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Abstract
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I Introduction

In the last decade or so, two observations have come to the forefront of the empirical asset pricing

literature. First, at current production rates, in the near future we will have more sources of em-

pirically “identified” risk, than stock returns to price with these factors – the so called factors zoo

phenomenon (see e.g. Harvey, Liu, and Zhu (2016)). Second, given the commonly used estimation

methods in empirical asset pricing, useless factors (i.e. factors whose true covariance with asset

returns is asymptotically zero), are not only likely to appear empirically relevant, but also invali-

date inference regarding the true sources of risk (see e.g. Gospodinov, Kan, and Robotti (2019)).

Nevertheless, to the best of our knowledge, no general method has been suggested to date that:

i) is applicable to both tradeable and non tradeable factors, can ii) handle the very large factor

zoo, and iii) remains valid under model misspecification, while iv) being robust to the spurious

inference problem. And that is what we provide.

As stressed by Harvey (2017) in his AFA presidential address, the first observation naturally

calls for a Bayesian solution – and we develop one. Furthermore, we show that the two fundamental

problems above are tightly connected, and a naive Bayesian approach to model selection may fail in

the presence of spurious factors. Hence, we correct it, and apply our method to the zoo of traded and

non-traded factors proposed in the literature, jointly evaluating 2.25 quadrillion models, and gaining

novel insights on the empirical drivers of asset returns. In particular, we find that only a handful

of factors proposed in the previous literature are robust explanators of the cross-section of asset

returns, and a four robust factor model easily outperforms canonical factor models. Nevertheless,

we also show that the ‘true’ latent stochastic discount factor (SDF) is dense is the space of empirical

asset pricing factors i.e. a large set of factors is needed to fully capture its pricing implications.

Nonetheless, the SDF-implied maximum Sharpe ratio in the economy is not unrealistically high.

First, we develop a very simple Bayesian version of the canonical Fama and MacBeth (1973)

regression method that is applicable to both traded and non-traded factors. This approach makes

useless factors easily detectable in finite sample, while delivering sharp posteriors for the strong

factors’ risk premia (i.e. leaving inference about them unaffected). The result is quite intuitive.

Useless factors make frequentist inference unreliable since, when factor exposures go to zero, risk

premia are no more identified. We show that exactly the same phenomenon causes the posterior

credible intervals of risk premia to become diffuse and centered at zero, which makes them easily

detectable in empirical applications. This contribution is meant to add to the empirical researcher

toolset an approach for robust inference that is as easy to implement as e.g. the canonical Shanken

(1992) correction of the standard errors.

Second, the main intent of this paper is to provide a method for handling inference on the

entirety of the factor zoo at once. This naturally calls for the use of model posterior probabilities.

But, we show that, under flat priors for risk premia, model and factors selection based on marginal

likelihoods (i.e. on posterior model probabilities or Bayes factors) is unreliable: asymptotically,

useless factors get selected with probability one. This is due to the fact that lack of identification

generates an unbounded manifold for the risk premia parameters, over which the likelihood surface
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is totally flat.1 Hence, integration applied directly to the likelihood, as if it were an unnormalized

probability distribution function (pdf), produces improper marginal “posteriors.” As a result, in the

presence of identification failure, naive Bayesian inference has the same weakness as the frequentist

one. This observation, however, not only illustrates the nature of the problem, but also suggests

how to restore inference: use suitable, non-informative but yet non-flat, priors.

Third, building upon the literature on predictor selection (see e.g. Ishwaran, Rao, et al. (2005)

and Giannone, Lenza, and Primiceri (2018)), we provide a novel (continuous) “spike-and-slab” prior

that restores the validity of model selection based on posterior model probabilities and Bayes factors.

The prior is uninformative (the “slab”) for strong factors, but shrinks away (the “spike”) useless

factors. This approach is similar in spirit to a ridge regression, and acts as a (Tikhonov-Phillips)

regularization of the likelihood function of the cross-sectional regression needed to estimate risk

premia. A distinguishing feature of our prior is that the prior variance of a factor’s risk premium is

proportional to its correlation with the test asset returns. Hence, when a useless factor is present,

the prior variance of its risk premium converges to zero, so the shrinkage dominates and forces its

posterior distribution to concentrated around zero. Not only this prior restores integrability, but

also: i) makes it computationally feasible to analyse quadrillions of alternative factor models; ii)

allows the researcher to encode prior beliefs about the sparsity of the true SDF without imposing

hard thresholds; and iii) shrinks the estimate of useless factors’ risk premia toward zero. We regard

this novel spike-and-slab prior approach as a solution for the high-dimensional inference problem

generated by the factor zoo.

Our method is easy to implement and, in all of our simulations, has good finite sample properties,

even when the cross-section of test assets is large. We investigate its performance for risk premia

estimation, model evaluation and factor selection, in a range of simulation designs that mimic the

stylized features of returns. Our simulations account for potential model misspecification and the

presence of either strong or useless factors in the model. The use of posterior sampling naturally

allows to build credible confidence intervals not only for risk premia, but also other statistics of

interest, such as the cross-sectional R2, that is notoriously hard to estimate precisely (Lewellen,

Nagel, and Shanken (2010)).

We show that whenever risk premia are well identified, both our method and the frequentist

approach provide valid confidence intervals for model parameters, with empirical coverage being

close to its nominal size. The posterior distribution for useless factors, however, is reliably centered

around zero and quickly revels them even in a relatively short sample. We find that the posterior

of strong factors is largely unaffected by the identification failure, with the posterior coverage

corresponding to its nominal size as well. In other words, the Bayesian approach restores reliable

statistical inference in the model.

We also demonstrate the pitfalls of flat priors for risk premia with the same simulation design:

their use leads to selecting useless factor with probability approaching 1 for all the sample sizes.

However, our spike-and-slab prior seems to successfully eliminate them from the model, while

1This is similar to the effect of “weak instruments” in IV estimations, as discussed in Sims (2007).
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retaining the true sources of risk.

Our results have important empirical implications for the estimation of popular linear factor

models, and their comparison. We jointly evaluate 51 factors proposed in the previous literature,

yielding a total of 2.25 quadrillion possible models to analyze, and find that only a handful of

factors are robust explanators of the cross-section of asset returns (the Fama and French (1992)

“high-minus-low” proxy for the value premium, the market index, as well the adjusted versions

of the “small-minus-big” size factor and the market factor of Daniel, Mota, Rottke, and Santos

(2018)).

Jointly, the four robust factors provide a model that is, compared to the previous empirical

literature, one order of magnitude more likely to have generated the observed asset returns (it’s

posterior probability is about 90%). However, we show that with very high probability the “true”

latent SDF is dense in the space of factors i.e. capturing its characteristics requires the use of 24-25

factors. Nevertheless, the SDF-implied maximum Sharpe ratio is not excessive, suggesting a high

degree of commonality, in terms of captured risks, among the factors in the zoo.

Furthermore, we apply our useless factors detection method to a selection of popular linear

SDFs. We find that many non-traded factors, such as consumption proxies, labour factors, or the

consumption-to-wealth ratio, cay, are only weakly identified at best, and are characterised by a

substantial degree of model misspecification and uncertainty.

I.1 Closely Related Literature

A few papers in the literature adopt a Bayesian approach to analyse linear factor models and

portfolio choice. However, most of them focus on the time-series regressions, where the intercepts,

thanks to factors being directly traded (or using their mimicking portfolios) can be interpreted as

the vector of pricing errors – the α’s.

Pástor and Stambaugh (2000) and Pástor (2000) directly assign a prior distribution to α,

α ∼ N (0,κΣ), where Σ is the variance-covariance matrix of returns and κ ∈ R+, and apply it

to the Bayesian portfolio choice problem. The intuition behind their prior is that it imposes a

degree of shrinkage on the alphas, so that whenever factor models are misspecified, the pricing

errors cannot be too large a priori, placing a bound on the Sharpe ratio achievable in this economy.

Therefore, a diffuse prior for the pricing errors α in general should be avoided.

Barillas and Shanken (2018) extend the aforementioned prior to derive closed-form solution for

the Bayes’ factor, and use it to compare different linear factor models exploiting the time series

dimension of the data.2 In contrast, our paper focuses on the cross-section of asset returns, and

our methodology can be applied to both tradable and non-tradable factors.

Last but not the least, the shrinkage-based approach to recovering the SDF of Kozak, Nagel,

and Santosh (2019) can also be interpreted from a Bayesian perspective. Within a universe of

2Chib, Zeng, and Zhao (forthcoming) show that the improper prior specification of Barillas and Shanken (2018)
is problematic and propose a new class of priors that leads to valid model comparison.
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characteristic-managed portfolios, the authors assign prior distributions to expected returns,3 and

their posterior maximum likelihood estimators resemble a ridge regression. Instead, we work di-

rectly with tradable and nontradable factors, and consider heterogenous priors for their risk premia,

λ. The dispersion of our prior for each λ directly depends on the correlation between test assets

and the factor: whenever the vector of correlation coefficients is close to zero, the prior variance of λ

for this specific factor also goes to zero, and the penalty for the risk premium converges to infinity.

Therefore, our priors are particularly robust to the presence of spurious factors. Conversely, our

prior is very diffuse for strong factors.

II Inference in Factor Models

This section introduces the notation and reviews the main results of the Fama-MacBeth (FM)

regression method (see Fama and MacBeth (1973)). We focus on classic linear factor models for

cross-sectional asset returns. Suppose that there are K factors, ft = (f1t . . . fKt)
⊤, t = 1, . . . T ,

which could be either tradable or non-tradable. To simplify exposition, we consider mean zero

factors that have also been demeaned in sample, so that we have both E[ft] = 0K and f̄ = 0K where

E[.] denotes the unconditional expectation and the upper bar denotes the sample mean operator.

The returns of N test assets, in excess of the risk free rate, are denoted by Rt = (R1t . . . RNt)
⊤.

In the FM procedure, the factor exposures of asset returns, βf ∈ RN×K , are recovered from

the linear regression:

Rt = a+ βfft + t, (1)

where 1, . . . , T
iid∼ N (0N ,Σ) and a ∈ RN . Given the mean normalization of ft we have E[Rt] = a.

The risk premia associated with the factors, λf ∈ RK , are then estimated from the cross-

sectional regression:

R̄ = λc1N + βfλf +α, (2)

where βf denotes the time series estimates, λc is a scalar average mispricing that should be equal to

zero under the null of the model being correctly specified, 1N denotes an N -dimensional vector of

ones, and α ∈ RN is the vector of pricing errors in excess of λc. If the model is correctly specified,

it implies the parameter restriction: a = E[Rt] = λc1N + βfλf . Therefore, we can rewrite the

two-step Fama-MacBeth regression into one equation as

Rt = λc1N + βfλf + βfft + t. (3)

Equation (3) is particularly useful in our simulation study. Note that the intercept λc is included

in (2) and (3) in order to separately evaluate the ability of the model to explain the average level

of the equity premium and the cross-sectional variation of asset returns.

Let B⊤ = (a,βf ) and F⊤
t = (1,f⊤

t ), and consider the matrices of stacked time series observa-

3Or equivalently, the coefficients b when the linear stochastic discount factor is represented as mt = 1 − (ft −
E[ft])

⊤b, where ft and E denote, respectively, a vector of factors and the unconditional expectation operator.
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tions

R =





R⊤
1
...

R⊤
T



 , F =





F⊤
1
...

F⊤
T



 ,  =





⊤1
...

⊤T



 .

The regression in (1) can then be rewritten as R = FB + , yielding the time-series estimates of

(a,βf ) and Σ:

B =


a⊤

β⊤
f


= (F⊤F )−1F⊤R, Σ =

1

T
(R− F B)⊤(R− F B).

In the second step, the OLS estimates of the factor risk premia are

λ = (β⊤ β)−1 β⊤R̄, (4)

where β = (1N βf ) and λ⊤ = (λc λf .
⊤) The canonical Shanken (1992) corrected covariance matrix

of the estimated risk premia is4

σ2(λ) = 1

T


(β⊤ β)−1 β⊤ Σβ(β⊤ β)−1(1 + λ⊤

f
Σ−1
f

λf )

, (5)

where Σf is the sample estimate of the variance-covariance matrix of the factors ft. There are

two sources of estimation uncertainty in the OLS estimates of λ. First, we do not know the test

assets’ expected returns, but instead estimate them as sample means, R̄. According to the time-

series regression, R̄ ∼ N (a, 1
T Σ) asymptotically. Second, if β is known, the asymptotic covariance

matrix of λ is simply 1
T (β

⊤β)−1β⊤ Σβ(β⊤β)−1. The extra term (1 + λ⊤
fΣ

−1
f λf ) is included to

account for the fact that βf is estimated.

Alternatively, we can run a (feasible) GLS regression in the second stage obtaining the estimates

λ = (β⊤ Σ−1 β)−1 β⊤ Σ−1R̄, (6)

where Σ = 1
T 

⊤ and  denotes the OLS residuals, and with the associated covariance matrix of

the estimates

σ2(λ) = 1

T
(β⊤ Σ−1 β)−1(1 + λ⊤

f
Σ−1
f

λf ). (7)

Equations (4) and (6) make it clear that in the presence of a spurious (or useless) factor, i.e.

such that βj = C√
T
, C ∈ RN , risk premia are no longer identified. Furthermore, their estimates

4An alternative way (see e.g. Cochrane (2005), Page 242) to account for the uncertainty from “generated regres-
sors,” such as βf , is to estimate the whole system in GMM. The moments are

gT (a,βf ,λ) =


IN ⊗ IK+1

A⊤




E[Rt − a− βfft]

E[(Rt − a− βfft)⊗ f⊤
t ]

E[Rt − λc1N − βfλf ]



 = 0.

where β = (1N βf ), A⊤ = β⊤ for OLS and A⊤ = β⊤Σ−1 for GLS. Also note that GLS estimation is not the same
as efficient GMM estimation.
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diverge, leading to inference problems for both the useless and the strong (i.e. βj ∕→ 0 as T → ∞)

factors (see e.g. Kan and Zhang (1999b)). In the presence of such an identification failure, the

cross-sectional R2 also becomes untrustworthy. If a useless factor is included into the two-pass

regression, the OLS R2 tend to be highly inflated (although the GLS R2 is less affected).5

This problem arises not only when using the Fama-MacBeth two-step procedure. Kan and

Zhang (1999a) point out that the identification condition in the GMM test of linear stochastic

discount factor models fails when a useless factor is included. Moreover, this leads to overrejection

of the hypothesis of a zero risk premium for the useless factor under the Wald test, and the power

of the over-identifying restriction test decreases. Gospodinov, Kan, and Robotti (2019) document

similar problems within the maximum likelihood estimation and testing framework.

Consequently, several papers have attempted to develop alternative statistical procedures that

are robust to the presence of useless factors. Kleibergen (2009) proposes several novel statis-

tics whose large sample distributions are unaffected by the failure of the identification condition.

Gospodinov, Kan, and Robotti (2014) derive robust standard errors for the GMM estimates of

factor risk premia in the linear stochastic factor framework, and prove that t-statistics calculated

using their standard errors are robust even when the model is misspecified and a useless factor is

included. Bryzgalova (2015) introduces a LASSO-like penalty term in the cross-sectional regression

to shrink the risk premium of the useless factor towards zero.

In this paper, we provide a Bayesian inference and model selection framework that i) can be

easily used for robust inference in the presence, and detection, of useless factors (section II.1) and

ii) can be used for both model selection, and model averaging, even in the presence of a very large

number of candidate (traded or non traded, and possibly useless) risk factors – i.e. the entire factor

zoo.

II.1 Bayesian Fama-MacBeth

This section introduces our hierarchical Bayesian Fama-MacBeth (BFM) estimation method. A

formal derivation is presented in Appendix A.1. To start with, let’s consider the time-series regres-

sion. We assume that the time series error terms follow an iid multivariate Gaussian distribution

(the approach, at the cost of analytical solutions, could be generalized to accommodate different

distributional assumptions), i.e.  ∼ MVN (0T×N ,Σ ⊗ IT ). The likelihood of the data (R,F ) is

then

p(data|B,Σ) = (2π)−
NT
2 |Σ|−

T
2 exp


−1

2
tr


Σ−1(R− FB)⊤(R− FB)


.

The time-series regression is always valid even in the presence of a spurious factor. For simplicity,

we choose the non-informative Jeffreys’ prior for (B,Σ): π(B,Σ) ∝ |Σ|−
N+1

2 . Note that this prior

5For example, Kleibergen and Zhan (2015) derive the asymptotic distribution of the R2 under the assumption
that a few unknown factors are able to explain expected asset returns, and show that, in the presence of a useless
factor, the OLS R2 is more likely to be inflated than its GLS counterpart.
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is flat in the B dimension. The posterior distribution of (B,Σ) is therefore

B|Σ, data ∼ MVN

Bols,Σ⊗ (F⊤F )−1


, (8)

Σ|data ∼ W -1

T −K − 1, T Σ̂


, (9)

where Bols and Σ̂ denote the canonical OLS based estimates, and W -1 is the inverse-Wishart

distribution (a multivariate generalization of the inverse-gamma distribution). From the above,

we can sample the posterior distribution of the parameters (B,Σ) by first drawing the covariance

matrix Σ from the inverse-Wishart distribution conditional on the data, and then drawing B from

a multivariate normal distribution conditional on the data and the draw of Σ.

If the model is correctly specified, in the sense that all true factors are included, expected

returns of the assets should be fully explained by their risk exposure, β, and the prices of risk λ,

i.e. E[Rt] = βλ. But since, given our mean normalisation of the factors, E[Rt] = a we have the

least square estimate (β⊤β)−1β⊤a. Therefore, we can define our first estimator.

Definition 1 (Bayesian Fama-MacBeth (BFM)) The posterior distribution of λ conditional

on B, Σ and the data, is a Dirac distribution at (β⊤β)−1β⊤a. A draw (λ(j)) from the posterior

distribution of λ conditional on the data only is obtained by drawing B(j) and Σ(j) from the Normal-

inverse-Wishart in (8)-(9) and computing (β⊤
(j)β(j))

−1β⊤
(j)a(j).

The posterior distribution of λ defined above accounts both for the uncertainty about the

expected returns (via the sampling of a) and the uncertainty about the factor loadings (via the

sampling of β). Note that, differently from the frequentist case in equation (5), there is no “extra

term” (1 + λ⊤
fΣ

−1
f λf ) to account for the fact that βf is estimated. The reason being that it

is unnecessary to explicitly adjust standard errors of λ in the Bayesian approach, since we keep

updating βf in each simulation step, automatically incorporating the uncertainty about βf into the

posterior distribution of λ. Furthermore, it is quite intuitive, from the above definition of the BFM

estimator, why we expect posterior inference to detect weak and spurious factors in finite sample.

For such factors, the near singularity of (β⊤
(j)β(j))

−1 will cause the draws for λ(j) to diverge, as in

the frequentist case. Nevertheless, the posterior uncertainty about factor loadings and risk premia

will cause β⊤
(j)a(j) to flip sign across draws, causing the posterior distribution of λ to put substantial

probability mass on both values above and below zero. Hence, centered posterior credible intervals

will tend to include zero with high probability.

In addition to the price of risk λ, we are also interested in estimating the cross-sectional fit of

the model, i.e. the cross-sectional R2. Once we obtain the posterior draws of the parameters, we

can easily obtain the posterior distribution of the cross-sectional R2 defined as

R2
ols = 1− (a− βλ)⊤(a− βλ)

(a− ā1N )⊤(a− ā1N )
, (10)

where ā = 1
N

N
i ai. That is, for each posterior draw of (a, β, λ), we can construct the corre-
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sponding draw for the R2 from equation (10), hence tracing out its posterior distribution. We can

think of equation (10) as the population R2, where a, β, and λ are unknown. After observing

the data, we infer the posterior distribution of a, β, and λ, and from these we can recover the

distribution of the R2.

However, realistically, the models are rarely true. Therefore, one might want to allow for the

presence of pricing errors, α, in the cross-sectional regression.6 This can be easily accommodated

within our Bayesian framework since in this case the data generating process in the second stage

becomes a = βλ + α. If we further assume that pricing error αi follows an independent and

identical normal distribution N (0,σ2), the likelihood function in the second step becomes7

p(data|λ,σ2,β) = (2πσ2)−
N
2 exp


− 1

2σ2
(a− βλ)⊤(a− βλ)


. (11)

In the cross-sectional regression the “data” are the expected risk premia, a, and the factor loadings,

β, albeit these quantities are not directly observable to the researcher. Hence, in the above, we

are conditioning on the knowledge of these quantities, which can be sampled from the first step

Normal-inverse-Wishart posterior distribution (8)-(9). Conceptually, this is not very different from

the Bayesian modeling of latent variables. In the benchmark case, we assume a Jeffreys’ diffuse

prior8 for (λ,σ2): π(λ,σ2) ∝ σ−2. In Appendix A.1, we show that the posterior distribution of

(λ,σ2) is then

λ|σ2,B,Σ, data ∼ N



(β⊤β)−1β⊤a  
λ

, σ2(β⊤β)−1

  
Σλ



 , (12)

σ2|B,Σ, data ∼ Γ−1


N −K − 1

2
,
(a− βλ̂)⊤(a− βλ̂)

2


, (13)

where Γ−1 denotes the inverse-gamma distribution. The conditional distribution in equation (12)

makes it clear that the posterior takes into account both the uncertainty about the market price

of risk stemming from the first stage uncertainty about the β and a (that are drawn from the

Normal-inverse-Wishart posterior in equations (8)-(9)), and the random pricing errors α that have

the conditional posterior variance in equation (13). If test assets’ expected excess returns are fully

explained by β, there are no pricing errors and σ2(β⊤β)−1 converges to zero; otherwise, this layer

of uncertainty always exists.

Note also that we can think of the posterior distribution of (β⊤β)−1β⊤a as a Bayesian decision

maker’s belief about the dispersion of the Fama-MacBeth OLS estimates after observing the data

{Rt,ft}Tt=1. Alternatively, when pricing errors α are assumed to be zero under the null hypothesis,

6As we will show in the next section, this is essential for model selection
7We derive a formulation with non-spherical cross-sectional pricing errors, that leads to a GLS type estimator, in

Appendix A.2.
8As shown in the next subsection, in the presence of useless factors, such prior is not appropriate for model

selection based on Bayes factors and posterior probabilities, since it does not lead to proper marginal likelihoods.
Therefore, we introduce therein a novel prior for model selection.
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the posterior distribution of λ in equation (12) collapses to a degenerate distribution, where λ

equals (β⊤β)−1β⊤a with probability one.

Often the cross sectional step of the Fama-MacBeth estimation is performed via GLS rather than

least squares. In our setting, under the null of the model, this leads to λ̂ = (β⊤Σ−1β)−1β⊤Σ−1a.

Therefore, we define the following GLS estimator.

Definition 2 (Bayesian Fama-MacBeth GLS (BFM-GLS)) The posterior distribution of λ

conditional on B, Σ and the data, is a Dirac distribution at (β⊤Σ−1β)−1β⊤Σ−1a. A draw (λ(j))

from the posterior distribution of λ conditional on the data only is obtained by drawing B(j) and Σ(j)

from the Normal-inverse-Wishart in equations (8)-(9) and computing (β⊤
(j)Σ

−1
(j)β(j))

−1β⊤
(j)Σ

−1
(j)a(j).

From the posterior sampling of the parameters in the above definition, we can also obtain the

posterior distribution of the cross-sectional GLS R2 defined as

R2
gls = 1−

(a− βλgls)
⊤Σ−1(a− βλgls)

(a− ā1N )⊤Σ−1(a− ā1N )
. (14)

Once again, we can think of equation (14) as the population GLS R2, that is a function of the

unknown quantities a, β and λ. But after observing the data, we infer the posterior distribution

of the parameters, and from these we recover the posterior distribution of the R2
gls.

Remark 1 (Generated factors) Often factors are estimated as e.g. in the case of principal

components (PCs) and factor mimicking portfolios (albeit the latter is not needed in our setting).

This generates an additional layer of uncertainty normally ignored in empirical analysis due to

the associated asymptotic complexities. Nevertheless, it is relatively easy to adjust the Bayesian

estimators of risk premia to account for this uncertainty. In the case of a mimicking portfolio,

under a diffuse prior and Normal errors, the posterior distribution of the portfolio weights follow the

standard Normal-inverse-Gamma of Gaussian linear regression models (see e.g. Lancaster (2004)).

Similarly, in the case of principal components as factors, under a diffuse prior, the covariance

matrix from which the PCs are constructed follow an inverse-Wishart distribution.9 Hence, the

posterior distributions in Definitions 1 and 2 can account for the generated factors uncertainty by

first drawing from an inverse-Wishart the covariance matrix from which PCs are constructed, or

the Normal-inverse-Gamma posterior of the mimicking portfolios coefficients, and then sampling

the remaining parameters as explained in the definitions.

