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1. Model overview  
This document provides a description of the new Python-based version of BRAIN-Energy (Bounded 
Rationality Agents Investments model), of its key equations, calibration data, agents, and their 
characteristics and strategies.  
 
BRAIN-Energy is an agent-based model (ABM) of electricity generation and investment. Its strength and 
novelty lies in the sophisticated representation of agent behaviour and interactions. The model’s aim is to 
represent heterogeneous agent characteristics in investment decisions and multi-agent interaction, and to 
explore the impacts of those aspects on the electricity sector’s low-carbon transition to 2050.  
 
BRAIN-Energy is implemented in Python using an object-oriented programming framework, it is calibrated 
to 2012 as a base year, and it proceeds to 2050. Eight time-slices per year (two seasons and each season is 
represented by a typical day with four intra-day periods) are adopted to represent the temporal variations 
of electricity supply and demand of the UK-wide and local electricity systems. The definition of the eight 
time-slices is shown in the table below.  
 

Table 1 – Definition of time-slices in BRAIN-Energy 
Season Intra-day period Time represented Notes 
Winter (W) 
Summer (S) 
 

Night (N) 00:00–07:00 Lowest demand 
Day (D) 07:00–17:00 Includes morning peak 
Evening peak (P) 17:00–20:00 Peak demand 
Late evening (E) 20:00–00:00 Intermediate 

 
 
BRAIN-Energy’s initial version (Barazza and Strachan, 2020a; Barazza and Strachan, 2020b) was calibrated 
to the UK, German and Italian electricity supply sectors, while the updated version in Python is at present 
only calibrated to the UK. BRAIN-Energy gives a stylised representation of the UK electricity sector in terms 
of generation technologies to reach UK’s net-zero target at 2050, installed capacity, agents (investor agents 
and policy agents on a national and local level), policies in the energy sector and climate change targets.  
 
BRAIN-Energy aims to address a gap in existing energy-modelling literature, where most studies assume 
homogeneous and perfectly rational agents, and lack attention to the actors’ heterogeneity and bounded-
rationality (Bergek et al., 2013; Iychettira et al., 2017; Wüstenhagen and Menichetti, 2012). 
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New developments in the Python-based version of BRAIN-Energy include: 
 local energy system component (3 regions and local investor and policy agents) 

 improved governance (new policy mechanisms at the local level) 

  improved depiction of the technical side of the power system (8 time slices for electricity 
dispatch-side, demand response) 

 Improved technology portfolio to reach UK’s net-zero target at 2050 (BECCS has been added to 
the technology portfolio) 

 
 
2. Model flow 

 
 

 
Figure 1- BRAIN-Energy’s yearly flow 

 
Figure 1 depicts BRAIN-Energy’s annual flow and how it iterates through its different main procedures. Each 
year investors decommission unprofitable power plants, and then take short-term operational decisions 
(electricity production from their stock of assets), and bid electricity into the market at a national and local 
level. As a result of their electricity sales, the yearly national and local electricity price is created (section 4), 
as well as the electricity supply curve (section 4) and the CO2 emissions from the power sector (section 4). 
Based on their electricity sales and on the electricity price investors assess the profitability of their stock of 
assets and their market share is updated. Investors whose equity is negative exit the market. 
 
Policy agents (these are explained in section 5.2 and are the national government agent, the regulator agent 
and local government agents) are active at the next step: the national government agent checks the amount 
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of CO2 emissions (or emission intensity) produced by the power sector at the national level. If the interim 
decarbonisation targets are not met, the national government agent can adjust the prevailing CO2 price 
(section 5.2) at the national level. The national government agent also subsidises investments in renewable 
technologies through Contracts for Difference (section 5.2) at the national level. The regulator agent also 
intervenes in the market to manage eventual supply gaps by enforcing capacity auctions (section 5.2) at the 
national level. Local government agents take the necessary policy measures at the local level (subsidising 
specific renewable technologies and managing demand response programs). Therefore, the policy changes 
which the policy agents (the national government, regulator and local government agents) enforce in 
BRAIN-Energy are endogenous, and co-evolve with the emergent techno-economic properties of the sector 
through the years.  
 
