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Abstract

How do low real interest rates constrain monetary policy? Is the zero
lower bound optimal if the real interest rate is suffi ciently low? What is
the role of forward guidance? A model is constructed that incorporates
sticky price frictions, collateral constraints, and conventional monetary
distortions. The model has neo-Fisherian properties. If the zero lower
bound is a problem, then a symptom is inflation above the central bank’s
inflation target. Extended periods of low nominal interest rates are use-
ful in bringing inflation down and relaxing financial constraints, not for
forward guidance reasons. The ZLB may be suboptimal under tight col-
lateral constraints.
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1 Introduction

Non-monetary factors that cause the short-term real rate of interest to be low
can contribute to circumstances where central banks will lower their nominal
interest rate targets to zero (the zero lower bound or ZLB), or to some lower
effective lower bound (ELB). What are the symptoms associated with a low real
interest rate? Does a suffi ciently low real interest rate imply that the ZLB (or
something lower) is optimal? If so, how should the central bank manage the
transition from the ZLB state? In this paper, we construct a tractable analytical
model of low real interest rates and monetary policy. The goal is to study
optimal monetary policy using a model which is explicit about the reason for
low real interest rates —a scarcity of safe collateral —and which can incorporate
alternative sources of ineffi ciency so as to understand how those interact with
collateral scarcity. The model can incorporate sticky prices, financial frictions,
monetary exchange, and open market operations, in a straightforward way.
Interest in the ZLB in macroeconomics is at least as old as Keynes’s General

Theory (Keynes 1936). Keynes emphasized the importance of the liquidity
trap —the neutrality of open market operations at the ZLB. However, Keynes’s
arguments seem to have been viewed as of little practical importance, except
perhaps for explaining what was going on in the Great Depression. Indeed, in
the period after the 1951 Treasury/Fed Accord until 2002, monetary policy in
the United States rarely got within shouting distance of the ZLB. For example,
between 1951 and 2002, the 3-month Treasury bill rate dipped below 1% only
twice, and only for short periods of time, in 1954 and 1958.
The ZLB did not become a widely discussed monetary policy issue until the

late 1990s and early 2000s. Interest at that time appears to have been sparked
by experience in Japan, as well as in the United States, where the federal funds
rate target stood at 1% from mid-2002 to mid-2003. This experience led to
macroeconomic research using modern macroeconomic theory to understand
the importance of the ZLB for macroeconomic activity and for monetary policy.
Krugman (1998) used a Lucas-type dynamic cash-in-advance model to show
how temporarily-sticky prices could lead to a situation in which current mone-
tary policy would be thwarted by the ZLB, but a promise to raise future prices
through future monetary expansion would permit escape from a liquidity trap.
This idea was later fleshed out in a more complete New Keynesian framework
by Eggertsson and Woodford (2003), who argued that a binding ZLB constraint
could cause deflation and low output. This was then characterized as a policy
problem that could be mitigated by commitment to future policy actions. Once
the underlying factor that had been causing the ZLB to bind —a low “natural
real rate of interest”—dissipates, the future inflation-targeting central banker
will revert to a policy that the present-day policymaker would view as subop-
timal. According to Eggertsson and Woodford, a forward guidance policy by
which the policymaker could commit to a future policy of low nominal interest
rates and higher inflation - after the natural real rate rises - would mitigate the
ZLB problem.
An influential policy view from this period (see Bernanke et al. 2004, page
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1) is neatly summarized as follows:

Should the nominal rate hit zero, the real short-term interest rate–
at that point equal to the negative of prevailing inflation expectations–
may be higher than the rate needed to ensure stable prices and the
full utilization of resources. Indeed, an unstable dynamic may re-
sult if the excessively high real rate leads to downward pressure on
costs and prices that, in turn, raises the real short-term interest rate,
which depresses activity and prices further, and so on.