II.2 Model Selection

In the previous subsection we have derived simple Bayesian estimators that deliver, in finite sam-

ple, credible intervals robust to the presence of spurious factors, and avoid over-rejecting the null

hypothesis of zero risk premia for such factors.

9Based on these two observations, Allena (2019) proposes a generalisation of Barillas and Shanken (2018) model
comparison approach for these type of factors.
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However, given the plethora of risk factors that have been proposed in the literature, a robust

approach for models selection across non-necessarily nested models, and that can handle poten-

tially a very large number of possible models as well as both traded and non-traded factors, is

of paramount importance for empirical asset pricing. The canonical way of selecting models, and

testing hypothesis, within the Bayesian framework, is through Bayes’ factors and posterior prob-

abilities, and that is the approach we present in this section. This is, for instance, the approach

suggested by Barillas and Shanken (2018). The key elements of novelty of the proposed method

are that: i) our procedure is robust to the presence of spurious and weak factors, ii) it is directly

applicable to both traded and non-traded factors, and iii) it selects models based on their cross-

sectional performance (rather than the time series one) i.e. on the basis of the risk premia that the

factors command.

In this subsection, we show first that flat priors for risk premia (as the Jeffreys’ priors used

in section II.1 for illustrative purposes), are not suitable for model selection in the presence of

spurious factors. Given the close analogy between frequentist testing and Bayesian inference with

flat priors, this is not too surprising. But the novel insight is that the problem arises exactly

because of the use of flat priors, and can therefore be fixed by using non-flat, yet non-informative,

priors. Second, we introduce “spike-and-slab” priors that are robust to the presence of spurious

factors, and particularly powerful in high-dimensional model selection i.e. when one wants, as in

our empirical application, to test all factors in the zoo.

II.2.1 Pitfalls of Flat Priors for Risk Premia

We start this section by discussing why flat priors for risk premia, as the Jeffreys’ prior, are not

desirable in model selection. Since we want to focus, and select models based, on the cross-sectional

asset pricing properties of the factors, for simplicity we retain Jeffreys’ priors for the time series

parameter (a,βf ,Σ) of the first-step regression.

In order to perform model selection, we relax the (null) hypothesis that models are correctly

specified and allow instead for the presence of cross-sectional pricing errors. That is, we consider

the cross-sectional regression a = βλ + α. For illustrative purposes, we focus on spherical errors,

but all the results in this and the following subsections can be generalized to the non-spherical error

setting in Appendix A.2.

Similar to many Bayesian variable selection problems, we introduce a vector of binary latent

variables γ⊤ = (γ0, γ1, . . . , γK), where γj ∈ {0, 1}. When γj = 1, it indicates that the factor j

(with associated loadings βj) should be included into the model, and vice versa. The number of

included factors is simply given by pγ :=
K

j=0 γj . Note that we do not shrink the intercept, so

γ0 is always equal to 1 (as the common intercept plays the role of the first “factor”). The notation

βγ = [βj ]γj=1 represents a pγ-columns sub-matrix of β.

When testing whether the risk premium of factor j is zero, the null hypothesis is H0 : λj = 0.

In our notation, this null hypothesis can be expressed as H0 : γj = 0, while the alternative is

H1 : γj = 1. This is a small, but important, difference relative to the canonical frequentist testing

10



approach: for useless factors, the risk premium is not identified, hence testing whether it is equal to

any given value is per se problematic. Nevertheless, as we show in the next section, with appropriate

priors, whether a factor should be included or not is a well-defined question even in the presence

of useless factors.

In the Bayesian framework, the prior distribution of parameters under the alternative hypothesis

should be carefully specified. Generally speaking, the priors for nuisance parameters, such as β, σ2

and Σ, do not greatly influence the cross-sectional inference. But, as we are about to show, this is

not the case for the priors about risk premia.

Recall that when considering multiple models, say wlog model γ and model γ ′, by Bayes’

theorem we have that the posterior probability of model γ is:

Pr(γ|data) = p(data|γ)
p(data|γ) + p(data|γ ′)

,

where we have given equal prior probability to each model and p(data|γ) denotes the marginal

likelihood of the model indexed by γ. In Appendix A.3 we show that, when using a Jeffreys’ prior

(that is flat for λ), the marginal likelihood is

p(data|γ) ∝ (2π)
pγ+1

2 |β⊤
γ βγ |−

1
2

Γ

N−pγ+1

2




N σ̂2

γ

2

N−pγ+1

2

, (15)

where λ̂γ = (β⊤
γ βγ)

−1β⊤
γ a, σ̂

2
γ =

(a−βγ λ̂γ)⊤(a−βγ λ̂γ)
N , and Γ denotes the Gamma function.

Therefore, if model γ includes a useless factor (whose β asymptotically converges to zero), the

matrix β⊤
γ βγ is nearly singular and its determinant goes to zero, sending the marginal likelihood

in (15) to infinity. As a result, the posterior probability of the model containing the spurious factor

go to one. Consequently, under a flat prior for risk premia, the model containing a useless factor

will always be selected asymptotically. However, the posterior distribution of λ for the spurious

factor is robust, and particularly disperse, in any finite sample.

Moreover, it is highly likely that conclusions based on the posterior coverage of λ contradict

those arising from Bayes’ factors. When the prior distribution of λj is too diffuse under the

alternative hypothesis H1, the Bayes’ factor tends to favor H0 over H1 even though the estimate

of λj is far from 0. The reason is that even though H0 seems quite unlikely based on posterior

coverages, the data is even more unlikely under H1 than under H0. Therefore, a disperse prior for

λj may push the posterior probabilities to favor H0, and make it fail to identity true factors. This

phenomenon is the so called “Bartlett Paradox” (see Bartlett (1957)).

Note also that flat, hence improper, priors for the risk premia are not legitimate since they render

the posterior model probabilities arbitrary. Suppose that we are testing the null H0 : λj = 0. Under

the null hypothesis, the prior for (λ,σ2) is λj = 0 and π(λ−j ,σ
2) ∝ 1

σ2 . However, the prior under the

alternative hypothesis is π(λj ,λ−j ,σ
2) ∝ 1

σ2 . Since the marginal likelihoods of data, p(data|H0)

and p(data|H1), are both undetermined, we cannot define the Bayes’ factor p(data|H1)
p(data|H0)

(see e.g.
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Cremers (2002), Chib, Zeng, and Zhao (forthcoming)). In contrast, for nuisance parameters such

as σ2, we can continue to assign improper priors. Since both hypotheses H0 and H1 include σ2,

the prior for it will be offset in the Bayes’ factor and in the posterior probabilities. Therefore, we

can only assign improper priors for common parameters.10 Similarly, we can still assign improper

priors for β and Σ in the first time series step.

The final reason why it might be undesirable to use Jeffreys’ prior in the second step, is that it

does not impose any shrinkage on the parameters. This is problematic given the large number of

members of the factor zoo, while we have only limited time-series observations of both factors and

test asset returns.

In the next subsection, we propose an appropriate prior for risk premia that is both robust to

spurious factors and can be used for model selection even when dealing with a very large number

of potential models.

II.2.2 Spike and Slab Prior for Risk Premia

In order to make sure that the integration of the marginal likelihood is well-behaved, we propose

a novel prior specification for the factors’ risk premia λ⊤
f = (λ1, ...,λK).11 Since the inference in

time-series regression is always valid, we only modify the priors of the cross-sectional regression

parameters.

The prior that we propose belongs to the so-called “spike-and-slab” family. For exemplifying

purposes, in this section we introduce a Dirac spike, so that we can easily illustrate its implications

for model selection. In the next subsection we generalize the approach to a “continuous spike”

prior, and study its finite sample performance in our simulation setup.

In particular, we model the uncertainty underlying the model selection problem with a mixture

prior, π(λ,σ2,γ) ∝ π(λ|σ2,γ)π(σ2)π(γ), for the risk premium of the j-th factor. When γj = 1,

and hence the factor should be included in the model, the prior follows a normal distribution given

by λj |σ2, γj = 1 ∼ N (0,σ2ψj), where ψj is a quantity that we will be defining below. When instead

γj = 0, and the corresponding risk factor should not be included in the model, the prior is a Dirac

distribution at zero. For the cross-sectional variance of the pricing errors we keep the same prior

that would arise with Jeffreys’ approach: π(σ2) ∝ σ−2.

Let D denote a diagonal matrix with elements c,ψ−1
1 , · · · ψ−1

K , and Dγ the sub-matrix of D

corresponding to model γ. We can then express the prior for the risk factors, λγ , of model γ as

λγ |σ2,γ ∼ N (0,σ2D−1
γ ).

Note that c is a small positive number, since we do not shrink the common intercept, λc, of the

cross-sectional regression.

Given the above prior specification, we sample the posterior distribution by sequentially drawing

from the conditional distributions of the parameters (i.e. we use a Gibbs sampling algorithm). The

10See Kass and Raftery (1995) (and also Cremers (2002)) for more detailed discussion.
11We do not shrink the intercept λc.
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crucial steps, in addition to the sampling of the times series parameters from the posteriors in

equations (8)-(9), are as follows.

Sampling λγ

Note that:

p(λ|data,σ2,γ) ∝ p(data|λ,σ2,γ)π(λ|σ2,γ)

∝ (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 exp


− 1

2σ2
[(a− βγλγ)

⊤(a− βγλγ) + λ⊤
γDγλγ ]



= (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e


−

(λγ−λ̂γ )⊤(β⊤
γ βγ+Dγ )(λγ−λ̂γ )

2σ2



e


−SSRγ

2σ2



,

where SSRγ = a⊤a− a⊤βγ(β
⊤
γ βγ +Dγ)

−1β⊤
γ a = minλγ{(a− βγλγ)

⊤(a− βγλγ) + λ⊤
γDγλγ}.

Note that SSRγ is the minimized sum of squared errors with generalised ridge regression penalty

term λ⊤
γDγλγ . That is, our prior modelling is analogous to introducing a Tikhonov-Phillips

regularisation (see Tikhonov, Goncharsky, Stepanov, and Yagola (1995), Phillips (1962)) in the

cross-sectional regression step, and has the same rationale: delivering a well defined marginal

likelihood in the presence of rank deficiency (that, in our settings, arises in the presence of useless

factors). However, in our setting the shrinkage applied to the factors is heterogeneous, since we

rely on the partial correlation between factors and test assets to set ψj as:

ψj = ψ × ρ⊤
j ρj , (16)

where ρj is an N × 1 vector of correlation coefficients between factor j and the test assets, and

ψ ∈ R+ is a tuning parameter which controls the shrinkage over all the factors.12 When the

correlation between fjt and Rt is very low, as in the case of a useless factor, the penalty for λj ,

which is the reciprocal of ψρ⊤
j ρj , is very large and dominates the sum of squared errors.

Let λ̂γ = (β⊤
γ βγ +Dγ)

−1β⊤
γ a and σ̂2(λ̂γ) = σ2(β⊤

γ βγ +Dγ)
−1, the posterior distribution of

λγ is

λγ |data,σ2,γ ∼ N (λ̂γ , σ̂
2(λ̂γ)).

The above equation makes it clear why this Bayesian formulation is robust to spurious factors.

When β converges to zero, (β⊤
γ βγ +Dγ) is dominated by Dγ , so the identification condition for

the risk premia no longer fails. When a factor is spurious, its correlation with test assets converges

to zero, hence the penalty for this factor, ψ−1
j , goes to infinity. As a result, the posterior mean

of λγ , λ̂γ = (β⊤
γ βγ +Dγ)

−1β⊤
γ a, is shrunk towards zero, and the posterior variance term σ̂2(λ̂)

approaches σ2D−1
γ . Consequently, the posterior distribution of λ for a spurious factor is nearly the

same as its prior. In contrast, for a normal factor that has non-zero covariance with test assets, the

information contained in β dominates the prior information, since in this case the absolute size of

Dγ is small relative to β⊤
γ βγ .

12Alternatively, we could have set ψj = ψ × β⊤
j βj , where βj is an N × 1 vector. However, ρj has the advantage

of being invariant to the units in which the factors are measured.
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Using our priors and integrating out λ yields:

p(data|σ2,γ) =


p(data|λ,σ2,γ)π(λ|σ2,γ)dλ ∝ (σ2)−

N
2

|Dγ |
1
2

|β⊤
γ βγ +Dγ |

1
2

exp


−SSRγ

2σ2


.

Sampling σ2

From the Bayes’ theorem we have that the posterior of σ2 given by

p(σ2|data,γ) ∝ p(data|σ2,γ)π(σ2) ∝ (σ2)−
N
2
−1 exp


−SSRγ

2σ2


,

hence the posterior distribution of σ2 is an inverse-Gamma: σ2|data,γ ∼ Γ−1

N
2 ,

SSRγ

2


.

Finally, we obtain the marginal likelihood of the data in model γ by integrating out σ2:

p(data|γ) =


p(data|σ2,γ)π(σ2)dσ2 ∝ |Dγ |
1
2

|β⊤
γ βγ +Dγ |

1
2

1

(SSRγ/2)
N
2

.

When comparing two models, using posterior model probabilities is equivalent to simply using the

ratio of the marginal likelihoods, i.e. the Bayes’ factor defined as

BFγ,γ′ = p(data|γ)/p(data|γ ′)

where we have given equal prior probability to model γ and model γ′.

Remark 2 (Bayes Factor) Consider two nested linear factor models, γ and γ ′. The only dif-

ference between γ and γ ′ is γp: γp equals 1 in model γ but 0 in model γ ′. Let γ−p denote a

(K − 1) × 1 vector of model index excluding γp: γ⊤ = (γ⊤
−p, 1) and γ ′⊤ = (γ⊤

−p, 0) where, without

loss of generality, we have assumed that the factor p is ordered last. The Bayes’ factor is then

BFγ,γ′ =


SSRγ′

SSRγ

N
2 

1 + ψpβ
⊤
p


IN − βγ′(β⊤

γ′βγ′ +Dγ′)−1β⊤
γ′


βp

− 1
2
. (17)

The above result is proved in Appendix A.4.

Since β⊤
p [IN − βγ′(β⊤

γ′βγ′ + Dγ′)−1β⊤
γ′ ]βp is always positive, ψp plays an important role in

variable selection. For a strong and useful factor that can substantially reduce pricing errors, the

first term in equation (17) dominates and the Bayes’ factor will be much greater than 1, hence

providing evidence in favour of model γ.

Remember that SSRγ = minλγ{(a − βγλγ)
⊤(a − βγλγ) + λ⊤

γDγλγ}, hence we always have

SSRγ ≤ SSRγ′ in sample. There are two effects of increasing ψp: i) when ψp is large, the penalty

for λp is small, hence it is easier to minimise SSRγ , and SSRγ′/SSRγ becomes much larger than

1; ii) large ψp decreases the second term in equation (17), lowering the Bayes’ factor, and acting as

a penalty for dimensionality.

A particularly interesting case is when the factor is useless: βp converges to zero, but the
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penalty term 1/ψp ∝ 1/ρ⊤
pρp goes to infinity. On the one hand, the first term in equation (17) will

converge to 1; on the other hand, since ψp ≈ 0 in large sample, the second term in equation (17)

will also be around 1. Therefore, the Bayes’ factor for a useless factor will go to 1 asymptotically.13

In contrast, a useful factor should be able to greatly reduce the sum of squared errors SSRγ , so

the Bayes’ factor will be dominated by SSRγ , yielding a value substantially above 1.

Remark 3 (Level Factors) Identification failure of factors’ risk premia can arise in the presence

of ‘level factors,’ exposure to which is non-zero, but lacks cross-sectional spread i.e. βj → c1N with

c ∕= 0. These factors help explain the average level of returns, but not the their cross-sectional

dispersion, and hence are collinear with the common cross-sectional intercept. Our approach can

handle this case by using variance standardised variables in the estimation and replacing the penalty

in (16) with ψj = ψ×ρj
⊤ρj , where ρj is the cross-sectionally demeaned vector of correlations with

asset returns, i.e. ρj = ρj −


1
N

N
i=1 ρj,i


× 1N

II.2.3 Continuous Spike

We extend the Dirac spike-and-slab prior by encoding a continuous spike for λj when γj equals

0. Following the literature on Bayesian variable selection (see e.g. George and McCulloch (1993),

George and McCulloch (1997) and Ishwaran, Rao, et al. (2005)), we model the uncertainty under-

lying model selection with a mixture prior π(λ,σ2,γ,ω) = π(λ|σ2,γ)π(σ2)π(γ|ω)π(ω), which is

specified as following:

λj |γj ,σ2 ∼ N (0, r(γj)ψjσ
2)

Note the introduction of a new element, r(γj), in the prior, and where r(1) = 1 and r(0) = r. As

we explain below, the additional parameter vector ω encodes our prior beliefs about the sparsity

of the true model.

Redefine D as a diagonal matrix with elements c, (r(γ1)ψ1)
−1 , . . . , (r(γK)ψK)−1 where ψj is

given as before by equation (16). In matrix notation the prior for λ is: λ|σ2,γ ∼ N (0,σ2D−1).

The term r(γj)ψj in D−1 is set to be small or large depending on whether γj = 0 or γj = 1. In the

empirical implementation, we force r to be much less than 1 since we intend to shrink λj towards

zero when γj is 0.14 Hence the spike component concentrates the mass of λ towards zero, whereas

the slab component allows λ to take values over a much wider range. Therefore, the posterior

distribution of λ is very similar to the case of a Dirac spike in section II.2.2.

We use Gibbs sampling (i.e. sequential sampling from conditional distributions) to draw the

posterior distribution of the parameters (λ,γ,ω,σ2), where, as explained below, ω encodes our

prior beliefs about the sparsity of the true model.

Sampling λγ

13But in finite sample it may deviate from its asymptotic value, so we should not use 1 as a threshold when testing
the null hypothesis H0 : γp = 0.

14We can set r = 0.0001. In our framework, r is essentially a tune parameter, hence we need to choose a reasonable
value such that we can identify useful factor but exclude spurious ones.
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Combining the likelihood and the prior for λ we have:

p(λ|data,σ2,γ) ∝ p(data|λ,σ2,γ)p(λ|σ2,γ) ∝ exp


− 1

2σ2


λ⊤(β⊤β +D)λ− 2λ⊤β⊤a


.

Therefore, defining λ̂ = (β⊤β+D)−1β⊤a and σ̂2(λ̂) = σ2(β⊤β+D)−1, the posterior distribution

of λ can be expressed as: λ|data,σ2,γ,ω ∼ N (λ̂, σ̂2(λ̂)).

Sampling {γj}Kj=1

Even though the prior on model index γ could be simply set to be π(γ) = 1/2K , we interpret

π(γj = 1|ωj) = ωj as our prior belief about the sparsity of the true model. As in the literature on

predictors selection, we assign the following prior distribution to (γ,ω):

π(γj = 1|ωj) = ωj , ωj ∼ Beta(aω, bω).

Different hyper-parameters aω and bω determine whether we favor more parsimonious models or

not.15

Given a ωj , the Bayes factor for the j-th risk then factor is

p(γj = 1|data,λ,ω,σ2,γ−j)

p(γj = 0|data,λ,ω,σ2,γ−j)
=

ωj

1− ωj

p(λj |γj = 1,σ2)

p(λj |γj = 0,σ2)

If we had instead imposed ωj = 0.5, as in section II.2.2, the Bayes’ factor would be fully determined

by
p(λj |γj=1,σ2)
p(λj |γj=0,σ2)

.

Sampling ω

From Bayes’ theorem we have:

p(ωj |data,λ,γ,σ2) ∝ π(ωj)π(γj |ωj) ∝ ω
γj
j (1− ωj)

1−γjωaω−1
j (1− ωj)

bω−1

∝ ω
γj+aω−1
j (1− ωj)

1−γj+bω−1

Therefore, the posterior distribution of ωj is: ωj |data,λ,γ,σ2 ∼ Beta(γj + aω, 1− γj + bω).

Sampling σ2

Finally,

p(σ2|data,ω,λ,γ) ∝ (σ2)−
N+K+1

2
−1 exp


− 1

2σ2
[(a− βλ)⊤(a− βλ) + λ⊤Dλ]


.

Hence the posterior distribution of σ2 is

σ2|data,ω,λ,γ ∼ Γ−1


N +K + 1

2
,
(a− βλ)⊤(a− βλ) + λ⊤Dλ

2


.

15We set aω = bω = 2 in the benchmark case. However, we could assign aω = 1 and bω = 2 in order to select a
sparser model.
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Note that, when ωj is a constant 0.5 and r converges to 0, the continuous slab-and-spike prior

is equivalent to the one with a Dirac spike in section II.2.2. However, the MCMC algorithm of

the continuous spike setting is particularly useful in the high dimensional case. Imagine that there

are 30 candidate factors in the factor zoo. In the Dirac spike-and-slab prior case we have to

calculate the posterior model probabilities for 230 different models. Given that we update (a,β)

in each sampling round, posterior probabilities for all models are necessarily re-computed for every

new draw of these quantities, rendering the computational cost very large. In contrast, using our

continuous spike approach, we can simply use the posterior mean of γj to approximate the posterior

marginal probability of the j-th factor.

III Simulation

We build a simple setting for a linear factor model that includes both strong and irrelevant factors,

and allows for potential model misspecification.

The cross-section of asset returns mimics empirical properties of 25 Fama-French portfolios,

sorted by size and value. We generate both factors and test asset returns from normal distributions,

assuming that HML is the only useful factor. A misspecified model also includes pricing errors from

the two-step Fama-MacBeth procedure, which makes the vector of simulated expected returns equal

to their sample mean estimates of 25 Fama-French portfolios. Finally, a spurious factor is simulated

from an independent normal distribution with mean zero and standard deviation 1%:

ft,useless
iid∼ N (0, (1%)2)

f̃t,HML
iid∼ N (r̄HML, σ̂

2
HML)

f̄t,HML = f̃t,HML − ¯̃
ft,HML

Rt|f̄t,HML
iid∼





N (λ̂c1N + β̂


λ̂HML + ft,HML


, Σ̂), if the model is correct

N (R̄+ β̂ft,HML, Σ̂), if the model is misspecified,

where factor loadings, risk premia, and variance-covariance matrix of returns are equal to their

OLS sample estimates from time series and two-pass Fama-MacBeth regressions of 25 size and

value portfolios on HML. All the model parameters are estimated on monthly data from July 1963

to December 2017.

To better illustrate the properties of the frequentist and bayesian approaches, we consider 3

estimation setups:

(a) the model includes only a strong factor (HML);

(b) the model includes only a useless factor;

(c) the model includes both strong and useless factors.

Each setting can be correctly or incorrectly specified, with the following sample sizes: T = 100,

200, 600, 1000, and 20000. We compare the performance of the OLS/GLS standard frequentist
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Table 1: Tests of risk premia in a misspecified model with a strong factor

λc λstrong R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

100 0.107 0.052 0.007 0.115 0.076 0.013 -4.22% 45.30%
200 0.094 0.067 0.006 0.118 0.072 0.015 -3.03% 56.21%

FM 600 0.097 0.053 0.006 0.098 0.047 0.011 3.89% 55.75%
1,000 0.088 0.048 0.012 0.103 0.060 0.012 8.65% 53.28%
20,000 0.109 0.056 0.010 0.110 0.060 0.008 24.86% 36.55%

100 0.063 0.026 0.006 0.032 0.013 0.001 -3.56% 36.09%
200 0.086 0.041 0.012 0.079 0.039 0.008 -3.67% 46.89%

BFM 600 0.087 0.043 0.013 0.087 0.047 0.009 -0.67% 52.61%
1,000 0.095 0.046 0.009 0.093 0.046 0.009 4.40% 53.46%
20,000 0.096 0.052 0.012 0.100 0.052 0.012 23.90% 36.01%

Panel B: GLS

100 0.246 0.173 0.067 0.251 0.154 0.070 17.20% 74.64%
200 0.165 0.107 0.031 0.171 0.105 0.035 53.37% 80.45%

FM 600 0.137 0.076 0.020 0.137 0.073 0.016 69.42% 83.87%
1,000 0.131 0.072 0.019 0.132 0.072 0.015 73.41% 84.16%
20,000 0.122 0.074 0.014 0.113 0.061 0.015 80.34% 82.83%

100 0.139 0.083 0.022 0.143 0.083 0.024 31.27% 68.15%
200 0.131 0.072 0.014 0.121 0.069 0.019 48.58% 72.99%

BFM 600 0.114 0.061 0.013 0.126 0.067 0.018 65.94% 80.09%
1,000 0.100 0.048 0.009 0.106 0.058 0.008 70.63% 81.49%
20,000 0.092 0.050 0.012 0.100 0.048 0.012 80.22% 82.67%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λ∗

i in a
misspecified model with an intercept and a strong factor. The true value of the cross-sectional R2

adj is 30.55%
(81.75%) for the OLS (GLS) estimation. Fama-MacBeth estimates are constructed using OLS (GLS) two-step cross-
sectional regressions, with standard errors including Shanken correction. Confidence intervals and their size for BFM
estimates are constructed using posterior coverage of Fama-MacBeth estimates of λ. The last two columns report the
5th and 95th percentiles of cross-sectional R2

adj across 1000 simulations, evaluated at the simulation point estimates
for FM, and its posterior mode for BFM.

and Bayesian Fama-MacBeth estimators (FM and BFM, correspondingly) with the focus on risk

premia recovery, testing, and identification of strong and useless factors for model comparison.

