (eg heating the home to 21C for 9 hours a day). It usually does not include things like 
washing machines, electronic equipment which are not governed by part L.

2)  Energy or fuel cost ratings indicate the energy bill a resident could expect from living in a home, and are sometimes 
used to establish targets by social landlords.  

Energy Performance Certificates (EPCs) rate a building on an A to G scale (similar to energy labelling for white goods) to 
reflect fuel costs under standard occupancy conditions. These are now required for new buildings and existing buildings 
when they are newly sold, rented or leased. 

Social and private landlords must provide new tenants with an EPC for their home.