This policy view is in some ways consistent with Eggertsson and Woodford
(2003), but differs in two ways. First, there is no emphasis on forward guidance.
Second, Bernanke thinks that a ZLB monetary policy leads to unstable dynamics
and the potential for a deflationary black hole. This idea is hard to trace in the
academic literature, but seems to have been part of the public policy discussion
(see for example Krugman 2002).
Since the early 2000s, macroeconomic shocks and the policy responses to

those shocks have provided macroeconomists interested in ZLB issues with more
information. The global financial crisis and the resulting worldwide recession in
2008-09 ultimately resulted in ZLB (or negative interest rate) monetary policy
in many countries, including the US, the UK, Canada, the Euro area, and
Sweden. In Japan, the Bank of Japan has now pursued ZLB policies, or negative
interest rate policies, for about 23 years. As well, there has been extensive use
of the unconventional monetary policies specified in Bernanke et al. (2004) for
example, including large central bank balance sheets, increases in the average
maturity of central bank asset portfolios, and forward guidance.
More recent research by Werning (2012) reinforces the New Keynesian analy-

sis of Eggertsson and Woodford (2003). Werning’s contribution is to analyze
optimal monetary policy in the context of a temporarily low natural real rate
of interest. As in Eggertsson and Woodford (2012), the ZLB period is char-
acterized by low inflation and low output. Forward guidance, in the form of
commitment to low nominal interest rates and high inflation in the future, miti-
gates the problem. Werning also argues that the ZLB problem worsens as price
flexibility increases.
Williams (2014) summarizes mainstream monetary policymakers’views of

the state of the art in ZLB monetary policy. What appears to have disappeared
from the policy discussion (relative to 2003) is concern with the deflationary-
black-hole potential formerly thought to be inherent in ZLB episodes. This
change in the consensus policy view has occurred for good reasons. In particular,
it would be hard to characterize the 23-year low-nominal-interest-rate regime
in Japan as unstable, and Japan has not experienced a persistent deflation.
On average, the inflation rate in Japan since 1995 has been close to zero. As
well, during the seven-year period (2008-2015) in the United States when the
fed funds rate target range was 0-0.25%, the inflation rate (headline personal
consumption deflator) in the US averaged 1.3%. This rate was lower than the
Fed’s target of 2%, but hardly a deflationary black hole.
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From Williams (2014) and the New Keynesian literature on the ZLB dis-
cussed above, a current consensus policy view emerges:

1. The real rate of return on safe assets, including government debt, has been
persistently low, and this low real interest rate is expected to persist into
the indefinite future.

2. The low real interest rate implies that the ZLB problem will arise more
frequently in the future than it has in the past.

3. This frequently-occurring binding ZLB will be reflected in more frequent
undershooting of central bank inflation targets, if such targets remain at
2%.

4. For the long run, higher inflation targets should be considered.

There are good reasons to be skeptical of this consensus policy view. First,
under the consensus view, the ZLB is sometimes discussed as an inevitable
response to a set of economic shocks. But the ZLB binds in practice as the
result of policy choices. Benhabib et al. (2001) tells us that adherence to
the Taylor rule by a central bank, following the Taylor principle (increase the
nominal interest rate more than one-for-one in response to an increase in the
inflation rate) can lead the central bank into a policy trap. At low nominal
interest rates, the Fisher effect sets in, inflation is low, and the central banker
lowers the nominal interest rate to zero, expecting that inflation will go up. But
this just leads to persistently low inflation, and the central bank is stuck at the
ZLB.
Second, some recent research on the properties of New Keynesian mod-

els raises doubts about how the results in Eggertsson and Woodford (2002)
and Werning (2012), for example, should be interpreted. Work by Cochrane
(2016, 2017), Rupert and Sustek (2016), and Williamson (2018c) comes to Neo-
Fisherian conclusions concerning the properties of New Keynesian models, and
of the broader set of mainstream macroeconomic monetary models. That is,
low (high) inflation tends to be caused by low (high) nominal interest rate set-
tings by the central bank. While there may be nonneutralities of money that
result in liquidity effects (an increase in the central bank’s nominal interest rate
target raises the real interest rate in the short run), such effects are dominated
by Fisher effects, even in the short run. As a result, higher (lower) nominal
interest rates are associated with higher (lower) inflation. This alternative view
of inflation dynamics might make us question the consensus policy view of the
ZLB problem. Maybe inflation is low when the ZLB binds because of monetary
policy, not because of what monetary policy is responding to.
Third, as Werning (2012) notes as a caveat in his work:

...the analysis ...omits ... financial constraints and other frictions
which may be relevant in these situations.
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A good case can be made that such constraints and frictions are indeed
relevant in such situations —i.e. situations in which the ZLB may bind, or should
bind, according to policymakers. That is, macroeconomists seem to agree that
real interest rates are currently low for reasons independent of monetary policy.
In particular, low productivity growth and demographic factors may cause the
real interest rate to be low. And theory and evidence suggest that a key factor
leading to low real rates of interest on safe assets is the high demand and low
supply of safe and liquid assets. For theoretical support, see Caballero et al.
(2016) and Andolfatto and Williamson (2015), and for empirical evidence, see
Vissing-Jorgensen (2012), and Del Negro et al. (2017). Thus, it seems that it
would be useful in analyzing the implications of low real interest rates to model
a safe asset shortage explicitly.
To explore these issues, we need a model, and many monetary policymak-

ers think it important that policy modeling include price and/or wage rigidity.
But following the conventional New Keynesian (NK) route —Dixit-Stiglitz mo-
nopolistic competition, Calvo pricing, etc., leads to complicated reduced-form
linearized derivations, which can obscure what is going on. And a key simplifi-
cation in such models is to eliminate central bank balance sheets and the details
of retail transactions from the analysis, as in Woodfordian “cashless”models
(see Woodford 2003). But once we enter the realm of financial frictions, looking
out for the details of central bank asset swaps and retail transactions can be
critical (Andolfatto and Williamson 2015, Williamson 2016, 2018a, 2018b). If
we want to introduce other frictions than sticky prices, and include details of
central bank assets and liabilities and their roles in the economy, it seems un-
wise to try to build on a conventional NK framework, which was designed with
something else in mind.
The tractable model constructed here will permit us to put in and take out

particular frictions, so that we can understand where the results come from.
In general, the model can include sticky prices, a safe asset shortage reflected
in binding collateral constraints, monetary exchange, and explicit open market
operations. To keep things simple, production and consumption are carried on at
the household level, and when prices change they are determined competitively,
not be price-setting firms. Every period, some prices are flexible, while sticky
prices remain at their previous-period levels. In markets in which prices are
sticky, output is demand-determined, just as in mainstream NK setups.
We start with a cashless model, in the spirit of Woodford (2003) (though

without monopolistic competition and Calvo pricing). All goods are purchased
with secured credit, and the available collateral in the model is government debt.
In this version of the model, there is a natural inflation target, which is zero
whether the collateral constraint binds or not. If the collateral constraint binds,
the real interest rate is low, and there is a liquidity premium associated with
government debt. In the cashless model, the ZLB may bind when the central
bank is conducting policy optimally. But, a binding ZLB is always reflected in
inflation that is above the natural inflation target —i.e. above the inflation rate
that eliminates the relative price distortion caused by sticky prices. Further,
future monetary policy is irrelevant for current inflation, so there is no role
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for forward guidance. That is, all of the effects of policy flow from present to
future. Current monetary policy can matter for the future liquidity premium
on government debt, which can indirectly constrain future monetary policy at
the ZLB and affect future inflation.
In the cashless model, a collateral constraint that is tight on average, and

tight enough so that the ZLB binds on a regular basis, implies that, under
optimal monetary policy, the inflation rate is above the natural inflation target
when the ZLB binds, and below the target when it does not bind. This is the
opposite of the consensus policy view about how to manage a binding ZLB
constraint.
In the cashless model, a scenario similar to Werning (2012) is considered,

where the economy experiences a temporary period with a low real interest rate,
followed by an indefinite period with a “normal”real interest rate. That is, the
collateral constraint is tight for a specified period of time, and then the supply
of safe assets increases permanently, relaxing the collateral constraint. Under
this scenario, while the collateral constraint is tight the ZLB constraint binds at
the optimum for the central bank, output is low, and inflation is high. Once the
quantity of safe assets falls permanently, there is a temporary period when it is
optimal for the central bank to keep the nominal interest rate low. But that is
because this policy provides the fastest disinflation path to the natural target
inflation rate, at the same time relaxing the collateral constraint in the quickest
fashion. In the Eggertsson and Woodford (2002) and Werning (2012) analyses,
a prolonged period of low nominal interest rates, after the low “natural rate”
period has passed, acts to increase welfare during the low-natural-rate period.
The model is then extended to permit retail transactions using currency, and