III.1 Estimating risk premia via Bayesian Fama-MacBeth

Since it is unlikely that in most empirical settings a linear factor model is correctly specified, we

focus our discussion on the case that allows for model misspecification. We report similar simulation

results for the case of correct model specification in Appendix C.

Table 1 presents the size of the tests for risk premia and confidence intervals for cross-sectional

R2 in probably the most relevant (and best-case) scenario for empirical applications. It compares

the performance of frequentist and Bayesian Fama-MacBeth estimators for the case when the model

is misspecified, and includes a single cross-sectional factor that is priced and strongly identified,

proxied by HML. Since the model is misspecified, cross-sectional R2 never reaches 100% even for

T = 20, 000, with the population value of 31% (82%) for OLS (GLS). As expected, both FM and

BFM estimators are very similar to each other, and provide confidence intervals of correct size. In

case of the standard FM approach, they are constructed using standard t-statistics, adjusted for
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Table 2: Tests of risk premia in a misspecified model with a useless factor

λc λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

100 0.072 0.037 0.010 0.055 0.011 0.001 -4.29% 41.84%
200 0.078 0.043 0.005 0.084 0.021 0.001 -4.18% 45.24%

FM 600 0.089 0.043 0.014 0.223 0.116 0.013 -4.28% 43.70%
1000 0.093 0.052 0.014 0.333 0.187 0.027 -4.29% 45.01%
20000 0.213 0.135 0.067 0.698 0.488 0.172 -4.27% 43.63%

100 0.035 0.011 0.001 0.001 0.000 0.000 -2.47% -0.36%
200 0.041 0.013 0.001 0.008 0.002 0.000 -2.61% -0.16%

BFM 600 0.071 0.03 0.003 0.031 0.006 0.002 -2.87% 0.19%
1000 0.047 0.02 0.001 0.039 0.017 0.002 -2.98% 0.84%
20000 0.034 0.013 0.000 0.091 0.043 0.012 -3.36% 11.40%

Panel B: GLS

100 0.238 0.144 0.066 0.305 0.199 0.062 -3.47% 38.57%
200 0.152 0.091 0.028 0.292 0.189 0.067 -3.75% 19.53%

FM 600 0.126 0.066 0.017 0.407 0.314 0.148 -3.85% 16.43%
1000 0.117 0.063 0.013 0.510 0.401 0.239 -4.05% 15.69%
20000 0.104 0.039 0.005 0.864 0.847 0.768 -3.11% 13.33%

100 0.128 0.070 0.019 0.047 0.018 0.002 -2.18% 11.54%
200 0.107 0.060 0.014 0.034 0.011 0.000 -2.75% 8.91%

BFM 600 0.093 0.046 0.008 0.042 0.012 0.001 -3.25% 6.62%
1000 0.083 0.031 0.004 0.061 0.028 0.004 -3.39% 5.19%
20000 0.023 0.006 0.000 0.099 0.049 0.011 -3.04% 1.38%

The table shows the frequency of rejecting the null hypothesisH0 : λi = λ∗
i for pseudo-true value of λc and λ∗

useless = 0
in a misspecified model with an intercept and a useless factor. The true value of the cross-sectional R2 is zero.

Shanken correction, and in case of the BFM, we rely on the quantiles of the posterior distribution

to form the credible confidence intervals for parameters. The last two columns also report the

quantiles of the mode of the posterior distribution of R2 across the simulations.

Table 2 summarizes risk premia estimation for the same cross-section of 25 expected returns,

but using a useless (spurious) factor as a candidate cross-sectional factor. As expected, the standard

Fama-MacBeth estimator fails to recognize the rank failure in the second stage, and conventional

risk premia estimates and t-statistics are inflated. Indeed, it is widely known since Kan and Zhang

(1999), that if the model is misspecified, then t-statistics of the spurious factors tend to infinity

asymptotically. This is confirmed in Panels A and B: for T = 20, 000, the probability of finding a

useless factor to have a t-stat above 1.96, is almost 50% for FM-OLS, and over 80% for FM-GLS.

Furthermore, cross-sectional measures of fit, such as R2 and related quantities, are substantially

inflated: even though it’s true value is 0 for both OLS and GLS settings, in-sample estimates

produced by the frequentist approach, not only have a much wider empirical support (for example,

from -4% to over 40% for FM-OLS), but also uncertainty that does not decrease with the sample

size.

The Bayesian approach to Fama-MacBeth regressions successfully overcomes the hurdle of use-

less factors. As Table 2 demonstrates, both BFM-OLS and BFM-GLS are able to identify the spu-

rious factor, with the posterior distribution providing credible confidence bounds with the proper

control for the size of the test (e.g. for T = 20, 000, the probability to reject the null of no risk

premia attached to a useless factor when using a test with the nominal size of 10%, is 9.1%). Rec-
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ognizing a useless factor, cross-sectional measures of fit are more conservative, and overall tighter.
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Figure 1: Risk premia estimates of a useless factor.

The graph presents the posterior distribution (blue line) of λ̂useless from the BFM-OLS estimation in a misspecified
model with a useless factor, based on a single simulation with T = 1, 000. The red line depicts the asymptotic
distribution of Fama-MacBeth estimate of risk premium under the normal approximation.

Why does the bayesian approach work, when the frequentist fails? The argument is probably

best summarized by Figure 1, that plots a posterior distribution of λ̂useless for BFM from one of

the simulations, along with the pseudo-true value of risk premium, defined as 0 in this case. In this

particular simulation, Fama-MacBeth OLS estimate of λuseless is -1.19%, with Shanken-corrected

t-statistics equal to -2.55, so according to traditional hypothesis testing, we would reject the null

of λuseless = 0 even at 1%. The posterior distribution of BFM estimates of risk premium (the

blue line in Figure 1) behaves rather differently: it is centered around 0, and overall more spread

out, with a confidence interval (−1.603%, 1.201%). Intuitively, the main driving force behind it

is the fact that in BFM β is updated continuously: when β̂ is close to zero, the posterior draws

of β will be positive or negative randomly, which implies that the conditional expectation of λ in

Equation 12 will also flip sign, depending on the draw. As a result, the posterior distribution of

λuseless is centered around 0, and so is the confidence interval. The same logic applies to the case

of BFM-GLS.

Finally, Table 3 combines the insights for true and irrelevant factors, and presents the simulation

results for the most realistic model setup, that includes both useless and strong factors. As expected,

in the conventional case of frequentist Fama-MacBeth estimation, the useless factor is often found

to be a significant predictor of the asset returns: its OLS (GLS) t-statistic would be above a

5%-critical value in over 60% (80%) of the simulations. On the contrary, the bayesian confidence

intervals have the right coverage, and reject the null of no risk premia attached to the spurious

factor with frequency asymptotically approaching the size of the tests.
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Table 3: Tests of risk premia in a misspecified model with useless and strong factors

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

100 0.082 0.039 0.008 0.121 0.067 0.016 0.099 0.023 0.001 -5.13% 56.63%
200 0.096 0.044 0.005 0.157 0.100 0.034 0.129 0.039 0.005 1.27% 61.90%

FM 600 0.093 0.034 0.014 0.212 0.147 0.071 0.264 0.129 0.022 8.40% 61.78%
1000 0.102 0.046 0.010 0.261 0.194 0.098 0.380 0.199 0.056 11.84% 62.48%
20000 0.114 0.054 0.009 0.289 0.229 0.152 0.848 0.633 0.240 25.07% 60.76%

100 0.035 0.012 0.001 0.028 0.007 0.001 0.004 0.001 0.000 -2.11% 40.33%
200 0.049 0.017 0.001 0.067 0.031 0.004 0.011 0.003 0.000 -1.75% 48.28%

BFM 600 0.05 0.018 0.004 0.099 0.047 0.005 0.047 0.014 0.002 10.20% 55.72%
1000 0.041 0.021 0.003 0.102 0.048 0.011 0.071 0.035 0.004 14.87% 56.95%
20000 0.017 0.007 0.000 0.087 0.033 0.007 0.099 0.055 0.012 24.80% 54.66%

Panel B: GLS

100 0.219 0.155 0.057 0.224 0.135 0.066 0.303 0.198 0.064 19.11% 77.75%
200 0.155 0.092 0.028 0.149 0.090 0.024 0.263 0.183 0.061 55.37% 81.71%

FM 600 0.121 0.068 0.015 0.116 0.064 0.016 0.391 0.293 0.134 69.48% 84.33%
1000 0.115 0.061 0.013 0.115 0.057 0.012 0.487 0.387 0.216 73.05% 84.74%
20000 0.084 0.050 0.009 0.100 0.041 0.005 0.864 0.836 0.757 79.79% 84.24%

100 0.122 0.069 0.016 0.129 0.070 0.017 0.046 0.017 0.002 32.43% 68.69%
200 0.112 0.056 0.012 0.099 0.048 0.012 0.031 0.012 0.000 48.44% 73.55%

BFM 600 0.096 0.049 0.011 0.086 0.045 0.009 0.049 0.016 0.002 65.76% 80.30%
1000 0.081 0.036 0.007 0.073 0.032 0.006 0.058 0.030 0.003 70.64% 81.54%
20000 0.027 0.005 0.000 0.022 0.007 0.000 0.098 0.047 0.013 79.74% 82.59%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λc and

λstrong, λ
∗
useless ≡ 0 in a misspecified model with an intercept, a strong and a useless factor. The true value of the

cross-sectional R2
adj is 30.55% (81.75%) for the OLS (GLS) estimation.

The crowding out of the true factors by the useless ones could also be an important empirical

concern. When the model is misspecified, the presence of spurious factors can also bias the risk

premia estimates for the strong ones, and often leads to their crowding out of the model. Panel

A in Table 3 serves as a good illustration of this possibility, with risk premia estimates for the

strong factor are clearly biased in the frequentist estimation by the identification failure in case of

the frequentist approach. Again, in this case BFM provides reliable, albeit conservative, confidence

bounds for model parameters.

III.1.1 Evaluating cross-sectional fit

In addition to risk premia estimates, it is often useful to understand the quality of cross-sectional

fit of the model. Indeed, the increase in cross-sectional R2 is often interpreted as measuring the

economic importance of the predictor, contrary to the statistical one implied by the risk premia

significance. It is well-known, however, that the average values of R2 are not always informative

about the true model performance: its sample distribution often suffers from a large estimation un-

certainty (see, e.g. Stock (1991) and Lewellen, Nagel, and Shanken (2010)), ad has a non-standard

distribution when the matrix of β has reduced rank (Kleibergen and Zhan (2015), Gospodinov,

Kan, and Robotti (2019)). In this section we further investigate the properties of cross-sectional

R2 in the frequentist and Bayesian Fama-MacBeth regressions.
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Figure 2 shows the distribution of cross-sectional OLS R2 across a large number of simulations

for the asymptotic case of T = 20, 000 and a misspecified process for returns. As Panel (a)

illustrates, if the model is strongly identified, the distribution of posterior mode of R2 for BFM

tends to coincide with that of conventional Fama-MacBeth procedure, as expected. The major

difference emerges whenever a useless factor is included into the candidate set of variables. Indeed,

it is well-known that in this case the distribution of conventional measures of fit is nonstandard

and often inflated (Kleibergen and Zhan (2015)). This is further confirmed in Figures 2 b) and

c) that show that under the presence of spurious factors, conventional Fama-MacBeth R2 has an

extremely spreadout right tail of the distribution, which makes it easy to find a substantial increase

of fit whenever the model is simply not identified. This unfortunate property of the frequentist

approach is not shared by the inference with BFM. Indeed, the mode of the posterior distribution

of R2 is generally tightly centered around the true values. The slight bump to the right tail of the

distribution comes from the fact that whenever a spurious factor is included into the model with a

small probability (based on t-statistic cut-off, this is equal to the size of the test, see e.g. Table 3,

Panel A), its fit will be similar to that of the frequentist estimation.

However, the pointwise distribution of cross-sectional R2 across the simulations is only part of

the story, as it does not reveal the in-sample estimation uncertainty and whether the confidence

intervals are credible in reflecting it. While BFM incorporates this uncertainty directly into the

shape of its posterior distribution, one needs to rely on bootstrap-like algorithms to build a similar

analogue in the frequentist case. As frequentist benchmark, we use the approach Lewellen, Nagel,

and Shanken (2010) to construct the confidence interval for R2. Details on this procedure can be

found in Appendix A.5

Figure 3 presents the posterior distribution of cross-sectional R2 for a model that contains a

useless factor (and, potentially, a strong one too), and contrasts it with a frequentist value and

the confidence interval around it. Consider, for example, Panel a). The fact that the in-sample

Fama-MacBeth estimate of cross-sectional fit (51%) is substantially higher than the mode of the

posterior distribution (-2%, which is close to the true value of R2
adj , about −4%), is not surprising,

given the previous results on the pointwise distribution of the estimates. What is quite interesting,

however, is the coverage of the confidence interval, constructed via the simulation-based approach of

Lewellen, Nagel, and Shanken (2010). Not only does it not include true value of the cross-sectional

fit, but in fact, in this particular simulation, it suggests that R2
adj should be between 42% and

100%. A similar mismatch between the seemingly high levels of cross-sectional fit produced by a

frequentist approach and their true values, can also be observed in Panel b) of Figure, 3 for the

case of including both strong and a useless factors.

In section A.6 of the Appendix we show that the performance of the Bayesian Fama-MacBeth

method is robust to the use of a larger cross-sectional dimension – i.e. the above discussed properties

hold in a larger N setting.
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(a) Model with a strong factor
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(b) Model with a useless factor
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(c) Model with strong and useless factors

Figure 2: Cross-sectional distribution of R2
adj in models with strong and useless factors.

Figures (a)-(c) show the asymptotic distribution of cross-sectional R2 under different model specifications across 1,000
simulations of sample size T = 20, 000. Blue lines correspond to the distribution of the posterior mode for R2

adj , while
green lines depict the pointwise sample distribution of cross-sectional fit, evaluated at Fama-MacBeth risk premia
estimates. The dark yellow dash line stands for the true value of R2

adj in the model.

III.2 Bayes factors

How well do flat and spike-and-slab priors work empirically in selecting relevant and detecting

spurious factors in the cross-section of asset returns? We revisit the theoretical results from Section

II.1 using the same simulation design used to evaluate the estimation of risk premia.

Consider a cross-section of 25 portfolios that is actually loading on 2 systematic sources of risk,

with the econometrician potentially observing at most only one of them, a strong (and priced) ft.

However, there is also a second candidate factor available, which is orthogonal to asset returns,

and essentially useless. We compute Bayes factors, corresponding to each of the potential sources

of risk, and document the empirical probability of retaining the variable in the model across 1000

simulations. Again, we consider models that contain either strong or useless factors, or a com-
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(a) Model with a useless factor
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(b) Model with strong and useless factors

Figure 3: The estimation uncertainty of cross-sectional R2.
Figures (a) and (b) show the posterior density of the cross-sectional R2 (blue) in one representative simulation,
along with its 90% confidence interval (red). The dark yellow line denotes the true value of R2, while the green line
depicts its in-sample Fama-MacBeth estimate with the confidence interval constructed following Lewellen, Nagel, and
Shanken (2010) (black).

bination of both, and different sample sizes (T = 200, 600, and 1,000). In each case we run the

Gibbs sampling algorithm derived using continuous spike-and-slab prior, and then approximate the

marginal probability of each factor by the posterior mean of γj . The decision rule is based on a

range of critical values, 55%-65%, such that whenever the posterior mean of γj is above a particular

threshold, we retain the factor. Finally, we also compute the probability of retaining a factor under

Jeffreys prior, which would be the standard in the literature.

Table 4 summarizes our findings. When only a true risk factor is included in the candidate set

(Panel A), both Jeffrey’s and spike-and-slab priors successfully identify it with a high probability,

especially in large sample. For small sample sizes, however, Jeffreys prior clearly has a somewhat

higher power of detecting a true risk factor. This outcome is not surprising, as the estimator does

not impose additional shrinkage on the risk premium. The difference, however, vanishes, for larger

sample sizes.

The difference between the two priors becomes drastic, whenever useless factors are included

in the model (Panels B Panels B and C in Table 4). As discussed in Section II.2.1, since the

matrix β⊤
γ βγ is nearly singular and its determinant goes to zero, under a flat prior the posterior

probability of including a spurious factor in the model converges to 1 asymptotically. For example,

the probability of misidentifying a spurious factor as being the true source of risk is almost 1

under Jeffreys prior, even for a very short sample. This in turn makes the overall process of model

selection invalid.

Overall, we find the asymptotic behavior of the spike-and-slab prior encouraging for variable

and model selection. While often somewhat conservative in very short samples, it successfully
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Table 4: The probability of retaining risk factors using BF

T 55% 57% 59% 61% 63% 65%

Panel A: strong factors

Jeffreys Prior fstrong 200 0.813 0.784 0.758 0.722 0.693 0.662
600 0.929 0.915 0.896 0.876 0.851 0.834
1000 0.972 0.963 0.957 0.951 0.937 0.924

Spike-and-Slab Prior fstrong 200 0.605 0.570 0.538 0.505 0.476 0.447
600 0.853 0.830 0.807 0.784 0.762 0.735
1000 0.954 0.940 0.928 0.912 0.896 0.875

Panel B: useless factors

Jeffreys Prior fuseless 200 1.000 0.996 0.988 0.967 0.919 0.822
600 0.998 0.998 0.995 0.988 0.977 0.943
1000 1.000 1.000 1.000 0.994 0.983 0.965

Spike-and-Slab Prior fuseless 200 0.325 0.188 0.106 0.057 0.024 0.013
600 0.072 0.025 0.006 0.002 0.001 0.000
1000 0.051 0.015 0.001 0.000 0.000 0.000

Panel C: strong and useless factors

Jeffreys Prior fstrong 200 0.924 0.897 0.874 0.848 0.821 0.799
600 0.988 0.985 0.976 0.974 0.965 0.958
1000 0.998 0.996 0.996 0.995 0.992 0.987

fuseless 200 0.984 0.960 0.910 0.811 0.702 0.584
600 0.999 0.993 0.985 0.954 0.913 0.854
1000 1.000 1.000 0.995 0.986 0.966 0.945

Spike-and-Slab Prior fstrong 200 0.627 0.591 0.552 0.509 0.474 0.452
600 0.860 0.830 0.802 0.783 0.758 0.727
1000 0.956 0.942 0.927 0.911 0.895 0.875

fuseless 200 0.260 0.128 0.071 0.031 0.019 0.010
600 0.080 0.028 0.010 0.004 0.001 0.001
1000 0.058 0.013 0.005 0.000 0.000 0.000

The table shows the frequency of retaining risk factors for different choice sets across 1,000 simulations of different
size (T=200, 600, and 1,000). In Panel A, the candidate risk factor is truly cross-sectionally priced and strongly
identified, while in Panel B they are not. Panel C summarizes the case of using both strong and useless candidate
factors in the model. A candidate factor is retained in the model, if its marginal posterior probability, p(γi = 1|data),
is greater than a certain threshold, i.e. 55%, 57%, 59%, 61%, 63% and 65%.

eliminates the impact of the spurious factors from the model, and identifies the true sources of

risk.

IV Empirical Applications

IV.1 Some notable factor models

In this section we illustrate the differences between the frequentist and Bayesian FM estimation

(both OLS and GLS) for several candidate models. In particular, we estimate a set of linear

factor models on the returns of the standard 25 Fama-French portfolios, sorted by size and value,

using frequentist and Bayesian Fama-MacBeth estimators. We use monthly data over the 1970:01-

2017:12 sample for tradable factors and, whenever possible, nontradables. For factors available
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only at quarterly frequency, the sample is 1952:Q1-2017:Q3 (whenever possible). A full description

of the data and models used can be found in Appendix B. Additional empirical results for other

candidate factors and cross-sections (e.g. 25 Fama-French + 17 Industry portfolios) can be found

in Appendix C.

Tables 5 and 6 summarize the performance of several leading factor models. For the classical FM

approach, we report point estimates of risk premia with their Shanken-corrected t-statistics, and

the cross-sectional R2 along with its 90% confidence interval (constructed following the method-

ology of Lewellen, Nagel, and Shanken (2010)). For BFM, we report the posterior mean of risk

premia estimates, and the posterior median and mode of R2, along with the centered 90% posterior

coverage. We chose to report both the median and the mode for cross-sectional fit, because the of

the shape of its distribution, which is often heavily skewed.

Carhart (1997) 4-factor model. OLS and GLS Fama-MacBeth estimates of risk premia indicate

that size, value, and momentum (SMB, HML, and UMD correspondingly) are significant drivers of

the cross-section of test assets. The market factor does not command a significant risk premium,

which is a typical finding for this model. Cross-sectional fit seems to be high, with R2 over 70%, even

though it comes with rather wide confidence bounds according to Lewellen, Nagel, and Shanken

(2010) approach. The Bayesian estimation indicates that part of the model success is due to the fact

that this cross section of test assets does not have much exposure to momentum, especially after

one controls for the conventional Fama-French factors. While still marginally significant, its risk

premium is substantially lower under both BFM and BFM-GLS estimation, with tighter bounds

for R2 too. On the contrary, both HML and SMB have virtually identical risk prices under both

FM and Bayesian estimations.

Hou, Xue, and Zhang (2014) q-factor model emphasized the role of investment and profitability

in matching the cross-section of equity returns, and true to the data, we find these factors strongly

priced. Both estimation strategies give identical parameter estimates, and largely consistent mea-

sures of cross-sectional fit. This in turn implies that all the risk premia are strongly identified

for this model, when estimated on a cross-section of 25 Fama-French portfolios. When industry

portfolios are among the test assets (see Appendix C), risk premia and R2 decline, and some of the

parameters lose significance, but broadly speaking the model performs in a qualitatively similar

way.

Liquidity-adjusted CAPM of Pastor and Stambaugh (2003): seems to suffer from identification

failure, as the risk premium on the liquidity factor ceases to remain significant, when BFM is used

in estimation. Wide confidence bounds and uncertain cross-sectional fit provide a stark difference to

the pointwise estimates and their seemingly high significance levels under the standard frequentist

approach.