Finally investors decide about new investments (section 6). Newly committed investments start being 
operational after a planning- and construction lag, and the resulting generation mix is, therefore, an 
emergent result of the investment and decommissioning decisions of the investors. 
 
 
3. Regions 
The UK has been divided into 3 regions to better represent the differences in the energy systems of different 
parts of the UK: these 3 regions are London, Scotland, and the rest of UK. These regions have unique 
characteristics in terms of their socio-economic profile, energy use patterns, deployment potential for 
energy technologies, investor profiles and government actors.  
London is the largest urban region in the UK and contributes almost a quarter of the UK’s GDP. In addition, 
the Greater London Authority and the Mayor of London’s Office hold significant authority and have defined 
more ambitious climate targets than the UK and constituted local energy programmes to meet these goals.  
Scotland’s devolved government has independent control over large parts of the Scottish economy and 
society, and has its own Climate Change Plan with annual CO2 targets and a Scottish Energy Strategy that 
sets the long-term goals for the Scottish Energy System.  
The Rest of UK forms the third region, which like Scotland is composed of large areas with a rural population 
interspersed with cities of a much smaller size as compared to London.  
 
BRAIN-Energy simulates the electricity market using a hierarchy-based approach by determining electricity 
supplies in the local regions first. Power plants in the local regions (i.e. London and Scotland) are firstly 
applied to supply electricity to meet the local electricity demands. Whenever there is a shortage of 
electricity supply, electricity will be imported from the national region (i.e. UK) to meet the demand. In 
contrast, if there is surplus electricity from variable renewable energy (VRE) in the local regions, the surplus 
electricity can be exported to the national system. The same hierarchy-based approach is also applied to 
prioritise new investments in the local regions made by local agents (i.e. households).  
However, fossil fuel and biomass power plants are always operated co-ordinately at the national level due 
to the size of those plants is usually too large for local demands.  
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4. Power sector operations 
Electricity demand, an exogenous variable in BRAIN-Energy, has been divided into eight intraday demands 
for two typical days in two seasons respectively based on historical data, to account for diurnal variations 
in electricity load.  
 
A yearly peak demand in GW has been defined, which is calculated as the demand at the evening peak time-
slice (P) in the winter season multiplied by the peak factor. The peak factor (𝑃𝐹), as shown below, has been 
calibrated on historical observations of the absolute yearly peak electricity demand in the UK, and is defined 
as a percentage of the evening peak demand in the winter season.  

 
Table 2 – Peak factors (source: same sources as for electricity demand see section 8) 

 
 
 

 
 The peak factor (𝑃𝐹) is assumed to be constant through the years from 2012 to 2050. 
 

𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑௧ = 𝑊𝑖𝑛𝑡𝑒𝑟𝐸𝑣𝑒𝑛𝑖𝑛𝑔𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑௧ × 𝑃𝐹 
 
To account for the intermittency of renewable generation assets, their installed capacity has been de-rated 
by their load-factor.  
 
Electricity production bidding strategy (𝑏௧) of market players: 
 

𝑏௧ = 𝑓(𝑆𝑅𝑀𝐶௣,௧,, 𝑒𝑝௣,௧) 
Where: 
 𝑆𝑅𝑀𝐶௣,௧, is the short-run marginal cost of plant p at time t 

𝑒𝑝௣,௧  is the potential available production capacity of power plant p in MWh at time t 

Short-run marginal cost of generators: 
 

𝑆𝑅𝑀𝐶௣,௧ =  
൫𝑝௙,௧ + 𝑝஼ை ,௧൯ × 𝑒𝑝௧ +  𝑓𝑐௣,௧

𝑒𝑝௣,௧
 

where: 
𝑝௙,௧  is the price of fuel f at time t for a MWh of electricity, 𝑝஼ைଶ,௧ is the CO2 price at time t for a MWh of 

electricity, 𝑒𝑝௧ is the potential available production of plant p at time t in MWh, 𝑓𝑐௣,௧ are the fixed O&M 

costs for plant p at time t 
 
The wholesale electricity price at year t ( p t ) is equal to the short run marginal cost of the last and most 
expensive bid accepted into the market, which is required to meet electricity demand in that year. The same 
mechanism is applied to both national and local regions to determine regional electricity prices. In other 
words, regional wholesale electricity price is determined by the technology mix in the corresponding region. 
 