open market operations by the central bank to support its interest rate policy.
So that we can understand how all the frictions in this setup fit together, we first
consider the case with flexible prices. In this case there are two potential sources
of ineffi ciency: a traditional Friedman rule ineffi ciency according to which high
inflation and a positive nominal interest rate make exchange in the cash market
ineffi cient; and a binding collateral constraint, whereby scarce collateral makes
exchange ineffi cient in the cash-and-credit market. If the collateral constraint
does not bind, then a Friedman rule is optimal and the nominal interest rate
should be zero. However, if the collateral constraint binds under any conditions,
it binds when the nominal interest rate is low, and at the optimum the nominal
interest rate should be greater than zero. That is, an open market sale of
government bonds by the central bank at the ZLB raises the nominal interest
rate and relaxes the collateral constraint. This raises welfare. The results for
the cashless model are just the opposite. The nominal interest rate should be
greater than zero when the collateral constraint does not bind, and the ZLB is
optimal when the collateral constraint is suffi ciently tight.
But what happens in the case in which we include sticky prices, retail pay-

ments using currency, and secured credit? Then, there are potentially three
ineffi ciencies at work: a sticky price ineffi ciency that distorts the relative price
of flexible-price and sticky-price goods, a Friedman-rule ineffi ciency which causes
ineffi ciency in the market for goods purchased with currency, and a safe asset

6



scarcity, which causes ineffi ciency in the market for goods purchased with se-
cured credit, and generally constrains the demand for goods.
In this full-blown model, if the collateral constraint does not bind, then the

nominal interest rate should be positive, and optimal policy trades off the costs
of Friedman rule ineffi ciency and sticky price ineffi ciency. Optimal inflation
falls somewhere between Friedman-rule deflation and zero inflation. In a region
of the parameter space, a tighter collateral constraint and a low real interest
rate implies that the optimal nominal interest rate increases as the collateral
constraint gets tighter. That is, sticky prices are insuffi cient to induce an optimal
ZLB policy when the collateral constraint is tight. For the ZLB to be optimal, it
is necessary, but not suffi cient, that the demand for sticky-price goods purchased
with credit be highly interest-elastic. Like the cashless version of our model,
this version has the implication that forward guidance in monetary policy is
irrelevant.
So, the conclusions here differ markedly from the consensus view of the ZLB

“problem,”and the results have a Fisherian flavor. A safe asset shortage that
causes the real interest rate to be low implies that inflation tends to be high —
perhaps higher than desirable. If monetary factors are deemed to be irrelevant
for the problem, this implies an extended period with low nominal interest rates,
and this serves to bring inflation down quickly. Once we take monetary factors
into account, the ZLB may be suboptimal when the collateral constraint is tight.
In contrast to arguments in Woodford (2003), the cashless economy behaves
differently - in important ways - from the economy with currency transactions
and open market operations.
In terms of the theoretical approach to monetary exchange and monetary

policy, this paper is closest to Andolfatto and Williamson (2015), and shares
an approach to safe asset scarcity with Williamson (2016, 2018a, 2018b). The
modeling of sticky prices is new here, and certainly different from standard New
Keynesian frameworks, e.g. Woodford (2003), Gali (2015).
The remainder of the paper is organized as follows. The baseline cashless

model is constructed and analyzed in the second section. Then, in the third
section, an extended model that includes retail exchange with currency, along
with open market operations, is developed and analyzed. The final section is a
conclusion.

2 Cashless Model

To start, we will construct a cashless model, in the spirit of baseline New Key-
nesian models (e.g. Woodford 2003, Gali 2015), except that we take a different
approach to price stickiness. A key element in the model will be secured credit,
and the possibility that a binding credit constraint induces a low real interest
rate. To focus on the issues of interest here, we assume no aggregate uncertainty.
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There is a continuum of households with unit mass, with each maximizing

∞∑
t=0

βt
[
u(cft ) + u(cst )− (nft + nst )

]
(1)