Conditional CCAPM of Lettau and Ludvigson (2001) is weakly identified at best. Unlike the

basic FM estimation, that indicates a relative empirical success of the model, the Bayesian approach

reveals most risk premia to be substantially lower, losing all the accompanying statistical and

economic significance. This is particularly pronounced in the BFM-GLS, that delivers both risk

premia and cross-sectional R2 close to zero.
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Table 5: Tradable factors and 25 Fama-French portfolios, sorted by size and value

FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

Carhart (1997) Intercept 0.489 70.63 0.703* 64.32 63.29
[-0.244, 1.222] [31.60, 94.00] [-0.061, 1.426] [48.26, 76.46]

MKT 0.120 -0.101
[-0.631, 0.870] [-0.822, 0.683]

SMB 0.171*** 0.164***
[0.100, 0.241] [0.089, 0.232]

HML 0.404*** 0.396***
[0.331, 0.477] [0.330, 0.466]

UMD 2.445*** 1.806**
[0.955, 3.936] [0.259, 3.328]

q-factor model Intercept 0.912*** 65.67 0.922*** 60.62 61.23
Hou, Xue, and Zhang (2014) [0.286, 1.539] [30.40, 86.80] [0.276, 1.560] [41.31, 76.40]

ROE 0.394** 0.377*
[0.016, 0.771] [-0.020, 0.789]

IA 0.387*** 0.385***
[0.203, 0.571] [0.208, 0.580]

ME 0.274*** 0.268***
[0.169, 0.379] [0.158, 0.376]

MKT -0.371 -0.378
[-0.995, 0.252] [-1.005, 0.272]

Liquidity-CAPM Intercept 0.973* 36.24 1.162** 34.09 30.27
Pastor and Stambaugh (2000) [-0.084, 2.030] [-9.09, 100.00] [0.175, 2.120] [-2.39, 61.46]

LIQ 3.057** 1.785
[0.727, 5.388] [-1.237, 4.150]

MKT -0.281 -0.449
[-1.350, 0.788] [-1.371, 0.509]

Panel A: GLS

Carhart (1997) Intercept 1.017*** 89.64 1.083*** 85.87 86.3
[0.389, 1.645] [82.00, 97.60] [0.458, 1.717] [80.85, 91.05]

MKT -0.434 -0.504
[-1.065, 0.196] [-1.150, 0.122]

SMB 0.191*** 0.189***
[0.150, 0.233] [0.150, 0.230]

HML 0.356*** 0.356***
[0.313, 0.400] [0.316, 0.395]

UMD 1.626*** 1.264**
[0.479, 2.772] [0.077, 2.401]

q-factor model Intercept 1.305*** 55.03 1.277*** 47.28 48.54
Hou, Xue, and Zhang (2014) [0.779, 1.831] [24.40, 96.40] [0.702, 1.879] [32.45, 64.19]

ROE 0.295* 0.266
[-0.026, 0.615] [-0.087, 0.640]

IA 0.270*** 0.265***
[0.104, 0.437] [0.093, 0.450]

ME 0.251*** 0.246***
[0.161, 0.341] [0.144, 0.345]

MKT -0.749*** -0.720**
[-1.268, -0.229] [-1.292, -0.156]

Liquidity-CAPM Intercept 1.244*** 49.38 1.256*** 52.98 43.17
Pastor and Stambaugh (2000) [0.664, 1.824] [26.91, 98.91] [0.738, 1.749] [12.50, 66.53]

LIQ 1.141 0.775
[-0.232, 2.514] [-0.450, 2.116]

MKT -0.664** -0.678***
[-1.242, -0.086] [-1.176, -0.162]

The table summarises risk premia estimates and cross-sectional fit for a selection of models with tradable risk factors
on a cross-section of 25 Fama-French monthly excess returns. Each model is estimated via OLS and GLS. We report
point estimates and 5% confidence intervals for risk premia, which are constructed based on the asymptotic normal
distribution, and cross-sectional R2 and its (5%, 95%) confidence level constructed as in Lewellen, Nagel, and Shanken
(2010) for FM estimation. In Bayesian Fama-MacBeth estimation, we provide the posterior mean of λ, denoted by
λ̄j , its (2.5%, 97.5%) credible intervals, the posterior mode and median of the cross-sectional R2, as well as its (5%,
95%) credible intervals. *, ** and *** denote significance at the 90%, 95% and 99% level, respectively.
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Table 6: Nontradable factors and 25 Fama-French portfolios, sorted by size and value

FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

Scaled CCAPM Intercept 1.046 25.67 1.791** 34.36 29.19
[-0.848, 2.940] [-14.29, 100.00] [0.001, 3.723] [-4.76, 62.07]

cay 1.817 0.791
[-0.653, 4.288] [-1.347, 2.686]

∆Cnd 0.713* 0.303
[-0.030, 1.456] [-0.462, 0.951]

∆Cnd × cay 0.804 0.301
[-1.645, 3.253] [-1.911, 2.270]

HC-CAPM Intercept 3.243*** -1.22 3.090** 3.54 9.57
[1.228, 5.257] [-9.09, 33.45] [0.790, 5.259] [-7.48, 44.31]

∆Y 0.464 0.085
[-0.213, 1.140] [-1.119, 1.058]

MKT -0.719 -0.656
[-2.680, 1.242] [-2.859, 1.558]

Durable CCAPM Intercept 2.214 52.38 2.780* 47.1 40.78
[-1.037, 5.465] [28.00, 100.00] [-0.184, 5.751] [1.20, 69.91]

∆Cnd 0.743* 0.357
[-0.025, 1.511] [-0.207, 0.832]

∆Cd -0.057 0.014
[-0.719, 0.605] [-0.668, 0.693]

MKT 0.083 -0.495
[-3.322, 3.489] [-3.395, 2.555]

Panel B: GLS

Scaled CCAPM Intercept 2.180*** -10.24 2.257*** -6.58 -3.13
[0.825, 3.536] [-14.29, 64.57] [1.221, 3.258] [-11.87, 15.17]

cay 0.435 0.256
[-0.774, 1.643] [-0.688, 1.217]

∆Cnd 0.118 0.089
[-0.266, 0.502] [-0.214, 0.407]

∆Cnd × cay 0.141 0.063
[-1.005, 1.286] [-0.845, 0.938]

HC-CAPM Intercept 2.730*** 56.36 2.759*** 58.24 49.26
[1.458, 4.002] [30.18, 83.64] [1.379, 4.095] [9.67, 75.07]

∆Y -0.421** -0.241
[-0.742, -0.099] [-0.598, 0.114]

MKT -0.717 -0.740
[-1.979, 0.545] [-2.073, 0.622]

Durable CCAPM Intercept 2.960** 44.54 2.841*** 54.74 40.99
[0.547, 5.374] [2.86, 78.29] [1.102, 4.558] [-2.41, 72.15]

∆Cnd 0.105 0.052
[-0.265, 0.475] [-0.201, 0.311]

∆Cd 0.055 0.025
[-0.390, 0.501] [-0.286, 0.327]

MKT -0.941 -0.822
[-3.314, 1.432] [-2.528, 0.895]

The table summarises risk premia estimates and cross-sectional fit for a selection of models with nontradable risk
factors on a cross-section of 25 Fama-French quarterly excess returns. Each model is estimated via OLS and GLS. We
report point estimates and 5% confidence intervals for risk premia, which are constructed based on the asymptotic
normal distribution, and cross-sectional R2 and its (5%, 95%) confidence level constructed as in Lewellen, Nagel,
and Shanken (2010) for FM estimation. In Bayesian Fama-MacBeth estimation, we provide the posterior mean of λ,
denoted by λ̄j , its (2.5%, 97.5%) credible intervals, the posterior mode and median of the cross-sectional R2, as well
as its (5%, 95%) credible intervals. *, ** and *** denote significance at the 90%, 95% and 99% level, respectively.
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Labour-adjusted CAPM of Jagannathan and Wang (1996) extends the classic CAPM framework

by introducing a proxy for human capital and finds it strongly priced in the cross-sections of stocks

returns. The BFM estimates of risk premia are substantially lower and no longer significant, with

the same patterns observed under both OLS and GLS procedures.

Durable CCAPM of Yogo (2006) in the linearized version, included the durable consumption

factor, and found that its impact is priced in a number of cross-sections sorted by size and value, past

betas, and other characteristics. Even though the Lewellen, Nagel, and Shanken (2010) approach

indicates a really wide support for the cross-sectional R2, the model found empirical support in the

data. We find that both durable and nondurable consumption are weak predictors of the cross-

section of returns, as the magnitude of their risk premia substantially declines, and is no longer

significant. The model is still characterized by a wide confidence interval for R2, but overall its

pricing ability is questionable at best.

Appendix C provides additional empirical results on the performance of both frequentist and

bayesian Fama-MacBeth estimators. In many cases, when the models are well specified and strongly

identified in the data, there is almost no distinction between the two approaches. One notable

difference, however, are the confidence intervals of the R2, that are often notoriously wide in

the frequentist case. There are also cases, however, when the difference in model performance

becomes large, affecting both risk premia estimates and measures of cross-sectional fit. Similar

to Gospodinov, Kan, and Robotti (2019), we caution the reader against blindly relying on the

estimates produced by conventional Fama-MacBeth procedure, and advocate a robust approach to

inference.

IV.2 Sampling two quadrillion models

We now turn our attention to a large cross-section of candidate asset pricing factors. In particular,

we focus on 51 (both traded and non) monthly factors available from October 1973 to December

2016 (i.e. T = 600). Factors are described in details in Table B.1 of Appendix B. In choosing

the cross-section of assets to price we follow Lewellen, Nagel, and Shanken (2010) and employ 25

Fama-French size and book-to-market portfolios plus 30 Industry portfolio (i.e. N = 55). Since

we do not restrict the maximum number of factors to be included, all the possible combinations

of factors give us a total of 251 possible specifications i.e. 2.25 quadrillion models. Note that each

model involves 55 time series regressions and one cross-section regression i.e. we jointly evaluate

the equivalent of 126 quadrillion regressions.

We employ the continuous spike-and-slab approach of section II.2.3, since it is the most suited

for handling a very large number of possible models, and report both the posterior (given the data)

of each factor (i.e. E [γj |data], ∀j) as well as the posterior means of the factors’ risk premia (i.e.

E [λj |data], ∀j).
The posterior evaluation is performed and reported over a wide range for the parameter (ψ in

equation (16)) that controls the degree of shrinkage of potentially useless factors’ risk premia: from

ψ = .1 (i.e. very strong shrinkage) to ψ = 100 (making the shrinkage virtually irrelevant). The
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prior for each factor inclusion is a Beta(2, 2), yielding a prior expectation for γj equal to 50%.

Figure 4 plots the posterior probabilities of the 51 factors as a function of the parameter ψ.

The corresponding values are reported in Table 7. Overall, the inclusion of only four factors finds

substantial support in our empirical analysis. First, the celebrated Fama-French HML (high-minus-

low), designed to capture the so-called ‘value premium,’ is a strong determinant of the cross-section

of asset returns. For ψ = 10 (a reasonable benchmark) its posterior probability is about 89.5%, and

only for very strong shrinkage (ψ = .1) the posterior probability gets reduced to 63.9%. Second,

the market factor, in the version of Daniel, Mota, Rottke, and Santos (2018) (MKT∗, that is

meant to have hedged out the unpriced risk contained in the market index), has also high posterior

probability (85.6% for ψ = 10). Third, the simple market factor (MKT) seems also to be a robust

source of priced risk, albeit with an empirical performance weaker than MKT∗. Fourth, albeit to

a lesser extent, SMB∗, the Daniel, Mota, Rottke, and Santos (2018) version of the small-minus-big

Fama-French factor (meant to capture the so called ‘size’ premium), seems also to contain relevant

information for pricing the cross-section of asset returns, with a posterior probability in the 60-

70% range for most values of ψ. Beside the ones above mentioned, all other factors have posterior

probabilities of about 50% or less for all values of ψ. Interestingly, the results are not very sensitive

to the choice of ψ.

In addition to the posterior probabilities of the factors, Table 7 reports the posterior means

of the factor risk premia computed as Bayesian Model Average i.e. the weighted average of the

posterior means in each possible factor model specification, with weights equal to the posterior

probability of each specification being the true data generating process (see e.g. Roberts (1965),

Geweke (1999), Madigan and Raftery (1994)). The results are not very sensitive to the choice of

ψ, except when considering very small values for of the shrinkage parameter ψ, since in this case

posterior means are shrunk toward zero. Interestingly, the estimated price of risk for the market

factor is positive, despite it being very often estimated as a negative quantity when considering

multifactor models, and not dissimilar from the market excess return over the same period. More

generally, there is a clear pattern in cross-sectionally estimated (i.e. ex post) factor risk premia and

their simple time series average estimates (reported in the last column of Table 7): for the robust

four factors (HML, MKT∗, MKT and SMB∗) ex post risk premia are very similar to the time series

estimnates, while the opposite holds true for the other factors. In other words, robust factors seems

to price themselves well (since theoretically their own beta is one), while other factors don’t.

IV.3 Estimating 2.6 million sparse factor models

Instead of drawing unrestricted factor models specifications, we now constraint models to have a

maximum of 5 factors – i.e. we are imposing sparsity on the implied stochastic discount factor, as

in most of the previous empirical asset pricing literature that has tried to identify low dimensional

factor models to explain the cross-section of asset returns. Given our set of 51 factors, this approach

yields about 2.6 millions of possible models (i.e. the equivalent of about 147 million time series and

cross-sectional regressions). Since we now do not sample the possible models, posterior probabilities
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Table 7: Posterior factor probabilities, E [γj |data], and risk premia in 2.25 quadrillion models

E [γj |data] E [λj |data]
ψ: ψ:

Factors: 1 5 10 20 50 100 1 5 10 20 50 100 F̄

HML 0.823 0.922 0.895 0.928 0.853 0.871 0.183 0.290 0.292 0.319 0.285 0.295 0.377
MKT* 0.682 0.728 0.856 0.714 0.730 0.780 0.101 0.249 0.374 0.375 0.504 0.565 0.514
MKT 0.514 0.642 0.737 0.649 0.709 0.703 0.047 0.182 0.304 0.314 0.439 0.470 0.563
SMB* 0.680 0.649 0.664 0.603 0.430 0.353 0.078 0.140 0.145 0.157 0.123 0.095 0.215
STRev 0.509 0.559 0.524 0.561 0.521 0.566 0.003 0.015 0.028 0.053 0.100 0.168 0.438
BW ISENT 0.561 0.427 0.517 0.574 0.488 0.488 0.000 0.002 0.003 0.006 0.009 0.014 0.094∗

LIQ TR 0.526 0.516 0.473 0.456 0.479 0.534 0.001 0.005 0.010 0.019 0.047 0.084 0.438
UNRATE 0.524 0.546 0.459 0.475 0.466 0.500 -0.000 -0.001 -0.002 -0.004 -0.006 -0.008 1.083∗

NONDUR 0.445 0.503 0.494 0.534 0.499 0.472 0.000 0.002 0.003 0.006 0.011 0.017 0.170∗

TERM 0.511 0.525 0.461 0.502 0.493 0.502 0.001 0.003 0.004 0.009 0.019 0.028 0.942∗

COMP ISSUE 0.523 0.490 0.496 0.449 0.413 0.363 0.037 0.078 0.096 0.107 0.123 0.117 0.497
Oil 0.489 0.469 0.512 0.506 0.476 0.458 0.003 0.010 0.022 0.037 0.060 0.106 0.852∗

BEH PEAD 0.476 0.446 0.533 0.556 0.554 0.495 0.003 0.010 0.019 0.031 0.056 0.068 0.619
DeltaSLOPE 0.453 0.481 0.534 0.462 0.496 0.502 -0.000 -0.000 -0.001 -0.001 -0.003 -0.004 0.096∗

INV IN ASS 0.486 0.488 0.536 0.490 0.432 0.450 0.001 0.004 0.004 0.007 0.019 0.030 0.549
IPGrowth 0.480 0.528 0.454 0.509 0.481 0.431 -0.000 -0.001 -0.001 -0.002 -0.004 -0.005 0.121∗

DEFAULT 0.442 0.444 0.500 0.484 0.519 0.449 0.000 0.000 0.000 0.000 0.001 0.002 0.313∗

UMD 0.485 0.526 0.522 0.556 0.417 0.371 0.026 0.068 0.085 0.120 0.102 0.109 0.646
ROA 0.437 0.518 0.520 0.498 0.379 0.369 0.036 0.111 0.147 0.172 0.141 0.143 0.551
REAL UNC 0.541 0.496 0.498 0.437 0.469 0.438 0.000 0.000 0.000 0.000 0.000 0.000 0.043∗

PE 0.525 0.513 0.487 0.502 0.464 0.479 -0.002 -0.003 -0.004 -0.008 -0.007 -0.016 6.401∗

CMA 0.566 0.527 0.499 0.460 0.345 0.318 0.031 0.057 0.062 0.067 0.053 0.047 0.351
ACCR 0.495 0.552 0.466 0.531 0.460 0.428 -0.009 -0.016 -0.004 -0.008 0.007 0.009 0.343
SERV 0.490 0.528 0.465 0.479 0.454 0.456 -0.000 -0.000 -0.000 -0.000 -0.001 -0.001 0.052∗

STOCK ISS 0.456 0.590 0.564 0.538 0.413 0.307 -0.030 -0.092 -0.106 -0.123 -0.110 -0.085 0.515
DIV 0.561 0.405 0.477 0.529 0.511 0.421 -0.000 0.000 -0.000 -0.001 -0.001 -0.002 0.876∗

MACRO UNC 0.475 0.555 0.456 0.414 0.503 0.446 0.000 -0.000 0.000 0.000 0.000 0.000 0.073∗

FIN UNC 0.437 0.522 0.491 0.511 0.454 0.482 -0.000 -0.000 -0.000 -0.000 -0.001 -0.001 0.096∗

LIQ NT 0.477 0.548 0.490 0.460 0.425 0.425 -0.004 -0.004 -0.003 0.001 0.002 0.016 0.501∗

CMA* 0.554 0.542 0.440 0.459 0.441 0.414 0.001 -0.001 -0.002 -0.004 -0.003 -0.011 0.242
NetOA 0.438 0.549 0.481 0.490 0.393 0.376 0.004 0.015 0.017 0.030 0.036 0.044 0.544
HJTZ ISENT 0.521 0.470 0.450 0.473 0.429 0.437 -0.000 -0.000 -0.000 -0.001 -0.000 0.002 0.210∗

LTRev 0.488 0.478 0.501 0.439 0.442 0.339 -0.006 -0.025 -0.033 -0.037 -0.043 -0.032 0.252
RMW* 0.553 0.506 0.468 0.411 0.366 0.310 0.002 0.008 0.013 0.012 0.015 0.015 0.219
HML* 0.547 0.441 0.440 0.458 0.400 0.337 -0.003 -0.000 0.000 0.008 -0.000 0.007 0.251
INTERM CAP RATIO 0.497 0.477 0.487 0.435 0.349 0.315 0.023 0.039 0.057 0.056 0.099 0.103 0.790∗

ASS Growth 0.440 0.429 0.497 0.471 0.389 0.331 0.001 0.005 0.003 0.006 0.002 -0.010 0.525
PERF 0.499 0.514 0.421 0.359 0.303 0.287 -0.050 -0.079 -0.068 -0.060 -0.055 -0.050 0.651
IA 0.519 0.464 0.444 0.398 0.299 0.271 -0.011 -0.012 -0.006 -0.007 -0.005 -0.008 0.409
BAB 0.472 0.508 0.414 0.372 0.373 0.329 -0.009 -0.015 -0.002 -0.003 0.022 0.032 0.921
DISSTR 0.477 0.485 0.393 0.438 0.321 0.302 0.041 0.099 0.086 0.122 0.091 0.091 0.475
ROE 0.528 0.455 0.429 0.384 0.337 0.207 0.011 0.024 0.027 0.035 0.032 0.018 0.555
MGMT 0.507 0.385 0.388 0.372 0.312 0.230 0.027 0.046 0.049 0.054 0.050 0.043 0.631
O SCORE 0.438 0.425 0.445 0.387 0.273 0.225 -0.011 -0.012 -0.017 -0.010 -0.019 -0.006 0.020
QMJ 0.519 0.397 0.392 0.289 0.215 0.193 0.032 0.031 0.024 0.018 0.013 0.016 0.405
BEH FIN 0.562 0.359 0.361 0.314 0.235 0.216 -0.023 -0.010 -0.007 -0.001 -0.004 0.002 0.760
GR PROF 0.462 0.445 0.401 0.305 0.274 0.175 0.010 0.009 0.007 0.008 0.018 0.009 0.199
SKEW 0.507 0.363 0.318 0.270 0.229 0.185 -0.055 -0.047 -0.030 -0.021 -0.001 -0.010 0.438
RMW 0.347 0.406 0.344 0.324 0.211 0.170 0.011 0.027 0.029 0.030 0.023 0.017 0.292
HML DEVIL 0.415 0.342 0.299 0.234 0.173 0.149 0.012 0.015 0.008 0.003 0.005 0.004 0.356
SMB 0.322 0.335 0.307 0.289 0.355 0.244 0.018 0.034 0.040 0.040 0.061 0.047 0.257

Posterior probabilities of factors, E [γj |data], and posterior mean of factor risk premia, E [λj |data], computed using
the continuous spike and slab approach of section II.2.3 and 51 factors yielding 251 ≈ 2.25 quadrillion models. The
prior for each factor inclusion is a Beta(2, 2), yielding a prior expectation for γj equal to 50%. The last column reports
sample average returns for the tradable factors. The data is monthly, 1973:10 to 2016:12. Test assets: cross-section
of 25 Fama-French size and book-to-market and 30 Industry portfolios. The 51 factors considered are described in
Table B.1 of Appendix B. Numbers denoted with the asterisk in the last column correspond to the return on the
factor-mimicking portfolio of the nontradable factor, constructed by a linear projection of its values on the set of 51
test assets, and scaled to have the same volatility as the original nontradable factor.
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Figure 4: Posterior factor probabilities

Posterior probabilities of factors, E [γj |data], estimated over the 1973:10-2016:12 sample using a cross-section of 25
Fama-French size and book-to-market and 30 Industry test asset portfolios, computed using the continuous spike
and slab approach of section II.2.3 and 51 factors yielding 251 ≈ 2.25 quadrillion models. The prior for each factor
inclusion is a Beta(2, 2), yielding a prior expectation for γj equal to 50%. The 51 factors considered are described
in Table B.1 of Appendix B. The prior distribution for the j-th factor inclusion is a Beta(2, 2), yielding a prior
expectation of γj = 50%. Posterior probabilities are plotted for ψ ∈ [1, 100].

are computed using the marginal likelihoods of all these models i.e. the posterior probability of

model γj is computed as

Pr(γj |data) =
p(data|γj)
i p(data|γi)

,

where we have assigned equal prior probability to all possible specifications and p(data|γj) denotes

the marginal likelihood of the j-th model. To both simplify the numerical computation, and to

illustrate the qualities of the approach, we use the Dirac spike-and-slab prior of section II.2.2 since

we can leverage its closed form solution for the marginal likelihoods.16

Posterior factor probabilities are reported in figure 5 and, jointly with the Bayesian model

averaging of risk premia across the sparse models, in Table C15. Note that in this case all factors

have an ex ante probability of being included equal to 10.38%. The results are strikingly similar to

the ones in table 7 and figure 4: as before, only for four factors (HML, MKT∗, MKT and SMB∗)

16Alternatively, one could use the continuous spike-and-slab approach employed in the previous subsection, and
drop the draws of specifications with more than 5 factors, but this significantly reduces computational efficiency.
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we observe a marked increase in the posterior probability of inclusion after observing the data.

Furthermore, these factors seems to price themselves well – i.e. the BMA of their risk premia are

very similar to the sample average of their excess returns – while other factors do not.
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Figure 5: Posterior factor probabilities

Posterior probabilities of factors, Pr [γj = 1|data], estimated over the 1973:10-2016:12 sample using a cross-section of
25 Fama-French size and book-to-market and 30 Industry test asset portfolios, computed using the Dirac spike and
slab approach of section II.2.2, 51 factors, and all possible models with up to 5 factors, yielding about 2.6 million
candidate models. The prior probability of a factor being included is about 10.38%. The 51 factors considered are
described in Table B.1 of Appendix B. Posterior probabilities are plotted for ψ ∈ [1, 100].

IV.4 A robust factor model

The previous subsections suggest that only a small number of factors (HML, MKT∗, MKT and

SMB∗) are robust explanators of the cross-section of asset returns. Furthermore, table 8, that

reports the ten factor model specifications with the highest posterior probabilities,17 shows that

these robust factors tend to be almost always included in the most likely models: both HML and

MKT∗ are featured in all ten specifications, while MKT is excluded only once, and SMB∗ is included

in the five most likely specification plus the tenth one. Note that the posterior probabilities in table

17Table 8 focuses on the Dirac spike-and-slab specification with ψ = 10. Very similar results are reported in tables
C16-C18 of Appendix C for other values of ψ and for the continuous prior case.
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Table 8: Factor Models with highest posterior probability (Dirac spike-and-slab, ψ = 10)

model:
factor: 1 2 3 4 5 6 7 8 9 10

HML          
MKT*          
MKT         
SMB*      
STRev
BW ISENT
LIQ TR
UNRATE
NONDUR
TERM
COMP ISSUE  
Oil
BEH PEAD
DeltaSLOPE
INV IN ASS
IPGrowth
DEFAULT
UMD 
ROA   
REAL UNC
PE
CMA 
ACCR
SERV
STOCK ISS   
DIV
MACRO UNC
FIN UNC
LIQ NT
CMA*
NetOA
HJTZ ISENT
LTRev
RMW*
HML*
INTERM CAP RATIO
ASS Growth
PERF   
IA
BAB
DISSTR
ROE
MGMT  
O SCORE
QMJ
BEH FIN
GR PROF
SKEW
RMW
HML DEVIL
SMB

Probability (%) 0.0666 0.0599 0.0574 0.0522 0.0503 0.0460 0.0437 0.0428 0.0423 0.0393

Factors and posterior model probabilities of ten most likely specifications computed using the Dirac spike and slab
approach of section II.2.2, ψ = 10, 51 factors, and all possible models with up to 5 factors, yielding about 2.6 million
candidate models and a model prior probability of the order of 10−7. Specifications organised by columns with the
symbol  indicating that the factor in the corresponding row is included. The data is monthly, 1973:10 to 2016:12.
Test assets: cross-section of 25 Fama-French size and book-to-market and 30 Industry portfolios. The 51 factors
considered are described in Table B.1 of Appendix B.
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8 might appear small in absolute terms, but are actually four orders of magnitude larger than the

prior model probabilities (equal to one over the number of models considered).

Therefore, a natural question is whether the four factors identified as robust in the above

analysis do indeed deliver a significantly better cross-sectional asset pricing model. We answer this

questions by comparing the performance of a four factor model with HML, MKT∗, MKT and SMB∗

as factors, to the one of several notable factor models.18

In particular, Table 9 reports the model posterior probabilities for the specifications considered,

i.e. the probability of any of these models being the true data generating process. Strikingly, for

almost any value of ψ, the model posterior probabilities are in the single digits range for all models

but the robust factors one: the probability of this specification is always higher than 85% except

when using a very strong shrinkage (in which case it is reduced to 65%). Furthermore, for ψ in the

most salient range (10-20), the posterior probability of the robust factors model is about 90%.