Total CO2 emissions and carbon intensity of the power sector: based on the production mix resulting from 
the merit order, hence on the share of electricity produced through renewable sources and through 

 % of yearly average day demand 

UK 125% 
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conventional sources, total emissions in the power sector ( 𝑇𝑜𝑡𝐶𝑂2௧) at time t and carbon intensity of 
electricity generation ( 𝐶𝐼 ௧) at time t are calculated.  
 

𝑇𝑜𝑡𝐶𝑂2௧ = ෍((𝑠௣,ௗ௔௬,௧ + 𝑠௣,௡௜௚௛௧,௧) × 𝐸𝐼௣)

௡

௫

 

𝐶𝐼௧ =  
𝑇𝑜𝑡𝐶𝑂2௧

∑ (𝑠௣,ௗ௔௬,௧ + 𝑠௣,௡௜௚௛௧,௧)௡
௫

 

where: 
𝑠௣,ௗ௔௬,௧ total day electricity production of power plant p at time t, 𝑠௣,௡௜௚௛௧,௧ total night electricity production 

of power plant p at time t, 𝐸𝐼௣ is the emission intensity of plant p, 𝑛 is number of active power plants at 

time t 
 

 
5. Agents 
Agents in BRAIN-Energy have been defined based on an extensive literature search. Agents in BRAIN-Energy 
are heterogeneous: they are of different types (different types of organisations) and have different 
characteristics. Types of agents in BRAIN-Energy include:  

 Investor agents 
 Policy agents 
 

Both investor and policy agents can be national or local agents. 
 
All agents in BRAIN-Energy have bounded-rationality. This means that investors have limited foresight of 
the future, and that they take satisificing rather than maximising investment decisions (Simon, 1953, 1955; 
1956; Nelson and Winter 1982), which are based on routines, habits, past experience and on their own 
heterogeneous expectations of electricity demand, fuel and technology costs. 

 
5.1 Investor agents 
 
Table 3 contains a description of the different types of investor agents represented in BRAIN-Energy. Those 
investors aim to represent the most important private investors in renewable energy technologies based 
on various literature sources (CPI, 2019; IRENA/CPI, 2018; European Commission, 2017). 
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Table 3- Description of investor agents  in BRAIN-Energy 

 
 
Different types of investor agents have different characteristics which are summarised in Table 4. 
 

 
Table 4 – Characteristics of investor agents in BRAIN-Energy 

 
 
Technology choices and location of projects for the different investor agents have been calibrated based on 
CPI (2014). As regards to risk and return considerations, cost of capital ranges for the different types of 
investors have been calibrated based on Steinbach and Staniaszek (2015), Diacore (2015), Salm (2018), 
Helms et al. (2015), Salm et al. (2016), Broughel and Hampl (2016) and are as follows: 

• Incumbent utilities: 8%-12% 
• New-entrants: 6%-7% 
• Municipal utility (local supplier): 8%-9% 
• Households: 3%-6% 

 
The time horizon of investments for the different types of investor agents has been calibrated in BRAIN-
Energy based on Hall et al. (2017) and Salm et al. (2016) and is as follows: 
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• Incumbent utilities: 10-12 years 
• New-entrants: 5 years 
• Municipal utility (local supplier): 12-15 years 
• Households: 5 years 

 
Within each type, of investor agents, there are: 

 2 incumbent utilities 
 2 new-entrants 
 2 municipal utilities (local suppliers): these match the regional split and are the London supplier 

and the Scotland supplier 

 3 household agents (one for each region in BRAIN-Energy: London household agent, Scotland 
household agent, rest of UK household agent) 
 

These differ by: 
• initial technology portfolio 
• initial money endowment 
• risk  
• return 
• time horizon of investments 

 
Investor agents have other strategic behaviour: 

• different expectations about future electricity demand, fuel and technology costs 
• imitation of other investors’ agents successful investments (section 6.3) 
• learning: investors get out of technology type if poor investments (section 6.2) 
• exit the market when money endowment is negative 

 
 
5.2  Policy agents 
The different types of policy agents in BRAIN-Energy are summarised in Table 5.  

 
Table 5 – Description of policy agents in BRAIN-Energy 

 
 
There is one national government agent, one regulator agent and two local government agents in BRAIN-
Energy to match the model’s regional split (the London government agent for the London region, and the 
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Scotland government agent for the Scotland region). Local government agents have been introduced in the 
updated version of BRAIN-Energy, because local governments in the UK have set their own net-zero targets 
(London net-zero electricity by 2040 (GLA, 2018), Scotland to reach net-zero by 20451). 
 