Here, 0 < β < 1, cft is consumption by the household of the flexible-price good,
cst is consumption of the sticky-price good, and n

f
t and n

s
t denote, respectively,

household labor supplied to produce the flexible-price and sticky-price goods,
respectively. The fact that the utility function is linear in labor supply is an
important restriction, which will lend tractability to the problem by eliminating
wealth effects. In standard New Keynesian constructs (see e.g. Gali 2015 for
the details), quasilinear utility would be immaterial, as output is effectively
demand-determined in those frameworks. In contrast, though there is price
stickiness in our setup, supply considerations will come into play in markets
in which prices are flexible, so labor supply elasticities and wealth effects will
matter, in general.
As in mainstream New Keynesian cashless models, goods are denominated

in terms of money, and money does not serve as a medium of exchange, only as a
unit of account. Let Pt denote the price of flexible-price goods in units of money.
The spot market in flexible-price goods clears every period, but households are
technologically constrained (in the spirit of the technological constraints in any
sticky-price or sticky-wage setting) to sell sticky-price goods at the price Pt−1,
and must satisfy whatever demand arises for sticky-price goods at that price.
Demand is assumed to be distributed uniformly among households in the sticky-
price goods market.
This setup is equivalent to a world in which there are two physically distinct

goods, which for convenience can be denoted even and odd goods. The even
(odd) good is the flexible price good in even (odd) periods . Then in an even
(odd) period, the price is determined competitively for the even good, and the
odd (even) good must be sold at its price in the previous period. Thus, for a
particular good, the price stays the same for two periods running, and there
is staggered price determination. This yields the setup we have specified, with
this period’s flexible-price good being next period’s sticky-price good.
The approach to sticky prices taken here is different from, for example,

either Calvo pricing (e.g. Gali 2015) or state-dependent pricing (Golosov and
Lucas 2007), under which individual monopolistically competitive firms make
forward-looking pricing decisions. Our approach avoids some of the technical
modeling complications of these alternative approaches but, as we show, the
model captures the fundamentals of New Keynesian sticky price economics —
relative price distortions and Phillips curve effects. We will show, though, that
a binding collateral constraint will alter Phillips curve relationships.
The household produces goods using a linear technology, identical for the

two goods. In particular, normalize so that one unit of labor supplied produces
one unit of either good, and assume goods are perishable. Further, a household
cannot consume its own output, but must purchase goods from other households
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using secured credit. There is only one asset in this economy, which is a one-
period nominal government bond. A bond issued in period t sells for one unit
of money in period t and pays off Rt units of money in period t + 1, so Rt is
the gross nominal interest rate. Let the flexible price good be the numeraire,
and let 1

πt
denote the price of the sticky price good in terms of the flexible

price good, that is πt = Pt
Pt−1

, so πt is both an intratemporal relative price
(the price of the flexible price good in terms of the sticky price good) and an
intertemporal relative price (the price of this period’s flexible price good relative
to last period’s flexible price good).
In the model, πt will reflect the effects of monetary policy and will give us a

measure of the ineffi ciency wedge resulting from sticky prices. As shorthand we
will refer to πt as the “gross inflation rate,”with some abuse of language. The
actual measured gross inflation rate in period t in this economy is

it =
Pt−1c

s
t + Ptc

f
t

Pt−2cst−1 + Pt−1c
f
t−1

=
cst + πtc

f
t

cst−1
πt−1

+ cft−1
.

Under some special conditions, it = πt, but in general it 6= πt.
Secured credit is necessary in this economy as there is limited commitment.

The household consists of a seller, who supplies labor to produce flexible-price
and sticky-price goods in exchange for IOUs, and a buyer, who purchases goods
with IOUs. The IOUs are then settled at the end of the period, after production,
goods market exchange, and consumption take place. The household could
default on its debts at the end of the period, but in equilibrium its does not,
because the household has secured its debts with suffi cient government debt.
To be more specific, the household’s period t budget constraint is

b̄t + cft +
cst
πt

= nft +
nst
πt

+
Rt−1
πt

b̄t−1 + τ t. (2)

In equation (2), the household enters the period with b̄t−1 government bonds
acquired in period t− 1, in units of the period t− 1 flexible-price good, receives
the gross real rate of return Rt−1

πt
on each bond, and receives a lump-sum transfer

τ t from the government. The household seller works during the period, acquir-
ing nft +

nst
πt
claims on end-of-period consumption, which it uses along with its

beginning-of-period wealth to extinguish cft +
cst
πt
claims on consumption issued

to purchase goods and to purchase b̄t government bonds.
To prevent the household from running away on its within-period IOUs,

the household must hold enough government bonds to secure its debt. So, the
following collateral constraint must hold:

cft +
cst
πt
≤ q̂tb̄t, (3)

