Gradual Bargaining in Decentralized Asset Markets

Hu, In, Lebeau, and Rocheteau

Seminar at University College of London
May 30, 2018

The art of the deal (in asset markets)

Background

- Models of decentralized asset markets
- to explain asset/market liquidity
- Two approaches
- New Monetarist approach: Assets as media of exchange
- Finance approach: Illiquid assets traded over the counter
- Based on search paradigm with two core components:
(1) search frictions and pairwise meetings
(2) bargaining
- This paper is about bargaining.

Background: 2nd generation of models

- Restricted asset holdings: $a \in\{0,1\}$

Background: 3rd generation of models

- Portfolio of divisible assets: $\mathbf{a} \in \mathbf{R}_{+}^{J}$

Background: How is bargaining handled?

- Bargaining with $\mathbf{a} \in \mathbf{R}_{+}^{J}$ like with $a \in\{0,1\}$
- Generalized Nash or Kalai solution.
- Agents negotiate their portfolio all at once.
- Is this agenda (all-at-once bargaining) restrictive?
- Is it the agenda that agents/society would choose?
- Does the agenda matter for allocations and prices?

What we do

(1) A new approach to bargaining over asset portfolios

- Assets are sold gradually over time
- Both axiomatic and strategic foundations
- A new asset characteristic: negotiability
(2) Incorporate into models of decentralized asset markets
- New Monetarist models (Lagos-Wright)
- Models of OTC markets (Duffie et al.)
(3) Two applications
- Money and bonds and OMOs
- Multiple currencies and exchange rates

Insights

(1) Bargaining theory

Extensive-form bargaining games, endogenous agenda
(2) Asset prices

Negotiability premia, distributions of asset returns and velocities
(3) Monetary theory
rate-of-return dominance, exchange rate determination, OMOs

Literature

(1) Gradual bargaining with an agenda: O'Neill et al. (2004)

- Application to money in Rocheteau and Waller (2005)
(2) Strategic bargaining games: Rubinstein (1982)
- Applications to money: Shi (1995), Trejos and Wright (1995)
- Non-stationary environment: Coles and Wright (1998)
- Delays under asymmetric information: Tsoy (2016)
(3) Models of decentralized asset markets
(1) New Monetarist: Geromichalos et al. (2007); Lagos (2010)
(2) Finance: Duffie et al. (2005); Lagos and Rocheteau (2009)
(3) Money and finance: Herrenbrueck and Geromichalos (2016), Lagos and Zhang (2017), Wright, Xiao, and Zhu (2017)

ENVIRONMENT

Time, goods

- Time: $t=0,1,2 \ldots, \infty$
- Each period has two stages:
(1) Decentralized market (DM): Pairwise meetings / bargaining
(2) Centralized market (CM)
- DM good is perishable
- CM good taken as numeraire

Agents

- Agents divided into two types
(1) Consumers: consume DM good and produce numeraire
(2) Producers: produce DM good and consume numeraire
- A unit measure of each type
- In the $\mathrm{DM}, \alpha \in(0,1]$ pairwise meetings between consumers and producers

Preferences

STAGE I (DM)

STAGE 2 (CM)

- Discount factor: $\beta=1 /(1+\rho)$
- Efficient DM output: $u^{\prime}\left(y^{*}\right)=v^{\prime}\left(y^{*}\right)$
- Lucas trees: pay off $d \geq 0$ in the CM
- Fiat money: $d=0$
- Exogenous supply: $A_{t+1}=(1+\pi) A_{t}$
- if $d>0, \pi=0$
- Asset price in terms of the numeraire: ϕ_{t}
- No private IOUs: Agents cannot commit

GRADUAL BARGAINING

Bargaining game

- Asset owner has z units of assets (in terms of numeraire)
- Divided into N equal sizes: z / N
- Game has N rounds
- In each round, agents negotiate the sale of z / N assets for some output y

Alternative ultimatum offer game

- N two-stage rounds
(1) Stage 1: One player makes an offer
(2) Stage 2: Other player accepts/rejects
- Identity of the proposer alternates

Intermediate Pareto frontiers

- Denote $\tau \equiv n z / N$ where $n=1, \ldots, N$
- For each τ, feasibility constraint on asset sales: $p(\tau) \leq \tau$
- For each τ, a Pareto frontier:

$$
\begin{gathered}
\max u_{b}(\tau) \text { s.t. } u_{s}(\tau) \geq u_{s} \text { and } p(\tau) \leq \tau \\
\Downarrow \\
\left.-\overline{-}-\overline{u^{s}}, \stackrel{\tau}{\tau}\right)=0 .
\end{gathered}
$$