Table 6 summarises the functionality of the policy agents in BRAIN-Energy.  
 

Table 6 – Functionality of policy agents in BRAIN-Energy 

 
 
 
The national government agent can increase the CO2 price by up to 200% over the “no-increase” trajectory 
(Table 7) whenever interim carbon budgets (Table 8) are not met. The level of the increase depends on the 
scenario.   
 

Table 7- “No-increase” CO2 price trajectory in BRAIN-Energy 
CO2 price 
trajectory 

Description and calibration 

“No-increase” This is the prevailing CO2 price at the onset of all scenarios in BRAIN-Energy.  
 Historical: EU ETS + Carbon Price Floor according to the “Reference” scenario in 

BEIS (2016a) 
 Future: “Reference” scenario in BEIS (2016a) 

 
 

Table 8- Carbon budgets in the UK in BRAIN-Energy (source: CCC, 2015) 

Year Carbon intensity of power generation 

2020 250 gCO2/kWh 
2025 200 gCO2/kWh 
2030 100 gCO2/kWh 
2035 50 gCO2/kWh 
2040 25 gCO2/kWh 
2045 15 gCO2/kWh 
2050 Near-zero 

 
The national government agent also subsidises investments in new renewable generation assets through 
Contracts for Difference (CfDs).  

 
1 https://www.gov.scot/policies/climate-change/reducing-emissions/ 
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CfD auctions take place every three years (up to 6 GW of renewable technologies can be commissioned at 
each auction2), and winners of the auctions are paid the difference between an auction's strike price and 
the prevailing market price for 15 years, hence providing stability and predictability to investors' revenues 
for 15 years. In BRAIN-Energy the strike price (expressed in MWh) which agents bid into the market is 
calculated as the price which allows them to recover capital expenditures for a given project p ( 𝐶𝐴𝑃𝐸𝑋 𝑝), 
interest costs on the loan raised to finance the project p ( 𝑟 ), and O&M, fixed and variable costs associated 
to the expected level of electricity generation from project p in a given year t ( 𝑔௣,௧ ) , hence to have an net 
present value (NPV) equal to zero.  
 

𝑆𝑃௫,௣,௧ =  

ቆ
𝐶𝐴𝑃𝐸𝑋௣

𝑙௣
× (1 + 𝑟)ቇ + 𝑐௣,௧

𝑔௣,௧
 

where: 
 𝑆𝑃௫,௣,௧ is the strike price required by generator or investor x for plant p at time t 

𝑙௣ is the lifetime of plant p 

𝑐௣,௧ is the expected cost of generation of plant p in year t based on fixed, O&M and variable costs 

 
BRAIN-Energy will track how much the national government agent spends on subsidising renewable 
investments through CfDs at the national level. The model will also track revenues from CO2 from the 
national government agent. 
 
The regulator agent in BRAIN-Energy manages security of supply through a capacity market at the national 
level. The way the capacity market works in BRAIN-Energy is represented by the fact that the regulator  
agent, who also has bounded-rationality, forecasts every year the maximum potential electricity production 
at t+4 (𝑚𝑎𝑥𝑠௧ାସ) by estimating the maximum potential electricity production of all active power plants with 
plant life of at least or greater than t+4. If the maximum potential electricity production at t+4 (𝑚𝑎𝑥𝑠௧ାସ)  
is lower than peak demand at year t+4, then the regulator  agent sets a capacity auction into place at year 
t with capacity to be delivered at t+4. The capacity to be auctioned ( 𝐶𝐴௧) is then: 

 
𝐶𝐴௧ =  𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑௧ାସ −  𝑚𝑎𝑥𝑠௧ାସ 

 
In BRAIN-Energy, the capacity market functions for new capacity investments only and is modelled following 
Hach et al. (2015). The price that market players bid into the market is the annual payment from which a 
negative NPV turns to zero ( 𝐶𝑃௣,௧ ) . If the NPV of a project is already greater than zero, than generators 
and investors bid zero into the capacity auction.  
 