Table 9: Posterior probabilities of notable models vs. robust factors

ψ:
model: 1 5 10 20 50 100

CAPM 0.02 0.01 0.01 0.02 0.04 0.08
Fama and French (1992) 0.05 0.01 0.01 0.01 0.00 0.00
Fama and French (2016) 0.09 0.06 0.05 0.04 0.03 0.02
Carhart (1997) 0.05 0.01 0.01 0.01 0.01 0.01
Hou, Xue, and Zhang (2015) 0.02 0.00 0.00 0.00 0.00 0.00
Pastor and Stambaugh (2000) 0.01 0.00 0.00 0.01 0.01 0.02
Asness, Frazzini and Pedersen (2014) 0.10 0.03 0.02 0.02 0.02 0.01
Robust Factors Model 0.65 0.88 0.90 0.90 0.89 0.85

Posterior model probabilities for the specifications in the first column, for different values of ψ, computed using the
Dirac spike-and-slab prior. The models and their factors are described in Appendix B. The model in the last row
uses the HML, MKT, MKT∗ and SBM∗ factors described in Table B1. The data is monthly, 1973:10 to 2016:12. Test
assets: cross-section of 25 Fama-French size and book-to-market and 30 Industry portfolios.

IV.5 The sparsity of the stochastic discount factor

We have shown that a robust model with only four – robust – factors is much more likely to

capture the true stochastic discount factor than all the notable models considered (see table 9).

Nevertheless, are only four factors likely to deliver a sufficiently accurate representation of the true,

latent, stochastic discount factor?

Thanks to our Bayesian method, this question can be easily asnwered. In particular, by using

our estimations of about 2.25 quadrillion models and their posterior probabilities, we can compute

the posterior distribution of the dimensionality of the ‘true’ model. That is, for any integer number

between one and fifty-one, we can compute the posterior probability of the SDF being a function

of that number of factors.

18Note that the correlation between MKT and MKT∗ is not too large, being about 0.64.
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Figure 6 reports the posterior distributions of the dimensionality of the SDF for various values

of ψ. These distributions are also summarized in table 10. For the most salient values of ψ (10 and

20), the posterior mean of the number of factors in the true SDF is in the 24-25 range, and the 95%

posterior credible intervals are contained in the 17 to 32 factors range. That is, there is substantial

evidence that the SDF is dense in the space of the linear factors considered: given the factors at

hand, a relative large number of them is needed to provide an accurate representation of the true,

latent, SDF. Since most of the literature has focused on very low dimension linear factor models,

this finding suggests that most empirical results therein have been affected by a large degree of

misspecification.

It is worth noticing that, as figure 6 and table 10 show, for very large ψ, i.e. with basically a flat

prior for factor risk premia, the posterior dimensionality is reduced. This is due to two phenomena

we have already outlined. First, if some of the factors are useless (and our analysis points in this

direction), under a flat prior they do tend to have a higher posterior probability and drive out

the true sources of priced risk. Second, a flat prior for the risk premia can generate a “Bartlett

Paradox” (see the discussion in section II.2.1 and Bartlett (1957)).

Note that if the factors proposed in the literature were to capture different and uncorrelated

sources of risk, one might worry that a SDF that is dense in the space of factors might imply

unrealistically high Sharpe ratios (see e.g. the discussion in Kozak, Nagel, and Santosh (2019)).

Since, given a factor model, the SDF-implied maximum Sharpe ratio is just a function of the

factors’ risk premia and covariance matrix, our Bayesian method allows to construct the posterior

distribution of the maximum Sharpe ratio for each of the 2 quadrilion models considered. Therefore,

using the posterior probabilities of each possible model specification, we can actually construct

the (Bayesian Model Averaging) posterior distribution of the SDF-implied maximum Sharpe ratio

(conditional on the data only).

Figure 7 and table 11 report, respectively, the posterior distribution of the (annualized) SDF-

implied maximum Sharpe ratio and its summary statistics for several values of the parameter ψ.

Except when a very strong shrinkage (small ψ) is imposed (and hence risk premia, and consequently

Sharpe ratios are shrunk toward zero) the posterior distribution of the Sharpe ratio are quite

similar for all values of ψ. Furthermore, despite the SDF being dense in the space of factors, the

posterior maximum Sharpe ratio does not appear to be unrealistically high: e.g. for ψ ∈ [10, 20]

its posterior mean is about 0.74–0.80 and the 95% posterior credible intervals are in the 0.49–1.14

range. Interestingly, Ghosh, Julliard, and Taylor (2016, 2018) provides a non-parametric estimate

of the pricing kernel, extracted using an information-theoretic approach and wide cross-sections of

equity portfolios, and find SDF-implied maximum Sharpe ratios of very similar magnitude.
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Figure 6: Posterior density of the dimensionality of the stochastic discount factor

Posterior density of the true model having the number of factors listed on the horizontal axis. Estimated over the

1973:10-2016:12 sample using a cross-section of 25 Fama-French size and book-to-market and 30 Industry test asset

portfolios, computed using the continuous spike and slab approach of section II.2.3 and 51 factors yielding 251 ≈ 2.25

quadrillion models. The prior for each factor inclusion is a Beta(2, 2), yielding a prior expectation for γj equal to 50%.

The 51 factors considered are described in Table B.1 of Appendix B. Posterior densities are plotted for ψ ∈ [1, 100].

Table 10: The posterior dimensionality of the stochastic discount factor

ψ:

1 5 10 20 50 100

mean 25.51 25.42 24.64 24.06 22.06 20.09

median 26 26 25 24 22 20

2.5th 19 18 17 17 15 13

5th 20 19 19 18 16 14

95th 31 31 31 30 28 26

97.5th 32 32 32 31 29 27

Summary statistics of the posterior density of the true model number of factors for various values of ψ. Estimated

over the 1973:10-2016:12 sample using a cross-section of 25 Fama-French size and book-to-market and 30 Industry

test asset portfolios, using the continuous spike and slab approach of section II.2.3 and 51 factors yielding 251 ≈ 2.25

quadrillion models. The prior for each factor inclusion is a Beta(2, 2).
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Figure 7: Posterior density of the Sharpe ratio of the model-implied stochastic discount factor

Posterior density of the Sharpe ratio of the model-implied stochastic discount factor for various values of ψ ∈ [1, 100].

Estimated over the 1973:10-2016:12 sample using a cross-section of 25 Fama-French size and book-to-market and 30

Industry test asset portfolios, computed using the continuous spike and slab approach of section II.2.3, 51 factors

described in Table B.1 of Appendix B, and Bayesian Model Averaging of the 251 ≈ 2.25 quadrillion possible models.

The prior for each factor inclusion is a Beta(2, 2).

Table 11: Posterior distribution of the Sharpe ratio of the model-implied stochastic discount factor

ψ:

1 5 10 20 50 100

mean 0.43 0.66 0.74 0.80 0.87 0.92

median 0.42 0.66 0.73 0.79 0.86 0.91

2.5th 0.25 0.43 0.49 0.54 0.59 0.61

5th 0.28 0.47 0.53 0.58 0.63 0.65

95th 0.60 0.89 0.98 1.07 1.18 1.26

97.5th 0.63 0.94 1.05 1.14 1.25 1.33

Summary statistics of the posterior distribution of the maximal Sharpe ratio of the model-implied SDF for various

values of ψ ∈ [1, 100]. Estimated over the 1973:10-2016:12 sample using a cross-section of 25 Fama-French size and

book-to-market and 30 Industry test asset portfolios, computed using the continuous spike and slab approach of

section II.2.3, 51 factors described in Table B.1 of Appendix B, and Bayesian Model Averaging of the 251 ≈ 2.25

quadrillion possible models. The prior for each factor inclusion is a Beta(2, 2).
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V Extensions

In additions to the extensions formalized in remarks 1 (on how to handle generated factors such as

principal components and factor mimicking portfolios) and 3 (on how to handle the identification

failure generated by ‘level factors’), our method can be feasibly extended to encompass several

salient generalizations.

First, based on economic considerations, one might possibly want to bound the maximum risk

premia (or the maximum Sharpe ratios) associated with the factors. This can be achieved by

replacing the Gaussian distributions in our spike-and-slab priors with (rescaled and centered) Beta

distributions, since the latter have bounded support.

Second, Lewellen, Nagel, and Shanken (2010) points out that the first pass time-series regression

is often affected by having a strong factor structure in the residuals. Given the hierarchical structure

of our Bayesian approach, one can add latent linear components in the time series regression of asset

returns on factors, reformulate the time series estimation step as a state-space problem, and filter

the latent components (e.g. via Kalman filter). The posterior sampling of the time series parameters

would then be enriched by the drawing of the added terms as in Bryzgalova and Julliard (2018).

Furthermore, one could allow the latent time series factors to be potential priced in the cross-

section (again as in Bryzgalova and Julliard (2018)). This extension would increase the numerical

complexity of the procedure in the time-series step, but would nonetheless leave unchanged the

method proposed in this paper at the cross-sectional step (with the only difference that the time

series loadings of the latent factors could be included in the cross-sectional step as if these latent

factors were observable). This extended approach would lead to valid posterior inference and model

selection.

Third, again thanks to the hierarchical structure of our method, time varying time series betas

could be accommodated by adopting the time varying parameters approach of Primiceri (2005)

in the time series step. And since in our approach the asset specific expected risk premia are

a parameter estimated in the time series step, this extension would also allow for time variation

in asset risk premia. Furthermore, albeit this would increase the numerical complexity of the

cross-sectional inference step, the time varying parameters formulation could also be used for the

modelling of the factor risk premia.

VI Conclusions

We have developed a novel (Bayesian) method for the analysis of linear factor models in asset

pricing. The approach can handle the quadrillions of models generated by the zoo of traded and

non traded factors, and delivers inference that is robust to the common identification failures, and

spurious inference problems, caused by useless factors.

We have applied our approach to the study of more than two quadrillion factor model spec-

ification and have found that: 1) only a handful of factors (the Fama and French (1992) “high-

minus-low” proxy for the value premium, the market index, as well the adjusted versions of the
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“small-minus-big” size factor and the market factor of Daniel, Mota, Rottke, and Santos (2018))

seem to be robust explanators of the cross-sections of asset returns; 2) jointly, the four robust fac-

tors provide a model that is, compared to the previous empirical literature, one order of magnitude

more likely to have generated the observed asset returns (it’s posterior probability is about 90%);

3) with very high probability the “true” latent stochastic discount factor is dense in the space of

factors proposed in the previous literature i.e. capturing its characteristics requires the use of 24-25

factors (at the posterior mean of the SDF sparsity); 4) despite being dense in the space of factors,

the SDF-implied maximum Sharpe ratio is not excessive, suggesting a high degree of commonality,

in terms of captured risks, among the factors in the zoo.

As a byproduct of our novel framework for empirical asset pricing, we provide a very simple

Bayesian version of the Fama and MacBeth (1973) inference regression method (BFM). We show

that this simple procedure (that does neither require optimisation nor tuning parameters, and is not

harder to implement than e.g. the Shanken (1992) correction for standard errors), makes useless

factors easily detectable in finite sample. In extensive simulations, the BFM and its GLS analogue

(BFM-GLS) perform well even with relatively small time, and large cross-sectional, dimensions.

We apply BFM and BFM-GLS to several notable factor models, and document that a range of

non-traded factors, such as consumption proxies, labour factors, or the consumption-to-wealth

ratio, are only weakly identified at best, and are characterised by a substantial degree of model

misspecification and uncertainty.

Finally, thanks to its hierarchical structure, our framework is extremely flexible and can accom-

modate, and deliver robust inference in the presence of, 1) pre-estimated factors (e.g. mimicking

portfolios and principal components), 2) latent, priced and unpriced, factors, 3) time varying betas

as well as asset and factor risk premia.
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A Additional Derivations

A.1 Derivation of the posterior distribution in section II.1

Let’s consider first the time-series regression. We assume that t
iid∼ N (0,Σ), or  ∼ MVN (0T×N ,Σ⊗

IT ). The likelihood of data (R,F ) is therefore

p(data|B,Σ) = (2π)−
NT
2 |Σ|−

T
2 exp


−1

2
tr[Σ−1(R− FB)⊤(R− FB)]


.

After assigning the Jeffreys’ prior for (B,Σ): π(B,Σ) ∝ |Σ|−
N+1

2 , we simplify the likelihood

function by exploiting the fact that OLS estimated residuals are orthogonal to the regressors:

(R− FB)⊤(R− FB) = [R− FB̂ols − F (B − B̂ols)]
⊤[R− FB̂ols − F (B − B̂ols)]

= (R− FB̂ols)
⊤(R− FB̂ols) + (B − B̂ols)

⊤F⊤F (B − B̂ols)

= T Σ̂+ (B − B̂ols)
⊤F⊤F (B − B̂ols),

where

B̂ols =


â⊤

β̂⊤


= (F⊤F )−1F⊤R, Σ̂ols =

1

T
(R− FB̂ols)

⊤(R− FB̂ols).

Therefore, the posterior distribution in the first step is

p(B,Σ|data) ∝ (2π)−
NT
2 |Σ|−

T+N+1
2 exp


−1

2
tr[Σ−1(R− FB)⊤(R− FB)]



∝ |Σ|−
T+N+1

2 e−
1
2
tr[Σ−1(T Σ̂)]e−

1
2
tr[Σ−1(B−B̂ols)

⊤F⊤F (B−B̂ols)].

Hence the posterior distribution of B conditional on data and Σ is

p(B|Σ, data) ∝ exp


−1

2
tr[Σ−1(B − B̂ols)

⊤F⊤F (B − B̂ols)]


,

and the above is the kernel of the multivariate normal in equation (8).

If we further integrate out B, it is easy to show that

p(Σ|data) ∝ |Σ|−
T+N−K

2 exp


−1

2
tr[Σ−1(T Σ̂)]


.

Therefore, the posterior distribution of Σ is the inverse-Wishart in equation (9).

Recall that β = (1N βf ), λ
⊤ = (λc λ⊤

f ). If we assume that the pricing error αi follows an

independent and idencitical normal distribution N (0,σ2), the likelihood function in the second step

is

p(data|λ,σ2) = (2πσ2)−
N
2 exp


− 1

2σ2
(a− βλ)⊤(a− βλ)



where data in the second step include (a,βf ) drawn from the first step. Assuming the diffuse
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Jeffreys’ prior π(λ,σ2) ∝ 1
σ2 the posterior distribution of (λ,σ2) is

p(λ,σ2|data,B,Σ) ∝ (σ2)−
N+2

2 exp


− 1

2σ2
(a− βλ)⊤(a− βλ)



= (σ2)−
N+2

2 exp


− 1

2σ2
(a− βλ̂+ β(λ̂− λ))⊤(a− βλ̂+ β(λ̂− λ))



= (σ2)−
N+2

2 exp


−N σ̂2

2σ2


exp


−(λ− λ̂)⊤β⊤β(λ− λ̂)

2σ2


,

∴ p(λ|σ2, data,B,Σ) ∝ exp


−(λ− λ̂)⊤β⊤β(λ− λ̂)

2σ2


,

where λ̂ = (β⊤β)−1β⊤a and σ̂2 = (a−βλ̂)⊤(a−βλ̂)
N . Therefore, the posterior conditional distribution

of λ is the one in equation (12). Finally, we can derive the posterior distribution of σ2 by integrating

out λ

p(σ2|data,B,Σ) =


p(λ,σ2|data,B,Σ)dσ2 ∝ (σ2)−

N−K+1
2 exp


−N σ̂2

2σ2


,

hence obtaining the posterior distribution in equation (13).

A.2 Non-spherical pricing errors

Our framework can also easily accommodate non-spherical cross-sectional pricing errors. To see

this note that, under the null of the model, we can rewrite equation (1) as Rt = βλ + βfft + t.

Consider the cross-sectional regression, and let ET define the sample mean operator. Since ET [Rt] =

βλ+ET [βfft]+ET [t] = βλ+ET [t], the pricing error α should be equal to ET [t]. Hence, under

the hypothesis that the model is correctly specified, and in the spirit of the central limit theorem,

a suitable distributional assumption for the pricing errors α in the second step is

α|Σ ∼ N


0N ,

1

T
Σ


.

Implying the distribution of R̄ ≡ ET [Rt] ∼ N (βλ, 1
T Σ). The likelihood function in the second step

is then

p(data|λ) = (2π)−
N
2


1

T
Σ


− 1

2

exp


−T

2
(R̄− βλ)⊤Σ−1(R̄− βλ)



∝ exp


−T

2
(λ⊤β⊤Σ−1βλ− 2λ⊤β⊤Σ−1R̄)



Hence, we can now define the following estimator.

Definition 3 (Bayesian Fama-MacBeth GLS2 (BFM-GLS2)) The BFM-GLS2 posterior dis-

tribution of λ is

λ|data,B,Σ ∼ N (λ̂,Σλ) (18)
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where λ̂ = (β⊤Σ−1β)−1β⊤Σ−1R̄, Σλ = 1
T (β

⊤Σ−1β)−1, and where β and Σ are drawn from the

Normal-inverse-Wishart in (8)-(9).

In the above, the conditional expectation λ̂ = (β⊤Σ−1β)−1β⊤Σ−1R̄ is essentially the Fama-

MacBeth GLS estimate of λ, and Σλ is just the standard covariance matrix of the GLS estimates.

Different from our OLS version, we incorporate the uncertainty of R̄ by drawing λ from the normal

distribution with variance matrix 1
T (β

⊤Σ−1β)−1.

In this case, two forces are at play to make useless factors detectable in finite sample. First, as

for the BFM and BFM-GLS cases, useless factors will generate posterior draws with diverging λ
and flipping sing. Second, differently from our OLS version, we incorporate the uncertainty of R̄

by drawing λ from the normal distribution with variance matrix 1
T (β

⊤Σ−1β)−1.

A.3 Formal derivation of the flat prior pitfall for risk premia

Following the derivation in section A.1, the likelihood function in the second step is

p(data|γ,λ,σ2) = (2πσ2)−
N
2 exp


− 1

2σ2
(a− βγλγ)

⊤(a− βγλγ)


(19)

Assigning a Jeffreys’ prior to the parameters19 (λ,σ2), the marginal likelihood function conditional

on model index γ is

p(data|γ) =
 

p(data|γ,λ,σ2)π(λ,σ2|γ)dλdσ2

∝
 

(σ2)−
N+2

2 exp


− 1

2σ2
(a− βγλγ)

⊤(a− βγλγ)


dλdσ2

=

 
(σ2)−

N+2
2 exp


−
N σ̂2

γ

2σ2


exp


−
(λγ − λ̂γ)

⊤β⊤
γ βγ(λγ − λ̂γ)

2σ2


dλdσ2

= (2π)
pγ+1

2 |β⊤
γ βγ |−

1
2


(σ2)−

N−pγ+1

2 exp


−
N σ̂2

γ

2σ2


dσ2

= (2π)
pγ+1

2 |β⊤
γ βγ |−

1
2

Γ(
N−pγ+1

2 )

(
N σ̂2

γ

2 )
N−pγ+1

2

where λ̂γ = (β⊤
γ βγ)

−1β⊤
γ a, σ̂

2
γ =

(a−βγ λ̂γ)⊤(a−βγ λ̂γ)
N and Γ denotes the Gamma function.

A.4 Proof of Remark 2

Proof. Consider two nested linear factor models, γ and γ ′. The only difference between γ and γ ′

is γp: γp equals 1 in model γ but 0 in model γ ′. Let γ−p denote a (K − 1) × 1 vector of model

index excluding γp: γ⊤ = (γ⊤
−p, 1) and γ ′⊤ = (γ⊤

−p, 0). Suppose that we rearrange the ordering of

19More precisely, the priors for (λ,σ2) are π(λγ ,σ
2) ∝ 1

σ2 and λ−γ = 0.
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factors such that factor p is the last one. To begin with, we introduce some matrix notations:

βγ = (βγ′ ,βp), Dγ =


Dγ′

1
ψp


, β⊤

γ βγ +Dγ =


β⊤
γ′βγ′ +Dγ′ β⊤

γ′βp

β⊤
p βγ′ β⊤

p βp + 1
ψp


,

|β⊤
γ βγ +Dγ | = |β⊤

γ′βγ′ +Dγ′ |× |β⊤
p βp +

1

ψp
− β⊤

p βγ′(β⊤
γ′βγ′ +Dγ′)−1β⊤

γ′βp|,

|β⊤
γ βγ +Dγ | = |β⊤

γ′βγ′ +Dγ′ |× |β⊤
p βp +

1

ψp
− β⊤

p βγ′(β⊤
γ′βγ′ +Dγ′)−1β⊤

γ′βp|,

|Dγ | = |Dγ′ |× 1

ψp
.

Equipped with the above, we have by direct calculation

p(data|γj = 1,γ−j)

p(data|γj = 0,γ−j)
=

|Dγ |
1
2

|β⊤
γ βγ+Dγ |

1
2

1


SSRγ
2

N
2

|D
γ′ |

1
2

|β⊤
γ′βγ′+D

γ′ |
1
2

1


SSRγ′
2

N
2

=


SSRγ′

SSRγ

N
2

|Dγ |
|Dγ′ |

 1
2


|β⊤

γ′βγ′ +Dγ′ |
|β⊤

γ βγ +Dγ |

 1
2

=


SSRγ′

SSRγ

N
2

ψ
− 1

2
p

β
⊤
p βp +

1

ψp
− β⊤

p βγ′


β⊤
γ′βγ′ +Dγ′

−1
β⊤
γ′βp


− 1

2

=


SSRγ′

SSRγ

N
2

1 + ψpβ

⊤
p


IN − βγ′


β⊤
γ′βγ′ +Dγ′

−1
β⊤
γ′


βp

− 1
2

where β⊤
p


IN − βγ′(β⊤

γ′βγ′ +Dγ′)−1β⊤
γ′


βp = minb{(βp−βγ′b)⊤(βp−βγ′b)+ b⊤Dγ′b}, which

is the minimal value of the penalised sum of squared errors when we use βγ′ to predict βp.

A.5 Confidence Intervals for R2 in Fama-MacBeth Estimation

In the spirit of Stock (1991) and Lewellen, Nagel, and Shanken (2010), for each of the simulations

we use the following approach to construct the confidence interval for cross-sectional R2, produced

by the standard Fama-MacBeth estimation.

First, we choose a hypothetical true cross-sectional R2, denoted by R2
h. The expected test asset

returns, E[Rt], are assumed to follow E[Rt] = hβ̂λ̂+α, where β̂ and λ̂ are sample estimates of β

and λ from historical data, and αi
iid∼ N (0,σ2

e). The constants h and σ2
e are chosen to match the

hypothetical cross-sectional R2.

Let R̄ denote the vector of historical average asset returns and V arN (x) denote the sample

cross-sectional variance of vector x. The population cross-sectional R2 is therefore

R2
h =

h2V arN (β̂λ̂)

V arN (E[Rt])
=

h2V arN (β̂λ̂)

h2V arN (β̂λ̂) + σ2
e

.

At the same time, we’d like to maintain the historical cross-sectional dispersion of test asset returns,
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so we further have the following equation:

V arN (E[Rt]) = h2V arN (β̂λ̂) + σ2
e = V arN (ET [Rt]).

h2 =
R2

hV arN (ET [Rt])

V arN (β̂λ̂)
,

σ2
e = (1−R2

h)V arN (ET [Rt]).

Solving the system for h and σ2
e , we simulate a vector of pricing errors from a normal distribution,

αi
iid∼ N (0,σ2

e). Since the sample variance of the draws αi is generally different from σ2
e , with a non-

zero cross-sectional covariance with β̂, we adjust the vector α by: (1) subtracting CovN (β̂λ̂,α)

V arN (β̂λ̂)
β̂λ̂

from α such as the sample covariance between α and β̂λ̂ is zero; (2) multiplying α by σe
σN (α) in

order that sample cross-sectional variance of α equals σ2
e .

Second, we simulate a random sample of both factors and test asset returns. Factors are drawn

with replacement from their empirical sample, while test assets returns Rt are assumed to follow a

parametric normal distribution, that is,

Rt|ft
iid∼ N (hβ̂λ̂+α+ β̂ft, Σ̂)20.

We then use Fama-MacBeth two-step approach to estimateR2 for every simulated sample {ft,Rt}Tt=1.

The second step is repeated for 1,000 times. For each hypothetical R2 between 0 and 1, we find the

(5%, 95%) confidence interval in the simulation. Finally, build a 90% confidence interval for R̂2 by

including those values of hypothetically true R2, whose 90% confidence interval contains R̂2.