where q̂t is the price of bonds at the end of the period. That is, if the household
were to run away on its debts at the end of the period, its creditors confiscate
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the bonds posted as collateral by the household, each of which is worth q̂t to
household at the end of the period. Therefore, the collateral constraint (3)
states that the household prefers paying its debts each period to running away
on its debts and giving up its posted collateral. Collateral constraints such as
(3) are familiar from Kiyotaki and Moore (1997), or Venkateswaran and Wright
(2013), and Williamson (2016, 2018a, 2018b).
The government issues one-period debt backed by lump sum taxes and trans-

fers, and the government’s budget constraint is

bt =
Rt−1bt−1

πt
+ τ t, (4)

for t = 1, 2, ..., where bt denotes the value of government bonds issued in period
t, in units of the period t flexible price good. In period 0, there is no outstanding
debt, so

b0 = τ0. (5)

2.1 Equilibrium

In period t, the household chooses cft , c
s
t , n

f
t , and b̄t. The labor input for pro-

duction of the sticky-price good, nst , is determined by the household’s share of
demand for the sticky-price good at market prices. From the first-order condi-
tions for an optimum from the household’s problem,

u′(cft ) = 1 + λt, (6)

u′(cft ) = πtu
′(cst ), (7)

−1 +
βu′(cft )Rt
πt+1

= 0, (8)

where λt denotes the multiplier associated with the collateral constraint (3).
Note that quasilinear utility implies that the marginal utility of wealth (the
multiplier associated with the budget constraint (2)) is a constant equal to
unity, —there are no wealth effects.
The price of a government bond at the end of the period, after production

and consumption takes place, is

q̂t =
βRt
πt+1

≤ βu′(cft )Rt
πt+1

= 1. (9)

That is, q̂t is the fundamental price of the government bond, as it does not reflect
the payoff from using the bond as collateral. Note that the weak inequality in
(9) is a strong inequality when λt > 0 and the collateral constraint (3) binds,
from (6). That is, when λt > 0, there is an ineffi ciency in the market for flexible
price goods, which is reflected in a liquidity premium on government debt in
equation (8). Effi cient output in each market is c∗, where u′(c∗) = 1, i.e. the
marginal utility of consumption equals the marginal utility of wealth
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In equilibrium, each household optimizes, markets clear, and the government
budget constraints hold. That is, households optimize, i.e. (2), (3) and (6)-(8)
hold, for t = 0, 1, 2, ..., the bond market clears, i.e.

b̄t = bt,

for t = 0, 1, 2, ..., demand for goods is satisfied at market prices, i.e.

cft = nft , c
s
t = nst ,

for t = 0, 1, 2, ..., and government budget constraints are satisfied, i.e. (4) holds
for t = 1, 2, 3, ..., and (5) holds.
Then, in equilibrium, in period t we can have one of two cases. In the first

case, the collateral constraint (3) does not bind, so

u′(cft ) = 1, (10)

from (6), equation (7) holds,

−1 +
βRt
πt+1

= 0,

from (8), and (3) holds, which from (7) and (9) gives

c∗ + cstu
′(cst ) ≤ bt. (11)

In the second case, the collateral constraint (3) binds, so (7) and (8) hold, and
(3) holds with equality, so from (7) and (9),

cft u
′(cft ) + cstu

′(cst ) = bt. (12)

We will assume that fiscal policy sets a path for real government debt,
{bt}∞t=0, and that the central bank chooses a sequence of gross nominal interest
rates {Rt}∞t=0 or, alternatively, chooses a policy rule for the nominal interest
rate. Thus, we are assuming that the fiscal authority sets the path for real gov-
ernment debt exogenously, and then manipulates lump sum taxes in response to
fiscal policy so as to achieve this path for government debt. Potentially, {bt}∞t=0
is suboptimal in that, under optimal fiscal policy, the collateral constraint would
not bind. Our interest is in analyzing optimal monetary policy in response to
potentially-suboptimal fiscal policy, not in analyzing optimal fiscal policy. That
is, we want to give advice to central bankers. The particular policy rule we as-
sume is convenient, as it is the path for the real government debt that matters
in a straightforward way for the determination of equilibrium quantities and
prices in the model.