Subgame perfect equilibrium

There exists a unique SPE. As N approaches ∞, payoffs solve:

$$
u^{\chi \prime}(\tau)=-\frac{1}{2} \frac{\overbrace{\partial H\left(u^{b}, u^{s}, \tau\right) / \partial \tau}^{\text {shift of Pareto frontier }}}{\underbrace{\partial H\left(u^{b}, u^{s}, \tau\right) / \partial u^{\chi}}_{\text {expressed in utils of player } \chi}}, \quad \chi \in\{b, s\}
$$

(i.e., z / N approaches to 0)

Sketch of proof

Round $\mathrm{N}-1$:
Buyer makes an offer

Round N -2:
Seller makes an offer

Robustness: Axiomatic approach

- From O'Neill et al. (2004), $\left\langle u^{b}(\tau), u^{s}(\tau)\right\rangle$ is also the unique solution satisfying
(1) Pareto optimality
(2) Scale invariant
(3) Symmetry

4. Directional continuity
(5) Time consistency

- The solution is ordinal, i.e., invariant to order-preserving transformations.

Solution in terms of allocations/prices

- Asset price (in terms of DM goods) solves:

$$
y^{\prime}(\tau)=\frac{1}{2}(\overbrace{\frac{1}{v^{\prime}(y)}}^{\text {bid price }}+\overbrace{\frac{1}{u^{\prime}(y)}}^{\text {ask price }}) \text { for all } y<y^{*} \text {. }
$$

- Suppose $v^{\prime}(y)=1$. Asset price is:

$$
\frac{1}{2}\left(1+\frac{1}{u^{\prime}(y)}\right)
$$

It increases with the size of the trade.

AGENDA OF THE NEGOTIATION
 Part 1: Optimal number of rounds

Repeated Rubinstein game

Bundled vs gradual sales

- Intermediate output levels, $\left\{y_{n}\right\}_{n=1}^{N}$, solve:

$$
\int_{y_{n-1}}^{y_{n}} \overbrace{\frac{v^{\prime}\left(y_{n}\right)}{u^{\prime}\left(y_{n}\right)+v^{\prime}\left(y_{n}\right)}}^{\text {producer's share }} u^{\prime}(x)+\overbrace{\frac{u^{\prime}\left(y_{n}\right)}{u^{\prime}\left(y_{n}\right)+v^{\prime}\left(y_{n}\right)}}^{\text {consumer's share }} v^{\prime}(x) d x=\frac{z}{N}
$$

Proposition: Consumers (asset owners) prefer $N=+\infty$ to any $N<+\infty$.

AGENDA OF THE NEGOTIATION

Part 2: gradual bargaining over DM goods

Gradual bargaining over DM goods

- Suppose agents bargain gradually over y in exchange for money

Gradual bargaining over DM goods (cont'ed)

- The payment for y units of DM goods is:

$$
p(y)=\frac{1}{2}[u(y)+v(y)] .
$$

- Implications:
(1) New strategic and axiomatic foundations for the egalitarian solution
(2) Egalitarian is not scale invariant while gradual solution is ordinal!

Endogenous agenda

- Different agendas lead to different outcomes
- Suppose we pick one player to choose the agenda.
- The buyer chooses to bargain gradually over z
- The seller chooses to bargain gradually over y.

FROM PARTIAL TO GENERAL EQUILIBRIUM

Asset negotiability

- Agenda indexed by time, τ
- An implicit mapping between τ and z
- New asset characteristic: Negotiability
- $\delta>0$ units of assets can be sold per unit of time
- What is negotiability in practice:
- time to authenticate assets
- time to value complex assets
- time to execute trade and transfer ownership (e.g., blockchain technologies)

Making time relevant

- Random time to negotiate asset sales: $\bar{\tau} \sim \operatorname{Exp}(\lambda)$
- negotiation breakdown, proxy for discounting
- Formally:

Pricing of Lucas trees

- Interest rate spread (liquid vs non-liquid):

$$
\overbrace{s}^{\text {spread }}=\overbrace{\alpha}^{\text {search }} \times \overbrace{\theta}^{\text {bargaining }} \times \overbrace{e^{-\frac{\lambda}{\delta} p(y)}}^{\text {negotiability }} \times \overbrace{\ell(y)}^{\text {liquidity needs }} .
$$

where $\ell(y) \equiv u^{\prime}(y) / v^{\prime}(y)-1$

- $e^{-\frac{\lambda}{\delta} p(y)}$ akin to a pledgeability coefficient
- endogenous with \neq comparative statics
- s decreases with Ad but increases with δ and $1 / \lambda$

Endogenous negotiability

- Consumers choose δ when a match is formed but before $\bar{\tau}$ is realized
- Cost to enhance negotiability: $\psi(\delta)$