The confidence intervals for GLS R2 can be found in a similar way, with the only difference

of focusing on cross-sectional R2 for a linear combination of Rt, i.e. Σ− 1
2Rt. Let R̃t = Σ− 1

2Rt,

β̃ = Σ− 1
2 β̂, and t = Σ− 1

2 t
iid∼ N (0, IN ). The simulation then relies on R̃t rather than Rt,

R̃t|ft
iid∼ N (hβ̃λ̂+α+ β̃ft, IN ).

A.6 Large N behavior

In this section we investigate the properties of the BFM procedure in estimating the risk premia

and R-squared, as well successfully identifying irrelevant factors in the model, when applied to a

large cross-section. For the sake of brevity, here we present the overview of the simulation results,

with Tables C4 - C9 summarizing the output.

We consider the same simulation design as described at the beginning of Section III, except

for the choice of the cross-section of test assets which time series and cross-sectional features we

mimic. In our baseline case in the previous subsections we built a cross-section to emulate the 25

Fama-French portfolios, sorted by size and value. Now instead we consider the properties of the

following composite cross-sections to simulate returns:

20Σ̂ is the sample estimate of covariance matrix of random errors in time-series regression in equation (1).
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(a) N = 55: 25 Fama-French portfolios, sorted by size and value and 30 industry portfolios;

(b) N = 100: 25 Fama-French portfolios, sorted by size and value, 30 industry portfolios, 25

profitability and investment portfolios, 10 momentum portfolios, and 10 long-term reversal

portfolios.

The rest of the simulation design stays unchanged, i.e. the strong factor mimics the behavior of

HML, with its betas and risk premia corresponding to their in-sample values, cross-sectional R2
adj ,

as well as portfolio average returns, and variance of the residuals.

Tables C4 and C7 focus on the case of including only a strong factor into the model that is

inherently misspecified and estimated on a large cross-section (N = 55 and N = 100, respectively).

Risk premia estimates, recovered by BFM, are centered around the pseudo-true values and confi-

dence intervals, produced by the posterior coverage, have the correct size. Confidence intervals for

R2
adj are equally centered around the true values, and overall become quite tight for a large sample

size (e.g. T ≥ 600). The GLS version of the cross-sectional fit is slightly lower than than the true

value, and this is largely due to the estimation errors in the weight matrix, that are particularly

important for a large cross-section, but overall are very close to the true values.

Tables C5 and C8 focus on the model with just a useless factor. As expected, the standard

Fama-MacBeth estimation yields confidence intervals for the risk premia with wrong size, rejecting

the zero risk premia for a useless factor with increasing frequency as T becomes large. In contrast,

the BFM inference remains valid, with its empirical rejection rates being close to the true size of

the tests.

Finally, Tables C6 and C9 consider the mixed case of estimating a model that includes both

strong and useless factors. Again, BFM correctly identifies the presence of a spurious factor in

the specification, and if anything, becomes somewhat more conservative, underrejecting the zero

risk premia associated with it. This conservative inference is also shared by the estimates of the

strong factor risk premia, with the latter being particularly evident in a large sample estimation

(T = 20, 000, N = 100). Again, the reason for this additional estimation uncertainty seems to lie

in the large N behavior of the cross-sectional regression (betas and the weight matrix in case of

the GLS). The posterior of a cross-sectional measure of fit remains relatively tight around the true

value.
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B Data

CAPM. Following Sharpe (1964) and Lintner (1965), the only risk factor is the excess return on

market portfolio, which is proxied by a value-weighted portfolio of all CRSP firms incorporated in

US and listed on the NYSE, AMEX or NASDAQ. We use 1-month Treasury rate as a proxy for

risk-free rate. The data comes from Ken French’s website.

Fama-French 3 factor model. Fama and French (1992) extend CAPM by introducing two

additional factors, SMB and HML, where SMB is the return difference between portfolios of stocks

with small and large market capitalizations, and HML is the return difference between portfolios of

stocks with high and low book-to-market ratio. Again, the data comes from Ken French’s website.

Carhart (1997). This paper extends Fama-French 3 factor model by including a momentum

factor, UMD (also available from Ken French website).

q-factor model. Hou, Xue, and Zhang (2015) introduce a four-factor model that includes market

excess return, a new size factor (ME), proxied by the return difference between large and small

stocks, an investment factor (I/A), proxied by the return difference of stocks with high and low

investment-to-asset ratio, and finally the profitability factor (ROE), created by sorting stocks based

on their return-on-equity ratio. We receive the data from the authors. An alternative is Fama-

French five factor model, but we only show the result of the first one since factors in these two

papers are extremely similar.

Liquidity. Pástor and Stambaugh (2003) created a liquidity factor based on the fact that order

flows result in larger return reversals when liquidity is lower. We download the monthly tradable

liquidity factor from Stambaugh’s website.

Quality-minus-junk. Asness, Frazzini, and Pedersen (2019) introduced the QMJ factor, and

demonstrated that profitable, growing, well-managed companies, referred to as ‘quality’ firms,

command a higher rate of return. The factor is available from AQR data library.

CCAPM. Real growth rate in nondurable consumption per capita (quarterly data) is computed

from the data on consumption levels, available at St Louis FRED.

Scaled CAPM. Lettau and Ludvigson (2001) considered a conditional SDFmt+1 = at−btMKTt+1,

where at and bt are linear function of conditional information cayt. We download cayt from the

authors’ website.

Scaled CCAPM. Similar to conditional CAPM, but the SDF includes nondurable consumption

growth instead of the market factor.

HC-CCAPM. Jagannathan and Wang (1996) added a labor factor to CAPM. Following their

paper, we compute the returns on human capital as:

Rlabor
t =

Lt−1 + Lt−2

Lt−2 + Lt−3
− 1 (20)

where Lt is the disposable labor income per capita.

Scaled HC-CCAPM. Lettau and Ludvigson (2001) extend Jagannathan and Wang (1996) by

considering a conditional SDF in which cay is the only conditional information.
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Durable consumption model. Yogo (2006) emphasized the role of durable consumption goods

in explaining high returns of small stocks and value stocks. We consider a three-factor model:

market excess return, non-durable consumption growth and durable (real) consumption growth Cd

(seasonally adjusted at annual rates). The data is from Yogo’s website, 1952Q1 to 2001Q4.

B.1 Factor list

Table B1: List of the factors for cross-sectional asset pricing models

Factor ID Factor name and description Reference Source/construction

MKT Market excess return Sharpe (1964), Lintner
(1965)

Ken French website

SMB Size factor, constructed as a long-short
portfolio of stocks sorted by their mar-
ket cap (small-minus-big)

Fama and French (1992) Ken French website

HML Value factor, constructed as a long-
short portfolio of stocks sorted by their
book-to-market ratio (high-minus-low)

Fama and French (1992) Ken French website

RMW Profitability factor, constructed as a
long-short portfolio of stocks sorted by
their profitability (robust-minus-weak)

Fama and French (2015) Ken French website

CMA Investment factor, constructed as a
long-short portfolio of stocks sorted by
their investment activity (conservative-
minus-aggressive)

Fama and French (2015) Ken French website

UMD Momentum factor, constructed as a
long-short portfolio of stocks sorted by
their 12-2 cumulative previous return
(up-minus-down),

Carhart (1997), Je-
gadeesh and Titman
(1993)

Ken French website

STREV Short-term reversal factor, constructed
as a long-short portfolio of stocks
sorted by their previous month return

Jegadeesh and Titman
(1993)

Ken French website

LTREV Long-term reversal factor, constructed
as a long-short portfolio of stocks
sorted by their cumulative return ac-
crued in the previous 60-13 months

Jegadeesh and Titman
(2001)

Ken French website

q IA Investment factor, constructed as a
long-short portfolio of stocks sorted by
their investment-to-capital

Hou, Xue, and Zhang
(2015)

Lu Zhang

q ROE Profitability factor, constructed as a
long-short portfolio of stocks sorted by
their return on equity

Hou, Xue, and Zhang
(2015)

Lu Zhang

LIQ NT Liquidity factor, computed as the av-
erage of individual-stock measures es-
timated with daily data (residual pre-
dictability, controlling for the market
factor)

Pástor and Stambaugh
(2003)

Robert Stambaugh
website

LIQ TR Liquidity factor, constructed as a long-
short portfolio of stocks sorted by their
exposure to LIQ NT

Pástor and Stambaugh
(2003)

Robert Stambaugh
website

MGMT Mispricing factor, constructed as a
combination of anomalies, related to
firm’s management practices (stock is-
sue, accruals, asset growth, etc)

Stambaugh and Yuan
(2016)

Robert Stambaugh
website
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PERF Mispricing factor, constructed as a
combination of anomalies, related to
firm’s performance (profitability, dis-
tress, return on assets, etc)

Stambaugh and Yuan
(2016)

Robert Stambaugh
website

ACCR Accruals factor, constructed as a long-
short portfolio of stocks sorted by
changes in operating working capital
per split-adjusted share from the fiscal
year end t-2 to t-1, divided by book eq-
uity per share in t-1

Sloan (1996) Robert Stambaugh
website

DISSTR Distress factor, constructed as a long-
short portfolio of stocks sorted by the
predicted failure probability

Campbell, Hilscher, and
Szilagyi (2008)

Robert Stambaugh
website

ASS Growth Asset growth factor, constructed as a
long-short portfolio of stocks sorted by
growth rate of total assets in the previ-
ous fiscal year

Cooper, Gulen, and
Schill (2008)

Robert Stambaugh
website

COMP ISSUE Composite issue factor, constructed as
a long-short portfolio of stocks sorted
by the growth in the firm’s total market
value of equity above that of the stock’s
rate of return

Daniel and Titman
(2006)

Robert Stambaugh
website

GR PROF Gross profitability factor, constructed
as a long-short portfolio of stocks
sorted by the ratio of gross profit to
assets creates abnormal benchmark-
adjusted returns

Novy-Marx (2013) Robert Stambaugh
website

INV IN ASS Investment-in-assets factor, con-
structed as a long-short portfolio of
stocks sorted by the annual change in
gross property, plant, and equipment,
plus the annual change in inventories,
scaled by lagged book value of the
assets

Titman, Wei, and Xie
(2004)

Robert Stambaugh
website

NetOA Net operating assets factor, con-
structed as a long-short portfolio of
stocks sorted by net operating assets

Hirshleifer, Kewei, Teoh,
and Zhang (2004)

Robert Stambaugh
website

OSCORE Ohlson O-score factor, constructed as a
long-short portfolio of stocks sorted by
the predicted value of a distress mea-
sure

Ohlson (1980) Robert Stambaugh
website

ROA Return-on-assets factor, constructed as
a long-short portfolio of stocks sorted
by their return on assets

Chen, Novy-Marx, and
Zhang (2010)

Robert Stambaugh
website

STOCK ISS Stock issuance factor, constructed as
a long-short portfolio of stocks sorted
by their annual log change in split-
adjusted shares outstanding

Ritter (1991), Fama and
French (2008)

Robert Stambaugh
website

INTERM CR Innovations to the intermediaries’ cap-
ital (equity) ratio

He, Kelly, and Manela
(2017)

Asaf Manela website

BAB Betting-against-beta factor, con-
structed as a portfolio that holds
low-beta assets, leveraged to a beta
of 1, and that shorts high-beta assets,
de-leveraged to a beta of 1

Frazzini and Pedersen
(2014)

AQR data library

HML DEVIL A version of the HML factor that relies
on the current price level to sort the
stocks into long and short legs

Asness and Frazzini
(2013)

AQR data library
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QMJ Auality-minus-junk factor, constructed
as a long-short portfolio of stocks
sorted by the combination of their
safety, profitability, growth, and the
quality of management practices

Asness, Frazzini, and
Pedersen (2019)

AQR data library

FIN UNC A measure of financial uncertainty Jurado, Ludvigson, and
Ng (2015), Ludvigson,
Ma, and Ng (2019)

Sydney Ludvigson
website

REAL UNC A measure of real economic uncertainty Jurado, Ludvigson, and
Ng (2015), Ludvigson,
Ma, and Ng (2019)

Sydney Ludvigson
website

MACRO UNC A measure of macroeconomic uncer-
tainty

Jurado, Ludvigson, and
Ng (2015), Ludvigson,
Ma, and Ng (2019)

Sydney Ludvigson
website

TERM Term spread, measured as the differ-
ence in 10 year Treasury bonds and fed
funds rate

Chen, Ross, and Roll
(1986), Fama and French
(1993)

FRED-MD database

DELTA SLOPE Change in the difference between a
10-year Treasury bond yield and a 3-
month Treasury bill yield

Ferson and Harvey
(1991)

FRED-MD database

CREDIT Credit spread, measured as the dif-
ference between Moody’s BAA corpo-
rate bond yields and 10-year Treasury
bonds

Chen, Ross, and Roll
(1986), Fama and French
(1993)

FRED-MD database

DIV Dividend yield Campbell (1996) FRED-MD database
PE Price-earnings ratio Basu (1977), Ball (1985) FRED-MD database

BW INV SENT Investor sentiment measure, aggre-
gated from a set of indices, orthogonal
to macroeconomic fundamentals

Baker and Wurgler
(2006)

Dashan Huang web-
site

HJTZ INV SENT Investor sentiment measure, extracted
with PLS from Baker and Wurgler
(2006) proxies

Huang, Jiang, Tu, and
Zhou (2015)

Dashan Huang web-
site

BEH PEAD Short-term behavioral factor, reflecting
post-earnings announcement drift

Daniel, Hirshleifer, and
Sun (2019)

Kent Daniel website

BEH FIN Long-term behavioral factor, predom-
inantly capturing the impact of share
issuance and correction

Daniel, Hirshleifer, and
Sun (2019)

Kent Daniel website

MKT∗ Market factor with a hedged unpriced
component

Daniel, Mota, Rottke,
and Santos (2018)

Kent Daniel website

SMB∗ SMB with a hedged unpriced compo-
nent

Daniel, Mota, Rottke,
and Santos (2018)

Kent Daniel website

HML∗ HML with a hedged unpriced compo-
nent

Daniel, Mota, Rottke,
and Santos (2018)

Kent Daniel website

RMW∗ RMW with a hedged unpriced compo-
nent

Daniel, Mota, Rottke,
and Santos (2018)

Kent Daniel website

CMA∗ CMA with a hedged unpriced compo-
nent

Daniel, Mota, Rottke,
and Santos (2018)

Kent Daniel website

SKEW Systematic skewness factor, con-
structed as a long-short portfolio of
stocks sorted on the their predicted
systematic skewness rank

Langlois (2019) Hugues Langlois
website

NONDUR Nondurable consumption growth (real,
chain-weighted, per capita)

Chen, Ross, and Roll
(1986), Breeden, Gib-
bons, and Litzenberger
(1989)

Monthly consump-
tion expenditure,
the chain-weighted
price index, and
population data are
from BEA
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SERV Growth rate (real, chain-weighted, per
capita) service expenditure

Breeden, Gibbons, and
Litzenberger (1989),
Hall (1978)

Monthly expenditure
for services, the
chain-weighted price
index, and popula-
tion data are from
BEA

UNRATE Unemployment rate Gertler and Grinols
(1982)

FRED-MD database

IND PROD Growth rate of industrial production Chan, Chen, and Hsieh
(1985), Chen, Ross, and
Roll (1986)

Industrial Produc-
tion Index is from
the Board of Gover-
nors of the Federal
Reserve System

OIL Monthly growth rate of the Producer
Price index for Crude Petroleum (do-
mestic production)

Chen, Ross, and Roll
(1986)

PPI is from U.S. Bu-
reau of Labor Statis-
tics

The table presents the list of factors used in Section IV.2. For each of the variables we present their identification
index, the nature of the factor, and the source of data for downloading and/or constructing the time series.
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C Additional Tables

Table C1: Tests of risk premia in a correctly specified model with a strong factor

λintercept λHML R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A. OLS

100 0.115 0.049 0.017 0.114 0.050 0.014 -4.17% 44.29%
200 0.101 0.055 0.012 0.096 0.047 0.010 0.96% 67.73%

FM 600 0.106 0.053 0.011 0.100 0.048 0.011 30.52% 84.56%
1000 0.096 0.050 0.011 0.102 0.044 0.010 47.86% 90.18%
20000 0.102 0.042 0.012 0.100 0.049 0.007 96.20% 99.43%

100 0.063 0.027 0.006 0.034 0.010 0.002 -3.37% 35.16%
200 0.107 0.055 0.012 0.080 0.037 0.005 -2.99% 49.06%

BFM 600 0.095 0.050 0.007 0.080 0.035 0.007 4.31% 69.13%
1000 0.092 0.054 0.008 0.092 0.047 0.012 32.91% 78.18%
20000 0.108 0.054 0.012 0.110 0.052 0.008 96.54% 98.49%

Panel B. GLS

100 0.221 0.156 0.061 0.212 0.137 0.064 10.62% 73.80%
200 0.153 0.088 0.024 0.144 0.088 0.024 59.23% 85.71%

FM 600 0.117 0.062 0.017 0.115 0.060 0.014 83.38% 94.46%
1000 0.106 0.053 0.011 0.112 0.052 0.011 90.03% 96.49%
20000 0.100 0.058 0.010 0.103 0.047 0.011 99.47% 99.81%

100 0.151 0.088 0.026 0.149 0.086 0.026 26.42% 65.69%
200 0.123 0.066 0.016 0.124 0.066 0.015 49.07% 73.52%

BFM 600 0.106 0.055 0.012 0.105 0.056 0.011 76.40% 87.30%
1000 0.107 0.054 0.011 0.103 0.051 0.011 85.12% 91.54%
20000 0.098 0.057 0.009 0.100 0.051 0.013 99.15% 99.50%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λ∗

i in a correctly
specified model with an intercept and a strong factor. Hypothetical true value of R2

adj is 100%. Fama-MacBeth esti-
mates are constructed using OLS (GLS) two-step cross-sectional regressions, with standard errors including Shanken
correction. Confidence intervals for BFM estimates are constructed using a posterior distribution of Fama-MacBeth
estimates of λ. The last two columns report the 5th and 95th percentiles of cross-sectional R2

adj across 1000 simula-
tions, evaluated at the simulation point estimates for FM, and its posterior mode for BFM.
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Table C2: Tests of risk premia in a correctly specified model with a useless factor

λintercept λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A. OLS

100 0.087 0.033 0.008 0.019 0.003 0.000 -4.19% 48.44%
200 0.071 0.034 0.006 0.052 0.011 0.000 -4.20% 56.84%

FM 600 0.077 0.031 0.005 0.131 0.037 0.000 -4.22% 58.50%
1000 0.071 0.035 0.006 0.205 0.066 0.002 -4.16% 61.28%
20000 0.133 0.077 0.027 0.709 0.479 0.140 -4.11% 70.07%

100 0.039 0.011 0.002 0.001 0.001 0.000 -2.29% -0.12%
200 0.038 0.013 0.001 0.002 0.000 0.000 -2.32% 0.30%

BFM 600 0.048 0.012 0.002 0.017 0.006 0.001 -2.21% 1.26%
1000 0.048 0.011 0.000 0.031 0.010 0.000 -2.14% 1.60%
20000 0.007 0.000 0.000 0.103 0.051 0.014 -1.76% 57.93%

Panel B. GLS

100 0.215 0.130 0.052 0.211 0.117 0.033 -3.10% 37.27%
200 0.141 0.080 0.023 0.139 0.072 0.013 -3.73% 22.82%

FM 600 0.108 0.053 0.014 0.142 0.065 0.010 -3.77% 21.16%
1000 0.097 0.053 0.009 0.171 0.082 0.012 -3.71% 20.92%
20000 0.108 0.047 0.010 0.621 0.559 0.372 -2.59% 16.97%

100 0.136 0.074 0.022 0.029 0.011 0.001 -1.94% 10.60%
200 0.112 0.060 0.014 0.012 0.004 0.000 -2.39% 8.37%

BFM 600 0.097 0.047 0.010 0.010 0.002 0.000 -2.65% 7.49%
1000 0.096 0.047 0.009 0.010 0.002 0.000 -2.76% 8.32%
20000 0.071 0.034 0.004 0.077 0.033 0.004 -3.26% 7.66%

The table shows the frequency of rejecting the null hypothesisH0 : λi = λ∗
i for pseudo-true value of λc and λ∗

useless = 0
in a correctly specified model with an intercept and a useless factor. The true value of R2 is 0%. Fama-MacBeth esti-
mates are constructed using OLS (GLS) two-step cross-sectional regressions, with standard errors including Shanken
correction. Confidence intervals for BFM estimates are constructed using a posterior distribution of Fama-MacBeth
estimates of λ. The last two columns report the 5th and 95th percentiles of cross-sectional R2

adj across 1000 simula-
tions, evaluated at the simulation point estimates for FM, and its posterior mode for BFM.
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Table C3: Tests of risk premia in a correctly specified model with useless and strong factors

λintercept λHML λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th

Panel A. OLS

100 0.073 0.038 0.006 0.071 0.033 0.006 0.043 0.012 0.000 -4.45% 59.30%
200 0.073 0.035 0.006 0.090 0.045 0.008 0.028 0.006 0.000 10.83% 74.84%

FM 600 0.076 0.033 0.005 0.100 0.046 0.009 0.027 0.005 0.000 38.73% 85.72%
1000 0.073 0.034 0.006 0.090 0.046 0.009 0.026 0.005 0.000 54.15% 91.13%
20000 0.087 0.032 0.006 0.061 0.026 0.005 0.025 0.008 0.000 96.87% 99.47%

100 0.039 0.013 0.001 0.023 0.007 0.001 0.002 0.001 0.000 -1.97% 41.74%
200 0.048 0.023 0.000 0.046 0.015 0.000 0.002 0.001 0.000 0.03% 53.72%

BFM 600 0.054 0.025 0.003 0.062 0.026 0.006 0.002 0.000 0.000 40.56% 72.82%
1000 0.084 0.034 0.006 0.064 0.021 0.002 0.002 0.000 0.000 57.63% 80.89%
20000 0.071 0.033 0.005 0.069 0.032 0.004 0.004 0.000 0.000 97.04% 98.60%

Panel B. GLS

100 0.193 0.129 0.043 0.205 0.133 0.043 0.180 0.121 0.031 14.05% 74.80%
200 0.135 0.080 0.021 0.141 0.075 0.024 0.129 0.062 0.010 60.15% 86.83%

FM 600 0.101 0.054 0.010 0.109 0.052 0.009 0.091 0.037 0.004 83.31% 94.23%
1000 0.104 0.055 0.010 0.105 0.048 0.011 0.085 0.039 0.003 89.95% 96.32%
20000 0.095 0.047 0.006 0.101 0.052 0.005 0.088 0.035 0.004 99.44% 99.81%

100 0.133 0.074 0.023 0.132 0.074 0.023 0.026 0.009 0.001 27.96% 66.80%
200 0.106 0.054 0.012 0.106 0.053 0.012 0.013 0.004 0.000 48.99% 73.62%

BFM 600 0.094 0.047 0.009 0.093 0.046 0.009 0.007 0.001 0.000 76.54% 87.35%
1000 0.090 0.045 0.010 0.091 0.044 0.007 0.005 0.001 0.000 85.30% 91.46%
20000 0.092 0.043 0.008 0.092 0.046 0.008 0.004 0.001 0.000 99.14% 99.51%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λc and

λstrong, λ∗
useless ≡ 0 in a misspecified model with an intercept, a strong, and a useless factor. The true value

of the cross-sectional R2
adj is 100%. Fama-MacBeth estimates are constructed using OLS (GLS) two-step cross-

sectional regressions, with standard errors including Shanken correction. Confidence intervals for BFM estimates are
constructed using a posterior distribution of Fama-MacBeth estimates of λ. The last two columns report the 5th and
95th percentiles of cross-sectional R2

adj across 1000 simulations, evaluated at the simulation point estimates for FM,
and its posterior mode for BFM.
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Table C4: Tests of risk premia in a misspecified model with a strong factor (N = 55)

λc λstrong R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

FM 100 0.107 0.058 0.014 0.115 0.059 0.012 -1.86% 13.05%
200 0.091 0.046 0.009 0.102 0.052 0.011 -1.84% 14.85%
600 0.104 0.052 0.013 0.109 0.060 0.014 -1.66% 14.95%
1,000 0.100 0.056 0.009 0.123 0.061 0.013 -1.23% 13.51%
20,000 0.104 0.049 0.009 0.109 0.048 0.009 3.53% 8.03%

BFM 100 0.017 0.004 0.000 0.002 0.000 0.000 -1.55% -0.67%
200 0.046 0.017 0.004 0.023 0.006 0.000 -1.68% 2.73%
600 0.089 0.042 0.012 0.071 0.036 0.005 -1.74% 8.44%
1,000 0.093 0.047 0.007 0.089 0.040 0.007 -1.71% 9.59%
20,000 0.101 0.048 0.011 0.099 0.042 0.008 3.29% 7.77%