𝐶𝑃௣,௧ = max (0; −𝑁𝑃𝑉) 
where: 

 
2 His has been calibrated based on the total auctioned capacity at the Contracts for Difference Allocation Round 3 
(AR3): https://www.gov.uk/government/publications/contracts-for-difference-allocation-framework-for-the-third-
allocation-round-2019 
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𝐶𝑃௣,௧  is the annual capacity payment for plant p at time t which agents participating into the capacity 
auction bid into the market. It is capped at £75/kW a year in accordance with regulation in the UK market. 
 
Local government agents are local agents in BRAIN-Energy and are committed to radically reduce carbon 
emissions and achieve 100% clean energy in their areas and net-zero emissions by 2050. They provide 
subsidies to specific renewable technologies to achieve a more local and distributed energy system, and 
enforce demand-side response programs. Table 5 summarises the functionality of two local government 
agents in BRAIN-Energy. Similarly as for the national government agent, BRAIN-Energy will also track how 
much local government agents spends on subsidising renewable investments in their local region. 
 
 
6. Investment decisions 
In BRAIN-Energy the investment choices of the investors co-evolve with the policy dimension and the 
governance structure. This is illustrated in Figure 2.  

 

 
Figure 2 - Investment process in BRAIN-Energy and co-evolution with other dimensions 

 
 
6.1  Economic criteria in investment decisions 
Investors in the power market take yearly decisions to decommission unprofitable power plants, reassess 
the profitability of prior investments and take decisions about building new power stations. Such strategic 
decisions are taken by each investor independently and sequentially one after the other.  
 
Investment choices come after the operational activities of each investor, as they also depend on the 
amount of revenues generated by their core business of electricity production. Each investor finances part 
of the capital investment costs for new power stations from own resources (cash generated from operating 
activities), and the remaining part through debt taken by banks at an investor’s specific cost. 
 
Every year, all investors  evaluate the potential future profitability of each generation technology in which 
they are willing and able to invest given their technology preferences, by calculating its net present value 
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(𝑁𝑃𝑉) up to a future reference year 𝑛 years ahead. The value of 𝑛 depends on each investor's time horizon 
of investments. As investors  have myopic foresight and don’t have perfect information about the future, 
their 𝑁𝑃𝑉 calculations are based on their own micro-economic expectations and estimations about future 
electricity demand, fuel and technology prices, and cash-flow from future potential investment 
technologies.  
 
Operating cash-flow (𝐶𝐹𝑜𝑝௣) and NPV calculations:  
 

𝐶𝐹𝑜𝑝௣ = ෍
൫𝑒𝑝௣,௧ × 𝑝௘௫௣,௧൯ − (൫𝑣𝑐௙,௖,௣,௧ × 𝑒𝑝௣,௧൯ + 𝑓𝑐௣,௧

(1 + 𝑟)௬

௡

௬ୀ௧

 

 

𝑁𝑃𝑉௣ = 𝐶𝐹𝑜𝑝௣ − (
𝐶𝐴𝑃𝐸𝑋௣,௧

𝑙௣
× 𝑛) 

Where: 
𝑒𝑝௣,௧  is the expected production of plant p at year t 

𝑝௘௫௣,௧ is the electricity price which each investor expects at time t 
𝑣𝑐௙,௖,௣,௧ are the variable costs of plant p as a function of fuel and carbon costs at time t 

𝑓𝑐௣,௧  are the fixed costs of plant p at time t 
𝑟 is the cost of capital  that investors  pay on their liabilities 
𝐶𝐴𝑃𝐸𝑋௣,௧ is the project capital cost for generation technology p at time  

If NPV is greater than zero, investors select the investment option with the highest return on investment 
(ROI). 
 
Household investors, instead, use a different process to evaluate future investment options. In fact, 
households calculate the economic utility from future investments based on the length of the payback 
period, which is given by the year when the NPV of the new investment passes from being negative to being 
positive. This is based on Palmer et al. (2015) as this study is specifically focused on studying the adoption 
of solar PV between households in Italy. 
 