Proposition
(1) If A is not too large, an increase in A reduces s, but raises δ.
(2) If A is not too large, asset negotiability is too low for all bargaining powers

- A pecuniary externality

Multiple assets

- J one-period lived Lucas trees in fixed supply A_{j}
- Each tree pays off one unit of numeraire
- Fiat money: $j=0$
- Negotiability of asset j is δ_{j} with

$$
\delta_{0} \geq \delta_{1} \geq \delta_{2} \geq \ldots \geq \delta_{J}
$$

- Pecking order: sell assets with high negotiability first

Asset prices

$$
\begin{gathered}
\overbrace{S_{j}}^{\text {spread }}=\overbrace{\alpha \theta}^{\text {search\&bargaining }} \overbrace{\lambda \sum_{k=j+1}^{J} \int_{T_{k}}^{T_{k+1}} \frac{\left(\delta_{j}-\delta_{k}\right)}{\delta_{j}} e^{-\lambda \tau} \ell[y(\tau)] d \tau}^{\text {negotiability premium }} \\
+\alpha \theta \overbrace{e^{-\lambda T_{J+1} \ell\left[y\left(T_{J+1}\right)\right]}}^{\text {liquidity premium }}
\end{gathered}
$$

- If $\delta_{j}>\delta_{j+1}$, then $s_{j} \geq s_{j+1}$.
- Negotiability premium is asset specific
- depends on asset supplies, negotiability differentials

APPLICATION \#1: MONEY AND BONDS

Money and bonds

$$
\begin{array}{ll}
\text { प } \bar{\tau}=T_{1} & \text { पI } \bar{\tau}=T_{2} \\
\text { प } \bar{\tau} \in\left(T_{1}, T_{2}\right) & \text { प } \bar{\tau}>T_{2}
\end{array}
$$

Regime 1: CIA
Regime 2: Marginally illiquid bonds
Regime 3: Effective OMOS Regime 4: Rate of return equality

OMOs: negotiability vs liquidity

- In Regime 3, an increase in A_{1} (bond supply) leads to a reduction in output
- The most negotiable assets are replaced with less negotiable ones
- Suppose $\bar{\tau}$ is stochastic

APPLICATION \#2: MULTIPLE CURRENCIES

Multiple fiat monies

- Multiple cryptocurrencies: Bitcoins, Litecoin, Ethereum ...
- Confirmation times vary across currencies
- Different currencies have different δ
- 2 currencies: 0 and 1
- $\delta_{0}>\delta_{1}$ but $\pi_{0}>\pi_{1}$

Dual currency equilibrium

- Suppose $i_{0}>i_{1}$.
- For all $\tau \in\left(\bar{\tau}_{0}, \bar{\tau}_{1}\right)$ there exists a unique SSE where both currencies are valued.
- $\partial y / \partial \pi_{0}<0$ and $\partial y / \partial \pi_{1}>0$
- Currency 0 appreciates vis-a-vis currency 1 as α or θ increases or as $\bar{\tau}$ decreases
- because agents put more weight on negotiability

OTC MARKET WITH MONEY

Re-interpretation: OTC markets

- Each agent is endowed with Ω units of short-lived assets
- Asset payoff: $\varepsilon f(\omega)$ where $\varepsilon \in\left\{\varepsilon_{\ell}, \varepsilon_{h}\right\}$ is idiosyncratric
- Assets reallocated in pairwise meetings
- quantity of assets sold by ℓ to $h: y$
- Utility of buyer: $u(y) \equiv \varepsilon_{h}[f(\Omega+y)-f(\Omega)]$
- Disutility of seller: $v(y) \equiv \varepsilon_{\ell}[f(\Omega)-f(\Omega-y)]$
- A competitive interdealer market with price q

Bid and ask prices

- In meeting with dealers, the investor chooses the agenda
- Ask price: gradual bargaining over investors' money

$$
p^{a}(y)=q \int_{0}^{y} \frac{2 \varepsilon_{h} f^{\prime}(\Omega+x)}{\varepsilon_{h} f^{\prime}(\Omega+x)+q} d x
$$

- Bid price: gradual bargaining over investor's illiquid assets

$$
p^{b}(y)=\int_{0}^{y} \frac{q+\varepsilon_{\ell} f^{\prime}(\Omega-x)}{2} d x
$$

- Efficient trade sizes at the Friedman rule

Conclusion

- A new approach to bargaining over asset portfolios in decentralized asset markets
- Axiomatic and strategic foundations
- Tractable
- More general: encompasses Nash and Kalai solutions for specific agendas
- Insights
- normative: gradual bargaining desirable individually and socially
- positive: negotiability premia, distribution of asset returns, determinacy of exchange rate, OMOs