Panel B: GLS

FM 100 0.509 0.428 0.305 0.513 0.431 0.305 20.93% 64.71%
200 0.295 0.206 0.102 0.274 0.187 0.091 39.99% 66.57%
600 0.170 0.109 0.042 0.176 0.113 0.034 55.85% 71.32%
1,000 0.170 0.106 0.034 0.176 0.105 0.031 60.10% 72.32%
20,000 0.145 0.082 0.020 0.141 0.073 0.022 69.17% 71.82%

BFM 100 0.265 0.181 0.086 0.262 0.186 0.079 18.72% 59.19%
200 0.163 0.100 0.032 0.147 0.086 0.024 34.01% 58.42%
600 0.116 0.060 0.017 0.118 0.058 0.014 51.25% 65.95%
1,000 0.120 0.064 0.016 0.121 0.063 0.014 56.89% 68.65%
20,000 0.106 0.053 0.009 0.095 0.048 0.013 68.97% 71.63%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λ∗

i in a
misspecified model with an intercept and a strong factor, estimates of a cross-section of 55 test assets. The true value
of the cross-sectional R2

adj is 5.72% (70.71%) in OLS (GLS) estimation. Fama-MacBeth estimates are constructed
using OLS (GLS) two-step cross-sectional regressions, with standard errors including Shanken correction. Confidence
intervals and their size for BFM estimates are constructed using posterior coverage of Fama-MacBeth estimates of λ.
The last two columns report the 5th and 95th percentiles of cross-sectional R2

adj across 1000 simulations, evaluated
at the simulation point estimates for FM, and its posterior mode for BFM. The test assets mimic the time series and
cross-sectional properties of 25 Fama-French size-value portfolios, and 30 industry portfolios, while the strong factor
proxies the HML factor (all the data available from Ken French website).
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Table C5: Tests of risk premia in a misspecified model with a useless factor (N = 55)

λc λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

FM 100 0.095 0.050 0.013 0.084 0.031 0.003 -1.86% 20.80%
200 0.084 0.042 0.007 0.093 0.038 0.004 -1.86% 18.01%
600 0.103 0.051 0.011 0.155 0.077 0.011 -1.87% 13.62%
1000 0.101 0.051 0.009 0.226 0.131 0.033 -1.87% 14.17%
20000 0.191 0.126 0.050 0.716 0.650 0.460 -1.87% 9.88%

BFM 100 0.013 0.002 0.000 0.000 0.000 0.000 -1.05% -0.47%
200 0.039 0.015 0.001 0.002 0.000 0.000 -1.28% -0.43%
600 0.076 0.040 0.006 0.004 0.000 0.000 -1.44% -0.49%
1000 0.082 0.035 0.004 0.022 0.009 0.000 -1.50% -0.26%
20000 0.129 0.059 0.005 0.078 0.037 0.008 -1.68% -0.20%

Panel B: GLS

FM 100 0.492 0.411 0.287 0.540 0.468 0.302 -1.34% 23.18%
200 0.267 0.196 0.088 0.364 0.274 0.153 -1.59% 13.59%
600 0.166 0.101 0.035 0.408 0.323 0.198 -1.62% 10.09%
1000 0.154 0.089 0.028 0.475 0.401 0.266 -1.55% 8.68%
20000 0.155 0.100 0.044 0.806 0.772 0.705 -0.68% 6.68%

BFM 100 0.259 0.180 0.085 0.1695 0.105 0.041 -0.14% 12.85%
200 0.162 0.094 0.030 0.065 0.027 0.005 -0.89% 6.15%
600 0.108 0.058 0.013 0.056 0.022 0.003 -1.27% 5.31%
1000 0.112 0.057 0.014 0.064 0.021 0.004 -1.38% 4.79%
20000 0.051 0.020 0.001 0.093 0.049 0.011 -0.72% 1.72%

The table shows the frequency of rejecting the null hypothesisH0 : λi = λ∗
i for pseudo-true value of λc and λ∗

useless = 0
in a misspecified model with an intercept and a useless factor, estimated on a cross-section of 55 portfolios. The
true value of the cross-sectional R2 is zero. The test assets mimic the time series and cross-sectional properties of 25
Fama-French size-value portfolios, and 30 industry portfolios.
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Table C6: Tests of risk premia in a misspecified model with useless and strong factors (N = 55)

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

FM 100 0.097 0.052 0.014 0.099 0.045 0.009 0.108 0.041 0.006 -3.18% 24.77%
200 0.085 0.041 0.006 0.090 0.049 0.011 0.117 0.051 0.008 -2.98% 23.50%
600 0.095 0.045 0.013 0.108 0.060 0.012 0.191 0.100 0.015 -2.12% 21.21%
1000 0.083 0.043 0.006 0.125 0.072 0.016 0.258 0.171 0.047 -1.55% 21.37%
20000 0.109 0.055 0.012 0.146 0.086 0.038 0.766 0.704 0.535 2.67% 17.78%

BFM 100 0.014 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.41% 1.61%
200 0.037 0.014 0.001 0.017 0.005 0.000 0.002 0.000 0.000 -2.03% 7.26%
600 0.069 0.031 0.005 0.058 0.027 0.002 0.007 0.000 0.000 -2.27% 10.96%
1000 0.064 0.024 0.003 0.069 0.027 0.005 0.026 0.008 0.001 -2.09% 11.73%
20000 0.028 0.006 0.000 0.068 0.033 0.004 0.080 0.042 0.009 2.62% 8.73%

Panel B: GLS

FM 100 0.488 0.406 0.282 0.495 0.411 0.281 0.537 0.465 0.306 22.01% 66.13%
200 0.263 0.194 0.088 0.252 0.167 0.077 0.359 0.279 0.151 40.47% 67.07%
600 0.157 0.094 0.032 0.161 0.093 0.027 0.398 0.313 0.199 55.81% 71.59%
1000 0.146 0.087 0.029 0.144 0.090 0.026 0.475 0.393 0.251 59.94% 72.50%
20000 0.140 0.094 0.035 0.134 0.089 0.041 0.789 0.747 0.667 68.88% 72.37%

BFM 100 0.253 0.182 0.081 0.260 0.176 0.077 0.168 0.104 0.039 20.36% 60.07%
200 0.156 0.092 0.028 0.140 0.082 0.021 0.063 0.029 0.004 34.51% 58.44%
600 0.105 0.058 0.013 0.108 0.049 0.011 0.054 0.024 0.002 51.25% 66.14%
1000 0.105 0.054 0.015 0.111 0.056 0.009 0.057 0.024 0.003 56.78% 68.73%
20000 0.051 0.019 0.001 0.045 0.018 0.001 0.093 0.045 0.013 68.73% 71.57%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λc and λstrong,

and λ∗
useless ≡ 0 in a misspecified model with an intercept, a strong, and a useless factor, estimated on a cross-section

of 55 portfolios. The true value of the cross-sectional R2
adj is 5.72% (70.71%) in OLS (GLS) estimation. The test

assets mimic the time series and cross-sectional properties of 25 Fama-French size-value portfolios, and 30 industry
portfolios, while the strong factor proxies the HML factor.
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Table C7: Tests of risk premia in a misspecified model with a strong factor (N = 100)

λc λstrong R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

FM 200 0.091 0.044 0.010 0.109 0.055 0.012 -0.98% 13.10%
600 0.102 0.052 0.013 0.116 0.057 0.019 -0.42% 12.31%
1000 0.099 0.056 0.011 0.117 0.060 0.014 0.31% 11.45%
20000 0.099 0.044 0.010 0.116 0.068 0.017 4.31% 7.48%

BFM 200 0.016 0.004 0.000 0.006 0.001 0.000 -0.82% 0.74%
600 0.076 0.034 0.006 0.060 0.028 0.005 -0.86% 7.90%
1000 0.081 0.046 0.007 0.076 0.037 0.007 -0.72% 8.59%
20000 0.097 0.044 0.011 0.106 0.057 0.014 4.18% 7.42%

Panel B: GLS

FM 200 0.495 0.411 0.287 0.481 0.403 0.268 29.38% 58.85%
600 0.255 0.169 0.077 0.257 0.178 0.073 47.36% 62.09%
1000 0.234 0.149 0.059 0.205 0.129 0.049 51.98% 63.52%
20000 0.166 0.100 0.035 0.170 0.097 0.036 61.42% 63.98%

BFM 200 0.249 0.163 0.070 0.233 0.158 0.073 25.67% 52.96%
600 0.132 0.082 0.023 0.137 0.077 0.020 42.87% 56.77%
1000 0.125 0.073 0.021 0.112 0.060 0.014 48.49% 59.70%
20000 0.101 0.056 0.012 0.098 0.053 0.013 61.14% 63.75%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for the pseudo-true values of λ∗

i in a
misspecified model with an intercept and a strong factor, estimated on a cross-section of 100 portfolios. The true
value of R2

adj is 5.85% (62.97%) for the OLS (GLS) estimation. Fama-MacBeth estimates are constructed using OLS
(GLS) two-step cross-sectional regressions, with standard errors including Shanken correction. Confidence intervals
and their size for BFM estimates are constructed using a posterior distribution of Fama-MacBeth estimates of λ. The
last two columns report the 5th and 95th percentiles of cross-sectional R2

adj across 1000 simulations, evaluated at the
simulation point estimates for FM, and its posterior mode for BFM. The simulations design follows the methodology
described in Section III, with the test assets mimicking the composite cross-section of 25 Fama-French size-B/M
portfolios, 30 industry portfolios, 25 profitability and investment portfolios, 10 momentum portfolios, as well as 10
long-term reversal portfolios (all available from Ken French website). A strong factor mimics the behavior of HML.
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Table C8: Tests of risk premia in a misspecified model with a useless factor (N = 100)

λc λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

FM 200 0.091 0.041 0.009 0.147 0.079 0.015 -1.01% 14.81%
600 0.110 0.062 0.010 0.280 0.180 0.064 -1.00% 13.55%
1000 0.096 0.053 0.007 0.341 0.248 0.101 -1.00% 12.22%
20000 0.221 0.151 0.061 0.805 0.759 0.643 -1.00% 12.20%

BFM 200 0.014 0.003 0.000 0.000 0.000 0.000 -0.50% 0.02%
600 0.070 0.030 0.003 0.014 0.002 0.000 -0.66% 0.26%
1000 0.073 0.034 0.005 0.026 0.010 0.001 -0.71% 0.27%
20000 0.097 0.035 0.003 0.091 0.045 0.008 -0.81% 1.09%

Panel B: GLS

FM 200 0.472 0.397 0.272 0.530 0.454 0.320 -0.72% 14.95%
600 0.230 0.149 0.064 0.458 0.363 0.235 -0.52% 9.69%
1000 0.196 0.122 0.048 0.487 0.407 0.275 -0.37% 8.61%
20000 0.106 0.063 0.021 0.760 0.717 0.640 1.71% 6.15%

BFM 200 0.244 0.161 0.066 0.150 0.092 0.031 -0.16% 7.69%
600 0.129 0.073 0.021 0.078 0.035 0.008 -0.55% 6.76%
1000 0.118 0.066 0.019 0.070 0.033 0.006 -0.60% 6.24%
20000 0.076 0.034 0.005 0.093 0.049 0.009 1.72% 3.99%

The table shows the frequency of rejecting the null hypothesisH0 : λi = λ∗
i for pseudo-true value of λc and λ∗

useless = 0
in a misspecified model with an intercept and a useless factor, estimated on a cross-section of 100 portfolios. The true
value of R2 is zero. The test assets mimic the time series and cross-sectional properties of composite cross-section of
25 Fama-French size-B/M portfolios, 30 industry portfolios, 25 profitability and investment portfolios, 10 momentum
portfolios, as well as 10 long-term reversal portfolios, while the strong factor mimics the behavior of HML (all the
data is available from Ken French website).

Table C9: Tests of risk premia in a misspecified model with useless and strong factors (N = 100)

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th

Panel A: OLS

FM 200 0.088 0.043 0.009 0.098 0.045 0.008 0.187 0.104 0.026 -1.24% 21.18%
600 0.103 0.056 0.011 0.104 0.064 0.015 0.319 0.217 0.081 -0.20% 19.57%
1000 0.105 0.049 0.009 0.115 0.058 0.013 0.389 0.284 0.134 0.70% 18.26%
20000 0.102 0.057 0.014 0.140 0.075 0.028 0.823 0.782 0.684 4.00% 17.66%

BFM 200 0.012 0.003 0.000 0.005 0.000 0.000 0.000 0.000 0.000 -0.51% 5.41%
600 0.062 0.025 0.003 0.046 0.021 0.002 0.016 0.004 0.000 -0.63% 10.77%
1000 0.062 0.029 0.005 0.057 0.025 0.003 0.029 0.008 0.001 -0.05% 10.78%
20000 0.026 0.008 0.001 0.042 0.015 0.000 0.089 0.039 0.011 3.99% 8.18%

Panel B: GLS

FM 200 0.467 0.392 0.268 0.471 0.383 0.254 0.523 0.454 0.315 29.71% 59.43%
600 0.227 0.149 0.059 0.228 0.154 0.060 0.455 0.363 0.227 47.45% 62.22%
1000 0.191 0.118 0.046 0.178 0.114 0.036 0.480 0.401 0.262 52.07% 63.68%
20000 0.098 0.054 0.020 0.095 0.062 0.024 0.749 0.707 0.621 61.21% 64.16%

BFM 200 0.243 0.160 0.066 0.230 0.155 0.072 0.152 0.087 0.031 26.13% 53.50%
600 0.126 0.072 0.022 0.132 0.071 0.017 0.074 0.033 0.007 42.68% 56.92%
1000 0.117 0.067 0.017 0.109 0.057 0.013 0.068 0.034 0.006 48.64% 59.79%
20000 0.068 0.032 0.002 0.066 0.034 0.006 0.087 0.047 0.009 61.02% 63.71%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λc and λstrong,

λ∗
useless ≡ 0 in a misspecified model with an intercept, a strong, and a useless factor on the cross-section of 100

portfolios. The true value of R2
adj is 5.85% (62.97%) in OLS (GLS) estimation. The test assets mimic the time series

and cross-sectional properties of composite cross-section of 25 Fama-French size-B/M portfolios, 30 industry portfolios,
25 profitability and investment portfolios, 10 momentum portfolios, as well as 10 long-term reversal portfolios, while
the strong factor mimics the behavior of HML (all the data is available from Ken French website).
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Table C10: The probability of retaining risk factors using BF

T 55% 57% 59% 61% 63% 65%

Panel A: strong factors

Jeffreys Prior fstrong 200 0.860 0.845 0.830 0.812 0.792 0.771
600 0.987 0.985 0.985 0.983 0.981 0.979
1000 0.998 0.998 0.997 0.996 0.996 0.995

Spike-and-Slab Prior fstrong 200 0.749 0.718 0.685 0.654 0.618 0.586
600 0.982 0.979 0.978 0.972 0.970 0.964
1000 0.996 0.996 0.996 0.995 0.994 0.992

Panel B: useless factors

Jeffreys Prior fuseless 200 1.000 0.995 0.982 0.940 0.862 0.726
600 1.000 0.999 0.998 0.988 0.971 0.920
1000 1.000 1.000 1.000 0.999 0.990 0.971

Spike-and-Slab Prior fuseless 200 0.419 0.248 0.149 0.083 0.040 0.022
600 0.119 0.062 0.028 0.012 0.007 0.004
1000 0.083 0.028 0.011 0.001 0.000 0.000

Panel C: strong and useless factors

Jeffreys Prior fstrong 200 0.928 0.912 0.891 0.878 0.860 0.838
600 0.994 0.994 0.992 0.991 0.991 0.989
1000 0.999 0.999 0.999 0.999 0.999 0.999

fuseless 200 0.955 0.894 0.788 0.642 0.489 0.360
600 0.957 0.895 0.764 0.618 0.461 0.354
1000 0.957 0.893 0.787 0.645 0.483 0.357

Spike-and-Slab Prior fstrong 200 0.753 0.725 0.697 0.666 0.629 0.592
600 0.982 0.980 0.979 0.972 0.970 0.961
1000 0.996 0.996 0.996 0.995 0.994 0.994

fuseless 200 0.283 0.154 0.085 0.044 0.023 0.011
600 0.077 0.031 0.006 0.002 0.000 0.000
1000 0.053 0.008 0.000 0.000 0.000 0.000

The table shows the frequency of retaining risk factors for different choice sets across 1,000 simulations of different
size (T=200, 600, and 1,000). In Panel A, the candidate risk factor is truly cross-sectionally priced and strongly
identified, while in Panel B they are not. Panel C summarizes the case of using both strong and useless candidate
factors in the model. A candidate factor is retained in the model, if its marginal posterior probability, p(γi = 1|data),
is greater than a certain threshold, i.e. 55%, 57%, 59%, 61%, 63% and 65%.
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Table C11: Two-pass regressions with tradable factors: 25 Fama-French portfolios

FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

CAPM Intercept 1.421*** 17.69 1.404*** -0.91 14.61
[0.627, 2.215] [-4.35, 66.61] [0.595, 2.256] [-4.03, 52.11]

MKT -0.647 -0.631
[-1.429, 0.135] [-1.458, 0.163]

Fama and French (1992) Intercept 1.273*** 60.71 1.249*** 56.04 55.66
[0.730, 1.816] [20.00, 85.14] [0.682, 1.834] [42.75, 69.46]

MKT -0.686** -0.664**
[-1.227, -0.145] [-1.242, -0.102]

SMB 0.140*** 0.140***
[0.075, 0.205] [0.073, 0.205]

HML 0.380*** 0.379***
[0.322, 0.438] [0.319, 0.439]

Quality-minus-junk Intercept 0.626* 74.42 0.648* 69.47 68.79
Asness, Frazzini and Pedersen (2014) [-0.048, 1.300] [44.80, 95.20] [-0.055, 1.308] [55.48, 79.46]

QMJ 0.369*** 0.358***
[0.148, 0.589] [0.130, 0.591]

MKT -0.097 -0.116
[-0.763, 0.568] [-0.772, 0.580]

SMB 0.209*** 0.206***
[0.157, 0.260] [0.151, 0.262]

HML 0.338*** 0.340***
[0.288, 0.388] [0.289, 0.392]

Panel B: GLS

CAPM Intercept 1.362*** 48.05 1.323*** 47.06 42.65
[0.941, 1.783] [26.96, 100.00] [0.846, 1.802] [14.11, 65.30]

MKT -0.788*** -0.749***
[-1.206, -0.369] [-1.227, -0.287]

Fama and French (1992) Intercept 1.397*** 88.49 1.353*** 85.43 85.43
[0.924, 1.870] [82.86, 97.71] [0.846, 1.878] [80.03, 89.89]

MKT -0.827*** -0.783***
[-1.298, -0.356] [-1.311, -0.283]

SMB 0.179*** 0.178***
[0.145, 0.213] [0.142, 0.215]

HML 0.348*** 0.350***
[0.312, 0.385] [0.310, 0.391]

Quality-minus-junk Intercept 0.966*** 89.48 0.982*** 87.36 86.42
Asness, Frazzini and Pedersen (2014) [0.395, 1.537] [83.20, 96.40] [0.383, 1.616] [81.20, 90.90]

QMJ 0.378*** 0.359***
[0.204, 0.552] [0.172, 0.539]

MKT -0.425 -0.438
[-0.984, 0.133] [-1.052, 0.157]

SMB 0.197*** 0.196***
[0.160, 0.234] [0.156, 0.235]

HML 0.359*** 0.359***
[0.321, 0.398] [0.320, 0.399]

The table summarises risk premia estimates and cross-sectional fit for a selection of models with tradable risk factors
on a cross-section of monthly excess returns for 25 Fama-French size/value portfolios. Each model is estimated via
OLS and GLS. We report point estimates and 5% confidence intervals for risk premia, which are constructed based
on the asymptotic normal distribution, and cross-sectional R2 and its (5%, 95%) confidence level constructed as in
Lewellen, Nagel, and Shanken (2010) for FM estimation. In Bayesian Fama-MacBeth estimation, we provide the
posterior mean of λ, denoted by λ̄j , its (2.5%, 97.5%) credible intervals, the posterior mode and median of the cross-
sectional R2, as well as its (5%, 95%) credible intervals. *, ** and *** denote significance at the 90%, 95% and 99%
level, respectively.
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Table C12: Two-pass regressions with tradable factors: 25 Fama-French portfolios

FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

CCAPM Intercept 1.444** 6.62 1.814** -2.02 5.45
[0.155, 2.732] [-4.35, 93.74] [0.106, 3.664] [-4.23, 41.75]

∆Cnd 0.383 0.254
[-0.221, 0.988] [-0.462, 0.956]

Scaled CAPM Intercept 4.489*** 16.17 3.731* 17.39 25.65
[1.479, 7.499] [-14.29, 61.14] [-0.268, 7.514] [-3.91, 57.83]

cay 1.141* 0.563
[-0.198, 2.480] [-2.262, 3.085]

MKT -2.119 -1.444
[-4.890, 0.653] [-5.241, 2.643]

MKT × cay -8.554 -5.188
[-19.227, 2.119] [-17.911, 9.415]

Scaled HC-CAPM Intercept 4.405*** 13.86 3.343* 38.95 36.59
[1.182, 7.629] [-26.32, 54.53] [-0.500, 7.182] [-0.06, 66.30]

cay 1.038 0.552
[-0.444, 2.520] [-1.957, 2.848]

∆Y 0.437 0.034
[-0.421, 1.295] [-0.995, 0.928]

MKT -2.049 -1.148
[-5.031, 0.933] [-4.946, 2.772]

∆Y × cay 1.428 0.724
[-1.047, 3.903] [-3.458, 4.645]

MKT × cay -7.782 -4.127
[-18.579, 3.015] [-17.926, 10.532]

Panel B: GLS

CCAPM Intercept 2.274*** -2.51 2.336*** -3.03 -0.56
[1.386, 3.162] [-4.35, 98.96] [1.360, 3.266] [-4.03, 11.09]

∆Cnd 0.139 0.088
[-0.114, 0.391] [-0.222, 0.383]

Scaled CAPM Intercept 2.623*** 49.49 2.668*** 56.26 45.67
[0.794, 4.451] [16.57, 78.29] [0.859, 4.376] [4.39, 71.46]

cay 0.362 0.205
[-0.759, 1.483] [-0.853, 1.277]

MKT -0.596 -0.642
[-2.412, 1.220] [-2.325, 1.149]

MKT × cay 0.644 0.310
[-5.695, 6.984] [-5.988, 6.529]

Scaled HC-CAPM Intercept 2.486** 50.14 2.604*** 58.32 46.98
[0.510, 4.463] [11.58, 77.26] [0.801, 4.372] [5.58, 73.71]

cay 0.361 0.199
[-0.902, 1.623] [-0.879, 1.269]

∆Y -0.415* -0.242
[-0.878, 0.048] [-0.672, 0.157]

MKT -0.479 -0.588
[-2.441, 1.482] [-2.357, 1.241]

∆Y × cay 0.395 0.150
[-1.761, 2.552] [-1.718, 2.036]

MKT × cay 1.158 0.477
[-5.888, 8.205] [-5.890, 6.968]

The table summarises risk premia estimates and cross-sectional fit for a selection of models with nontradable risk
factors on a cross-section of quarterly excess returns for 25 Fama-French size/value portfolios. Each model is estimated
via OLS and GLS. We report point estimates and 5% confidence intervals for risk premia, which are constructed based
on the asymptotic normal distribution, and cross-sectional R2 and its (5%, 95%) confidence level constructed as in
Lewellen, Nagel, and Shanken (2010) for FM estimation. In Bayesian Fama-MacBeth estimation, we provide the
posterior mean of λ, denoted by λ̄j , its (2.5%, 97.5%) credible intervals, the posterior mode and median of the cross-
sectional R2, as well as its (5%, 95%) credible intervals. *, ** and *** denote significance at the 90%, 95% and 99%
level, respectively.
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Table C13: Two-pass regressions with tradable factors: 25 Fama-French + 17 industry portfolios

FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

Carhart (1997) Intercept 0.755** 47.20 0.780** 38.35 37.69

[0.167, 1.342] [8.03, 85.59] [0.158, 1.395] [22.22, 54.27]

MKT -0.162 -0.188

[-0.759, 0.435] [-0.808, 0.432]

SMB 0.144*** 0.142***

[0.082, 0.206] [0.078, 0.207]

HML 0.320*** 0.316***

[0.251, 0.388] [0.245, 0.388]

UMD 0.759 0.673

[-0.360, 1.878] [-0.476, 1.802]

q-factor model Intercept 0.744*** 45.05 0.761*** 36.47 36.00

Hou, Xue, and Zhang (2015) [0.244, 1.243] [1.38, 83.38] [0.239, 1.287] [17.11, 55.08]

ROE 0.173 0.156

[-0.139, 0.485] [-0.154, 0.481]

IA 0.287*** 0.279***

[0.117, 0.456] [0.117, 0.455]