6.2  Self-learning 
Self-learning in investment choices in BRAIN-Energy is represented by the fact that: 
 

 Investors’ investment choices are constrained by the past performance of existing plants and 
investments, which dictate an investor’s financial constraints. Hence, investment choices are 
adaptive and path-dependent. Learning from own successful past behaviour and investments is 
reflected in an investor’s growing profit and improving financial situation.  

 
 Investors learn from their own unsuccessful past investments. After five years that a new plant 

started operations, investors assess its profitability every year. If at any given year a plant’s 
cumulative profits over the previous five years defined as: 

෍ 𝑃𝐹௣,௧ = (𝑝𝑟𝑜𝑑௣,௧ × 𝑝௧)

௡

௬ୀ௧

−  𝑡𝑜𝑡𝐶𝑜𝑠𝑡௣,௧ 
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are lower than the 5-yearly share of the new plant’s total capital cost (
஼஺௉ா௑೛

௟೛
× 𝑛) then the new 

investment is flagged as unprofitable. 
Where: 
 𝑙௣ is the lifetime of plant 𝑝,  

 𝑝𝑟𝑜𝑑௣,௧ is the electricity production of plant 𝑝 at year 𝑡,  
 𝑝௧ is the electricity price at year 𝑡, 
 𝑡𝑜𝑡𝐶𝑜𝑠𝑡௣,௧ comprise variable and fixed production costs and yearly capital costs.  

 
If the number of years during which the new plant is unprofitable in a row is greater than the number 
of years an investor is willing to absorb losses for, then it is shut down. An investor will only invest in 
the same technology when and if it becomes profitable again. This means that, if at any time the 
technology’s NPV calculation is greater than zero, and if the ROI is equal or greater than the capital 
cost of the investor plus a threshold α which differs by type of investor, the investor will invest again 
in this technology. Thresholds α  have been calibrated based on the wider characteristics and 
behaviours of the investors drawn from the literature. Threshold α can be between 1 ≤  𝛼 ≤ 2: 

 new-entrants: α = 2 
 incumbent utilities: α = 1.5 
 municipal utilities: α = 1 

 
 
6.3  Imitation  
In BRAIN-Energy investor agents imitate the successful investments of other investor agents. 
Incumbent utilities, new-entrants and municipal utilities (local suppliers) can all imitate each other, but not 
household investors. Household investors can only imitate other households. 
The way that imitation works in BRAIN-Energy is based on the evolutionary economics model of imitation 
proposed by Nannen and Van den Bergh (2010). As in Nannen and Van den Bergh (2010) in BRAIN-Energy 
investors have bounded-rationality, and the only information which they have available are the investment 
strategies of the other investors and their expectations about future technologies capital costs, fuel costs 
and electricity prices. Investor a in BRAIN-Energy measures the outcomes of the investment strategies of 
the other investor agents in terms of growth or decline of their market share, hence they believe that there 
is a link between investment strategies and development of the market share. Investor agent a also assess 
the investment strategies of the other investors' in terms of early closures due to unprofitability of their 
new investment. If an investor agent's x market share (𝑀𝑆௫) is growing compared to the previous year, 
hence if 𝑀𝑆௫,௧ାଵ > 𝑀𝑆,௧ , investor agent a chooses to imitate the investor agent x whose market share 
grew the most at year t+1, and who didn't close down any new power stations at year t+1 due to 
unprofitability. Among the new investments of the investor agent x which investor agent a decides to 
imitate (given his technology preferences), investor agent a chooses to imitate investments in the 
generation technology with the highest expected ROI based on its own myopic expectations (or the shortest 
pay-back period for household agents) and invests in that generation technology. This is because investor 
agent a doesn't have perfect information about which exact power plant or generation technologies caused 
the imitated investor agent's market share to increase between t and t+1. 
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As imitation is not a perfect process and errors can take place during the imitation process, imitation can 
lead to the creation of a number of diverse successful or unsuccessful investment strategies. 
 
 
7. Demand-side response  
Demand-side response (DSR) is regarded as an effective measure to provide system flexibility to balance 
the electricity supply and demand. DSR can be even more crucial as the share of VRE becomes higher in the 
future low-carbon electricity system. BRAIN-Energy thus incorporates DSR as a measure that can be adopted 
by household agents. The simulation approach proposed by Li and Pye (2018) is applied to model demand-
shedding and demand-shifting between time-slices by demand types. Whenever electricity demand is 
higher than electricity supply at any time-slices, the model will try to shift the excess demand to another 
time-slice when there is surplus electricity from VRE, as illustrated in Figure 3. The amount of electricity 
demand that can be shifted or shedded depends on the participation rate of households in the DSR scheme 
and physical shifting potential of individual demand types, as shown in Table 9. In the model, only smart 
appliances that can be controlled via smart grid are taken into account in the DSR simulation. 
 

 
Figure 3- An illustration of how electricity demand is shifted across the diurnal profile by demand types 

(adopted from Li and Pye, 2018) 
 
Table 9- Shiftable potentials and smart penetration rate of smart appliances (adopted from Li and Pye, 

2018) 
Technology Shifting mechanism Shiftable 

potential 
Smart penetration rate 
in 2012 

Smart penetration 
rate in 2050 

Lighting Consumer behaviour 0% 0% 0% 

Oven/Stove Consumer behaviour 0% 0% 0% 
TV/Computer Consumer behaviour 0% 0% 0% 
Washing machine Central control 100% 0% 100% 
Tumble dryer Central control 100% 0% 100% 

Water heater Central control 1 hour 0% 100% 

Space heater* Central control 1 hour 0% 100% 

Refrigerator/ 
Freezer 

Central control 1 hour 0% 100% 

*Electric night storage heaters, heat pumps and district heating from electric heaters and heat pumps are included. 
 

Night Day Peak Evening

Night Day Peak Evening

Night Day Peak Evening

Tech (a)

Tech (b)

Energy service demand (c)
VarSht(a,peak,day)

VarRdc(a,peak)

VarRdc(b,night)

VarSht(b,night,day)

DM(c,day)

VarDM(c,day)
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8. Data and calibration 
Table 10 summarises the main exogenous variables and outcomes of BRAIN-Energy.  
 

Table 10- BRAIN-Energy's exogenous variables and outcomes 
Exogenous variables Outcomes 

 Electricity demand 

 Fuel costs 

 Capital costs of technologies 

 Fixed and variable operational and maintenance 
(O&M) costs of technologies 

 CO2 price (the “no-increase trajectory, see Table 
5)) 

 Aggregated and yearly capital investments (by 
technology and by market player) 

 Electricity price 

 Electricity production (amount and share of 
production by technology) 

 Installed capacity (total and split by 
technology) 

 Average and peak supply-demand gaps 

 CO2 emissions from the power sector and 
carbon intensity of electricity generation 

 Market shares of the market players 

 
 
BRAIN-Energy is calibrated for the UK electricity sector to 2012 using official government statistics (BEIS, 
2016). Active generation technologies in BRAIN-Energy are based on the existing generation fleet at the 
base year 2012 (BEIS, 2016) and are detailed in Table 11. 

 
Table 11 - Installed capacity in UK BRAIN-Energy at calibration year (source: BEIS, 2016) 

Technology GW 

Gas CCGT 35 
Coal 30 
Nuclear 9 
Onshore wind 6 
Offshore wind 3 
PV 2 
Hydro 4 
Biomass 3 
Peaking plants (e.g. oil) 2 

 
The technical and operational performance of the different technologies is expressed in terms of variable 
operational costs (fuel costs), carbon costs, and fixed operations and maintenance costs (O&M costs) per 
unit of electricity produced. O&M costs are based on the fixed operations and maintenance costs 
components of the levelized cost of electricity production (LCOE) of each technology (BEIS, 2016b). Other 
technical parameters of the generation plants, such as load factors, lifetime and emission intensity, are 
summarised in Table 12. 
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Table 12 - Technical power plant data in UK version of BRAIN-Energy source: BEIS, 2016b) 
Technology Average load 

factor 
Lifetime Emission intensity 

(gCO2/kWh) 

Gas CCGT 93% 25 years 365 
Coal 90% 30 years 907 
Nuclear 90% 60 years  
Onshore wind 32% 24 years  
Offshore wind 43% 23 years  
PV 11% 25 years  
Hydro 40% 35 years  
Biomass 84% 25 years  
Peaking plants (e.g. oil) 
BECCS (still to be 
calibrated) 

22% 25 years  

 

Fuel costs of gas and coal are based on historical gas and coal prices found in the BEIS (2016a) report. They 
can be found in Appendix A. Assumptions about fuel costs future evolution reflect the UK’s government 
view and are based on the BEIS (2016a) “Reference scenario” estimates, because this scenario is based on 
central estimates of fossil fuel prices and economic growth for the UK, which are based on all agreed (hence 
also “planned” policies) and existing policies as of BRAIN-Energy's calibration year. 
 