ME 0.230*** 0.221***

[0.135, 0.325] [0.121, 0.320]

MKT -0.199 -0.211

[-0.703, 0.304] [-0.741, 0.311]

Liquidity Factor Intercept 0.958*** 2.77 0.963*** -1.24 6.20

Pástor and Stambaugh (2003) [0.417, 1.499] [-5.13, 41.13] [0.377, 1.527] [-4.35, 33.40]

LIQ 0.210 0.153

[-1.001, 1.421] [-1.077, 1.445]

MKT -0.274 -0.281

[-0.822, 0.274] [-0.851, 0.340]

Panel B: GLS

Carhart (1997) Intercept 0.839*** 88.26 0.909*** 84.86 83.97

[0.467, 1.210] [75.62, 95.57] [0.487, 1.339] [78.95, 88.12]

MKT -0.235 -0.309

[-0.610, 0.140] [-0.737, 0.120]

SMB 0.162*** 0.161***

[0.134, 0.190] [0.130, 0.193]

HML 0.351*** 0.350***

[0.316, 0.386] [0.312, 0.390]

UMD 1.426*** 1.184***

[0.832, 2.020] [0.541, 1.861]

q-factor model Intercept 1.107*** 42.89 1.103*** 37.42 36.31

Hou, Xue, and Zhang (2015) [0.761, 1.454] [0.27, 73.41] [0.714, 1.486] [20.22, 52.16]

ROE 0.270** 0.247**

[0.057, 0.482] [0.008, 0.502]

IA 0.277*** 0.263***

[0.134, 0.420] [0.107, 0.428]

ME 0.221*** 0.216***

[0.156, 0.287] [0.144, 0.288]

MKT -0.524*** -0.520***

[-0.869, -0.179] [-0.900, -0.138]

Liquidity Factor Intercept 1.186*** 28.97 1.159*** 18.11 23.73

Pástor and Stambaugh (2003) [0.874, 1.497] [-1.97, 76.87] [0.803, 1.519] [4.38, 52.53]

LIQ 0.089 0.065

[-0.567, 0.744] [-0.696, 0.871]

MKT -0.598*** -0.571***

[-0.909, -0.288] [-0.936, -0.212]
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FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

CAPM Intercept 0.966*** 4.67 0.957*** -1.13 3.06

[0.427, 1.506] [-2.50, 54.90] [0.382, 1.522] [-2.46, 28.63]

MKT -0.277 -0.269

[-0.823, 0.269] [-0.838, 0.311]

Fama-French (1992) Intercept 1.016*** 43.30 1.002*** 34.25 33.70

[0.540, 1.491] [1.82, 81.66] [0.517, 1.500] [21.94, 46.14]

MKT -0.445* -0.430*

[-0.916, 0.026] [-0.912, 0.068]

SMB 0.147*** 0.144***

[0.086, 0.208] [0.077, 0.208]

HML 0.316*** 0.313***

[0.248, 0.383] [0.242, 0.383]

Quality-minus-junk Intercept 0.836*** 49.31 0.836*** 38.61 39.34

Asness et all (2019) [0.323, 1.350] [9.14, 84.49] [0.314, 1.365] [24.59, 55.77]

QMJ 0.153 0.147

[-0.065, 0.372] [-0.066, 0.373]

MKT -0.293 -0.289

[-0.796, 0.210] [-0.814, 0.233]

SMB 0.179*** 0.175***

[0.114, 0.243] [0.105, 0.240]

HML 0.302*** 0.300***

[0.234, 0.369] [0.230, 0.373]

Panel B: GLS

CAPM Intercept 1.192*** 30.60 1.170*** 26.02 25.73

[0.884, 1.500] [0.58, 78.48] [0.815, 1.517] [6.00, 51.18]

MKT -0.604*** -0.583***

[-0.911, -0.298] [-0.923, -0.227]

Fama-French (1992) Intercept 1.182*** 86.16 1.150*** 82.72 82.34

[0.853, 1.510] [73.03, 93.53] [0.788, 1.519] [77.36, 86.62]

MKT -0.596*** -0.564***

[-0.923, -0.268] [-0.937, -0.198]

SMB 0.160*** 0.160***

[0.132, 0.187] [0.129, 0.191]

HML 0.349*** 0.348***

[0.314, 0.384] [0.310, 0.386]

Quality-minus-junk Intercept 0.970*** 86.74 0.977*** 82.27 82.76

Asness et all (2019) [0.606, 1.334] [74.51, 93.35] [0.561, 1.369] [77.59, 86.93]

QMJ 0.293*** 0.278***

[0.159, 0.427] [0.125, 0.439]

MKT -0.393** -0.399*

[-0.754, -0.033] [-0.791, 0.012]

SMB 0.166*** 0.165***

[0.138, 0.194] [0.134, 0.196]

HML 0.353*** 0.352***

[0.318, 0.388] [0.315, 0.392]

The table summarises risk premia estimates and cross-sectional fit for a selection of models with tradable risk factors
on a cross-section of monthly excess returns for 25 Fama-French and 17 industry portfolios. Each model is estimated
via OLS and GLS. We report point estimates and 5% confidence intervals for risk premia, which are constructed
based on the asymptotic normal distribution, and cross-sectional R2 and its (5%, 95%) confidence level constructed
as in Lewellen, Nagel, and Shanken (2010) for FM estimation. In Bayesian Fama-MacBeth estimation, we provide
the posterior mean of λ, denoted by λ̄j , its (2.5%, 97.5%) credible intervals, the posterior mode and median of the
cross-sectional R2, as well as its (5%, 95%) credible intervals. *, ** and *** denote significance at the 90%, 95% and
99% level, respectively.
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Table C14: Two-pass regressions with nontradable factors: 25 Fama-French + 17 industry port-
folios

Fama-MacBeth Bayesian Estimation

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

CCAPM Intercept 1.817*** 3.56 1.975*** -1.24 2.09

[0.905, 2.729] [-2.50, 62.08] [0.795, 3.135] [-2.45, 26.80]

∆Cnd 0.189 0.123

[-0.216, 0.594] [-0.285, 0.502]

Scaled CAPM Intercept 2.141*** 15.28 2.344*** 2.98 13.06

[0.529, 3.754] [-7.89, 95.68] [0.692, 3.944] [-4.51, 40.69]

cay 1.408* 0.574

[-0.182, 2.999] [-0.935, 1.939]

MKT 0.108 -0.142

[-1.471, 1.686] [-1.747, 1.499]

cay ×MKT -2.554 -2.159

[-8.811, 3.702] [-8.813, 4.620]

Scaled CCAPM Intercept 1.607*** 17.09 1.983*** 9.5 14.68

[0.394, 2.820] [-7.89, 100.00] [0.761, 3.180] [-3.72, 41.89]

cay 1.137 0.511

[-0.394, 2.669] [-0.871, 1.865]

∆Cnd 0.452 0.175

[-0.103, 1.007] [-0.261, 0.598]

cay ×∆Cnd -0.102 0.030

[-1.752, 1.547] [-1.175, 1.292]

HC-CAPM Intercept 2.185*** 6.11 2.221*** -1.47 6.44

[0.720, 3.650] [-5.13, 60.05] [0.667, 3.735] [-4.29, 30.93]

∆Y 0.398* 0.201

[-0.011, 0.808] [-0.290, 0.667]

MKT 0.123 0.050

[-1.392, 1.638] [-1.513, 1.650]

Panel B: GLS

CCAPM Intercept 2.351*** 2.64 2.442*** -0.57 2.18

[1.700, 3.003] [-2.50, 97.95] [1.612, 3.258] [-2.04, 12.96]

∆Cnd 0.211** 0.132

[0.034, 0.387] [-0.081, 0.351]

Scaled CAPM Intercept 2.516*** 39.51 2.653*** 43.32 34.70

[1.467, 3.566] [10.45, 74.11] [1.616, 3.705] [3.60, 65.39]

cay 0.783** 0.424

[0.056, 1.511] [-0.311, 1.119]

MKT -0.504 -0.639

[-1.548, 0.541] [-1.674, 0.406]

cay ×MKT 3.785* 2.327

[-0.412, 7.981] [-2.053, 6.791]

Scaled CCAPM Intercept 2.244*** 3.31 2.378*** 2.96 3.56

[1.378, 3.109] [-7.89, 81.66] [1.539, 3.237] [-4.76, 16.90]

cay 0.742* 0.425

[-0.006, 1.489] [-0.316, 1.104]

∆Cnd 0.160 0.119

[-0.078, 0.398] [-0.116, 0.342]

cay ×∆Cnd 0.355 0.190

[-0.343, 1.053] [-0.455, 0.840]

HC-CAPM Intercept 2.908*** 38.10 2.808*** 44.54 33.56

[2.053, 3.762] [8.54, 73.72] [1.809, 3.826] [1.94, 65.91]

∆Y -0.155 -0.089

[-0.381, 0.072] [-0.357, 0.174]

MKT -0.892** -0.793

[-1.742, -0.043] [-1.803, 0.208]
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FM BFM

Model Factors λ̂j R2
adj λ̄j R2

adj,mode R2
adj,median

Panel A: OLS

Scaled HC-CAPM Intercept 2.099*** 13.72 2.243** 15.99 21.86

[0.549, 3.649] [-13.89, 48.75] [0.491, 3.955] [-1.21, 47.71]

cay 1.124 0.529

[-0.326, 2.574] [-1.066, 1.981]

∆Y 0.088 0.106

[-0.314, 0.489] [-0.399, 0.599]

MKT 0.169 -0.068

[-1.340, 1.679] [-1.805, 1.744]

cay ×∆Y 1.277 0.579

[-1.361, 3.914] [-1.930, 2.919]

cay ×MKT -2.125 -1.605

[-8.058, 3.808] [-8.349, 5.354]

Durable CCAPM Intercept 2.281** 23.16 2.220** 14.23 14.59

[0.025, 4.537] [-7.89, 100.00] [0.403, 4.028] [-3.59, 41.78]

∆Cnd 0.544** 0.194

[0.054, 1.034] [-0.163, 0.525]

∆Cd 0.481 0.104

[-0.101, 1.062] [-0.353, 0.531]

MKT -0.102 -0.063

[-2.466, 2.262] [-1.948, 1.863]

Panel B: GLS

Scaled HC-CAPM Intercept 2.662*** 38.48 2.698*** 43.12 35.02

[1.626, 3.698] [4.33, 72.67] [1.555, 3.844] [2.31, 64.66]

cay 0.726* 0.416

[-0.029, 1.481] [-0.324, 1.146]

∆Y -0.165 -0.088

[-0.440, 0.110] [-0.372, 0.198]

MKT -0.652 -0.685

[-1.684, 0.379] [-1.816, 0.438]

cay ×∆Y 0.681 0.333

[-0.648, 2.009] [-1.017, 1.616]

cay ×MKT 3.266 2.123

[-0.950, 7.482] [-2.173, 6.502]

Durable CCAPM Intercept 1.958*** 29.26 1.994*** 4.12 25.58

[0.634, 3.281] [-7.89, 67.63] [0.831, 3.125] [-2.69, 63.36]

∆Cnd 0.164 0.065

[-0.065, 0.394] [-0.126, 0.260]

∆Cd 0.289* 0.123

[-0.011, 0.589] [-0.117, 0.377]

MKT 0.002 -0.026

[-1.322, 1.326] [-1.165, 1.125]

The table summarises risk premia estimates and cross-sectional fit for a selection of models with nontradable risk
factors on a cross-section of quarterly excess returns for 25 Fama-French and 17 industry portfolios. Each model
is estimated via OLS and GLS. We report point estimates and 5% confidence intervals for risk premia, which are
constructed based on the asymptotic normal distribution, and cross-sectional R2 and its (5%, 95%) confidence level
constructed as in Lewellen, Nagel, and Shanken (2010) for FM estimation. In Bayesian Fama-MacBeth estimation,
we provide the posterior mean of λ, denoted by λ̄j , its (2.5%, 97.5%) credible intervals, the posterior mode and
median of the cross-sectional R2, as well as its (5%, 95%) credible intervals.*, ** and *** denote significance at the
90%, 95% and 99% level, respectively.
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Table C15: Posterior factor probabilities and risk premia of 2.6 million sparse models

Pr [γj = 1|data] E [λj |data]
ψ: ψ:

factors 1 5 10 20 50 100 1 5 10 20 50 100

HML 0.455 0.702 0.720 0.695 0.646 0.614 0.106 0.231 0.249 0.245 0.229 0.219
MKT∗ 0.274 0.513 0.594 0.658 0.700 0.702 0.050 0.211 0.321 0.440 0.553 0.591
MKT 0.086 0.178 0.311 0.446 0.550 0.576 0.009 0.067 0.163 0.286 0.408 0.454
SMB∗ 0.246 0.350 0.317 0.264 0.210 0.188 0.039 0.113 0.120 0.110 0.095 0.089
PERF 0.136 0.160 0.147 0.125 0.098 0.083 -0.020 -0.050 -0.053 -0.049 -0.041 -0.036
STOCK ISS 0.099 0.117 0.125 0.123 0.110 0.099 -0.008 -0.029 -0.042 -0.050 -0.053 -0.051
COMP ISSUE 0.097 0.101 0.104 0.103 0.096 0.088 0.010 0.029 0.041 0.051 0.059 0.059
CMA 0.111 0.114 0.104 0.091 0.075 0.066 0.008 0.018 0.019 0.019 0.017 0.016
ROA 0.089 0.079 0.083 0.094 0.102 0.097 0.010 0.023 0.034 0.051 0.068 0.070
UMD 0.091 0.097 0.097 0.090 0.078 0.071 0.006 0.020 0.026 0.029 0.030 0.030
BEH PEAD 0.081 0.069 0.069 0.074 0.089 0.108 0.001 0.002 0.004 0.007 0.016 0.030
STRev 0.078 0.064 0.063 0.067 0.086 0.112 0.000 0.002 0.003 0.007 0.022 0.048
NONDUR 0.079 0.065 0.064 0.067 0.079 0.097 0.000 0.000 0.001 0.001 0.003 0.006
DISSTR 0.085 0.079 0.076 0.070 0.060 0.053 0.010 0.030 0.039 0.043 0.042 0.040
MGMT 0.090 0.083 0.077 0.068 0.055 0.047 0.007 0.017 0.019 0.019 0.017 0.015
BW ISENT 0.079 0.064 0.062 0.063 0.069 0.077 0.000 0.000 0.000 0.001 0.002 0.004
TERM 0.078 0.063 0.061 0.062 0.069 0.078 0.000 0.000 0.001 0.001 0.004 0.007
FIN UNC 0.078 0.063 0.061 0.061 0.066 0.073 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
LIQ TR 0.078 0.063 0.060 0.061 0.066 0.075 -0.000 0.000 0.001 0.002 0.007 0.015
DeltaSLOPE 0.078 0.063 0.061 0.061 0.066 0.073 -0.000 -0.000 -0.000 -0.000 -0.000 -0.001
IPGrowth 0.078 0.063 0.061 0.061 0.066 0.072 -0.000 -0.000 -0.000 -0.000 -0.001 -0.002
Oil 0.078 0.063 0.061 0.061 0.066 0.072 -0.000 0.001 0.001 0.002 0.004 0.009
SERV 0.078 0.063 0.061 0.061 0.065 0.072 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
DEFAULT 0.078 0.063 0.060 0.060 0.064 0.069 -0.000 -0.000 0.000 0.000 0.000 0.000
NetOA 0.079 0.063 0.061 0.062 0.065 0.065 0.001 0.003 0.004 0.007 0.014 0.018
DIV 0.078 0.063 0.060 0.060 0.064 0.069 0.000 -0.000 -0.000 -0.000 -0.000 -0.000
PE 0.078 0.063 0.060 0.060 0.064 0.068 -0.000 -0.001 -0.001 -0.002 -0.004 -0.008
REAL UNC 0.078 0.063 0.060 0.060 0.064 0.067 0.000 0.000 0.000 0.000 0.000 0.000
HJTZ ISENT 0.078 0.063 0.060 0.060 0.064 0.068 -0.000 -0.000 -0.000 -0.000 -0.000 -0.001
UNRATE 0.078 0.063 0.060 0.060 0.064 0.068 0.000 -0.000 -0.000 -0.000 -0.001 -0.002
INTERM CAP RATIO 0.084 0.065 0.061 0.062 0.062 0.059 0.009 0.013 0.018 0.027 0.038 0.041
LIQ NT 0.079 0.063 0.060 0.060 0.063 0.066 -0.001 -0.001 -0.002 -0.002 -0.003 -0.004
QMJ 0.113 0.090 0.069 0.051 0.035 0.028 0.012 0.016 0.014 0.010 0.007 0.005
MACRO UNC 0.078 0.063 0.060 0.059 0.060 0.061 0.000 0.000 0.000 0.000 0.000 0.000
INV IN ASS 0.078 0.062 0.059 0.059 0.060 0.061 0.000 0.000 0.001 0.001 0.003 0.006
ACCR 0.081 0.067 0.062 0.059 0.056 0.055 -0.002 -0.005 -0.006 -0.006 -0.005 -0.004
LTRev 0.078 0.064 0.063 0.062 0.059 0.053 -0.001 -0.005 -0.008 -0.012 -0.016 -0.017
CMA∗ 0.079 0.062 0.059 0.058 0.059 0.058 0.000 0.000 -0.000 -0.001 -0.002 -0.002
ASS Growth 0.078 0.060 0.056 0.055 0.055 0.052 -0.001 -0.001 -0.001 -0.004 -0.008 -0.011
HML∗ 0.079 0.062 0.058 0.055 0.053 0.049 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
RMW∗ 0.077 0.058 0.052 0.047 0.040 0.035 0.000 0.001 0.001 0.002 0.002 0.002
BAB 0.079 0.059 0.051 0.045 0.039 0.034 -0.003 -0.003 -0.003 -0.001 0.001 0.003
IA 0.083 0.060 0.051 0.043 0.035 0.030 -0.003 -0.004 -0.004 -0.003 -0.003 -0.003
O SCORE 0.077 0.056 0.047 0.040 0.032 0.027 -0.003 -0.004 -0.005 -0.005 -0.005 -0.005
ROE 0.076 0.055 0.047 0.040 0.032 0.027 0.001 0.004 0.005 0.005 0.004 0.003
SMB 0.039 0.024 0.027 0.042 0.067 0.077 0.002 0.002 0.004 0.007 0.014 0.017
SKEW 0.090 0.062 0.047 0.034 0.024 0.019 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
BEH FIN 0.079 0.051 0.040 0.031 0.023 0.019 -0.006 -0.005 -0.003 -0.001 -0.000 -0.000
GR PROF 0.077 0.047 0.038 0.031 0.025 0.020 0.004 0.003 0.003 0.003 0.003 0.003
RMW 0.073 0.045 0.036 0.030 0.023 0.018 0.003 0.004 0.004 0.003 0.003 0.003
HML DEVIL 0.063 0.036 0.027 0.020 0.015 0.012 0.002 0.003 0.002 0.001 0.000 0.000

Posterior probabilities of factors, Pr [γj = 1|data], and posterior mean of factor risk premia, E [λj |data], computed
using the Dirac spike and slab approach of section II.2.2, 51 factors, and all possible models with up to 5 factors,
yielding about 2.6 million candidate models. The prior probability of a factor being included is about 10.38%. The
data is monthly, 1973:10 to 2016:12. Test assets: cross-section of 25 Fama-French size and book-to-market and 30
Industry portfolios. The 51 factors considered are described in Table B.1 of Appendix B.
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Table C16: Factor models with highest posterior probability (Dirac spike-and-slab, ψ = 20)

model:
factor: 1 2 3 4 5 6 7 8 9 10

HML          
MKT*          
MKT          
SMB*   
STRev
BW ISENT
LIQ TR
UNRATE
NONDUR
TERM
COMP ISSUE  
Oil
BEH PEAD 
DeltaSLOPE
INV IN ASS
IPGrowth
DEFAULT
UMD 
ROA       
REAL UNC
PE
CMA 
ACCR
SERV
STOCK ISS   
DIV
MACRO UNC
FIN UNC
LIQ NT
CMA*
NetOA
HJTZ ISENT
LTRev
RMW*
HML*
INTERM CAP RATIO
ASS Growth
PERF 
IA
BAB
DISSTR 
ROE
MGMT
O SCORE
QMJ
BEH FIN
GR PROF
SKEW
RMW
HML DEVIL
SMB
Probability (%) 0.1080 0.0964 0.0771 0.0710 0.0709 0.0668 0.0661 0.0624 0.0600 0.0560

Factors and posterior model probabilities of ten most likely specifications computed using the Dirac spike and slab
approach of section II.2.2, ψ = 20, 51 factors, and all possible models with up to 5 factors, yielding about 2.6 million
models and a model prior probability of the order of 10−7. Specifications organised by columns with the symbol 
indicating that the factor in the corresponding row is included. The data is monthly, 1973:10 to 2016:12. Test assets:
cross-section of 25 Fama-French size and book-to-market and 30 Industry portfolios. The 51 factors considered are
described in Table B.1 of Appendix B.
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Table C17: Factor Models with highest posterior probability (continuous spike-and-slab, ψ = 10)

model:
factor: 1 2 3 4 5 6 7 8 9 10

HML         
MKT*        
MKT        
SMB*     
STRev      
BW ISENT         
LIQ TR   
UNRATE  
NONDUR   
TERM      
COMP ISSUE      
Oil   
BEH PEAD   
DeltaSLOPE      
INV IN ASS      
IPGrowth      
DEFAULT    
UMD 
ROA   
REAL UNC     
PE     
CMA     
ACCR   
SERV       
STOCK ISS  
DIV   
MACRO UNC    
FIN UNC 
LIQ NT       
CMA*     
NetOA   
HJTZ ISENT      
LTRev     
RMW*     
HML*  
INTERM CAP RATIO    
ASS Growth   
PERF   
IA 
BAB   
DISSTR     
ROE    
MGMT   
O SCORE   
QMJ  
BEH FIN    
GR PROF  
SKEW 
RMW   
HML DEVIL     
SMB     
Probability (%) 0.1111 0.1000 0.1000 0.0889 0.0778 0.0778 0.0778 0.0667 0.0667 0.0667

Factors and posterior model probabilities of ten most likely specifications computed using the continuous spike and
slab approach of section II.2.3, ψ = 10, 51 factors, and all possible models with up to 5 factors, yielding about 2.25
quadrillion models and a model prior probability of the order of 10−16. Specifications organised by columns with the
symbol  indicating that the factor in the corresponding row is included. The data is monthly, 1973:10 to 2016:12.
Test assets: cross-section of 25 Fama-French size and book-to-market and 30 Industry portfolios. The 51 factors
considered are described in Table B.1 of Appendix B.
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Table C18: Factor models with highest posterior probability (Continuous spike-and-slab, ψ = 20)

model:
factor: 1 2 3 4 5 6 7 8 9 10

HML        
MKT*         
MKT      
SMB*     
STRev       
BW ISENT    
LIQ TR     
UNRATE     
NONDUR      
TERM      
COMP ISSUE      
Oil       
BEH PEAD      
DeltaSLOPE   
INV IN ASS   
IPGrowth       
DEFAULT   
UMD       
ROA     
REAL UNC      
PE  
CMA     
ACCR     
SERV      
STOCK ISS      
DIV       
MACRO UNC      
FIN UNC    
LIQ NT    
CMA*     
NetOA     
HJTZ ISENT       
LTRev    
RMW*       
HML*       
INTERM CAP RATIO     
ASS Growth     
PERF 
IA   
BAB     
DISSTR   
ROE    
MGMT   
O SCORE        
QMJ   
BEH FIN   
GR PROF   
SKEW  
RMW      
HML DEVIL    
SMB   
Probability (%) 0.1000 0.0889 0.0889 0.0778 0.0778 0.0778 0.0778 0.0667 0.0667 0.0667

Factors and posterior model probabilities of ten most likely specifications computed using the continuous spike and
slab approach of section II.2.3, ψ = 10, 51 factors, and all possible models with up to 5 factors, yielding about 2.25
quadrillion models and a model prior probability of the order of 10−16. Specifications organised by columns with the
symbol  indicating that the factor in the corresponding row is included. The data is monthly, 1973:10 to 2016:12.
Test assets: cross-section of 25 Fama-French size and book-to-market and 30 Industry portfolios. The 51 factors
considered are described in Table B.1 of Appendix B.
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D Additional Figures

Panel A: OLS
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Panel B: GLS
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Figure D1: Posterior distribution of the risk premia estimates in a misspecified model that includes
both strong and irrelevant factors.

The graph presents posterior distribution of risk premia estimates for a misspecified model with both strong and
useless factors in one representative simulation. Panels (a) and (b) display posterior distribution of the BFM-OLS
estimates of risk premia, along with the frequentist distribution implied by the point estimates and standard errors.
Panels (c) and (d) report the same objects for GLS. T =1000.
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