Existing generation technologies also provide future investment options for electricity generation in BRAIN-
Energy, except for hydro which capacity is assumed to remain constant through the years. Further 
investment options also include BECCS (bioenergy carbon capture and storage) technologies. 
Each generation technology has an associated capital cost (Table 13) expressed in EUR/kW (which is 
converted into £/kW).. Data about technologies’ capital costs and their expected evolution to 2050 in 
BRAIN-Energy is based on data from DIW’s Current and Prospective Costs of Electricity Generation until 
2050 report (DIW, 2013), and has been double-checked against historical data from IRENA (2018). 
 

Table 13 - Technologies capital costs in BRAIN-Energy in EUR/kW (source: DIW, 2013) 
Technology 2012 2015 2020 2025 2030 2035 2040 2045 2050 

Gas CCGT 400 400 400 400 400 400 400 400 400 
Coal 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 
Nuclear 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 
Onshore wind 1,300 1,269 1,240 1,210 1,182 1,154 1,127 1,101 1,075 
Offshore wind 3,000 2,868 2,742 2,621 2,506 2,396 2,290 2,189 2,093 
PV 1,560 950 750 675 600 555 472 448 425 
Biomass 2,500 2,424 2,350 2,278 2,209 2,141 2,076 2,013 1,951 
Peaking plants (e.g. oil) 
BECCS (still to be 
calibrated) 

400 
 

400 400 400 400 400 400 400 400 
 

 
Carbon costs (Figure 3) for conventional generation technologies comprise the EU ETS price plus the Carbon 
Support Price component of the Carbon Price Floor (CPF), and are based on historical data found in the BEIS 
(2016a) report also in the “Reference” scenario as for fuel prices. The “no-increase” CO2 price trajectory, 
which is the prevailing CO2 price over which the national government agent can increase the CO2 price when 
interim carbon budgets are not met is modelled according to the “Reference ” scenario in the BEIS (2016a) 
report. The different CO2 price trajectories are shown in Figure 2. 
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Figure 4 - CO2 price trajectories in BRAIN-Energy 

 
Electricity demand (an exogenous variable in BRAIN-Energy) is calibrated until 2016 on historical half-hourly 
National Grid data. Assumptions about future demand evolution are based on the modelling results of UK 
TIMES model (Daly and Fais, 2014), a whole energy system model adopted by BEIS and National Grid to 
investigate decarbonisation strategies for the UK. The electricity consumption is estimated for a scenario 
with net-zero GHG emission targets by 2050. The determined technology mix in the residential sector is 
used to further disaggregate the lump-sum demand profile into individual demand usages that can be used 
for the DSR simulation.  
 
National electricity consumption is allocated to three regions (i.e. London, Scotland, and Rest of UK) using 
the following method: 

 For the period 2010-2017, the UK demand has been split into regional demand in the proportion of 
actual demand as reported by the Sub-national total final energy consumption statistics: 2005 to 
2017 (BEIS, 2019) 

 For Scotland, the demand estimates from the Scottish TIMES model as published in the Climate 
Change Plan (The Scottish Government, 2018) and the Scottish Energy Strategy (Electrification 
scenario) (The Scottish Government, 2017) are used to generate the demand profile to 2050 

 For London, the demand estimates to 2050 are obtained from London's Zero Carbon Pathways Tool 
(High Electrification scenario) (GLA, 2018) developed by the Greater London Authority in support of 
the London Environment Strategy 

 For Rest of UK, the demand estimates to 2050 are obtained by subtracting the demands for Scotland 
and London from the aggregate UK demand 

 
The demand profiles for three regions in the BRAIN-Energy are illustrated in Figure 5. 
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Figure 5- Electricity demand in UK BRAIN-Energy 
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Appendix A 
 

 
Table A: Historical and projected gas prices in UK model (source: “Reference” scenario in BEIS (2016a) 

 