2.2 Characterizing an Equilibrium

In order to understand the properties of the equilibrium, including the effects
of monetary policy, it helps to make some further regularity assumptions. To
that end, first define

11



f(c) ≡ cu′(c)

Assume that
f ′(c) > 0, (13)

i.e. the coeffi cient of relative risk aversion is less than one for all c. As well, for
any (c1, c2) with 0 < c1 < c2 < c∗, assume

f ′(c1)− f ′(c2) > f ′(c1)u
′(c2)− f ′(c2)u′(c1). (14)

Also, assume that
f(0) = 0. (15)

and
f ′(0) =∞. (16)

Assumptions (13)-(16) are satisfied, for example, if the coeffi cient of relative risk
aversion of u(c) is constant and less than one for all c. Assumption (13) assures
that the demand for collateral is strictly increasing in consumption for both the
flexible-price good and the sticky-price good, while assumptions (14) and (16)
are suffi cient for the optimal monetary policy problem to be well-behaved.
Before analyzing policy, we will provide a general characterization of the

equilibrium. Given the equilibrium conditions, the initial gross inflation rate
π0 is indeterminate — there is nothing to tie down the initial relative price of
the sticky price good. But, given π0, either the collateral constraint (3) binds,
in which case (cf0 , c

s
0) is determined by (7) and (12), or it does not bind, so

(cf0 , c
s
0) is determined by (7) and (10). Then, from equation (8), the current

gross inflation rate in the next period, π1 is determined by R0 and c
f
0 . Then π1

determines the period 1 consumption allocation, and R1 and c
f
1 determine π2,

etc. Thus, given monetary policy and fiscal policy, the model solves forward,
given the initial gross inflation rate π0.

We want to show that the collateral constraint binds in period t for high πt,
and does not bind for low πt, given fiscal policy.

Proposition 1 (i) If bt > c∗, then the collateral constraint (3) binds in equi-
librium in period t if and only if πt > π̂, and does not bind for πt ≤ π̂, where

π̂ =
1

u′(ĉ)
, (17)

and ĉ is uniquely determined by

c∗ + ĉu′(ĉ) = bt. (18)

(ii) If bt ≤ c∗, then the collateral constraint binds in equilibrium for all πt > 0.

Proof. If the incentive constraint (3) binds, then (12) and (7) hold with equal-
ity. Assumption (13) implies that g′(c) > 0, so that right-hand side of (12) is

12



strictly increasing in cft and in c
s
t . Therefore, the locus defined by (12) is strictly

decreasing in (cst , c
f
t ) space, given πt, and given the properties of u(·), the locus

defined by (7) is strictly increasing in (cst , c
f
t ) space, given πt. Therefore, given

πt, (12) and (7) solve uniquely for (cst , c
f
t ), given πt. Further, higher (lower) πt

implies higher (lower) cst and lower (higher) c
f
t . So, as πt → 0, the solution to

(12) and (7) has cst → 0 and cft → c̃, where c̃ solves c̃u′(c̃) = bt. If bt > c∗,
then c̃ > c∗, which implies, from (6), that λt ≥ 0 is violated, so the collateral
constraint (3) cannot bind as πt → 0. However, if bt ≤ c∗, then c̃ ≤ c∗, so the
collateral constraint binds as πt → 0. As πt → ∞, the solution to (12) and (7)
has cft → 0 and cst → c̃, so u′(cft )→∞ as πt →∞, and from (6) the collateral
constraint (3) binds. Therefore, by continuity, (i) and (ii) hold.
Proposition 1 states that, if the current government debt is suffi ciently low,

then the collateral constraint will bind for any inflation rate. Further, part of
the proof of the proposition shows that, when the collateral constraint binds,
then higher inflation causes substitution from flexible-price goods to sticky-price
goods. That is, higher inflation implies a lower relative price of sticky-price
goods to flexible-price goods, and our assumptions on preferences guarantee
that substitution effects dominate income effects, in terms of the demand for
goods. Further, higher inflation tightens the collateral constraint, i.e. the mul-
tiplier associated with the collateral constraint increases. Figure 1 shows the
determination of equilibrium (cst , c

f
t ) given inflation, in the case where bt ≤ c∗.

If inflation increases from πA to πB then the equilibrium shifts from A to B,
with consumption of the sticky price good rising, and consumption of the flexible
price good falling.
When the quantity of government debt is suffi ciently high, i.e. bt > c∗ then,

as in the low-government-debt case, higher inflation causes substitution from
flexible-price goods to sticky-price goods. However, there will be a critical gross
inflation rate π̂, below which the collateral constraint does not bind, and above
which it binds. The high-government-debt case is illustrated in Figure 2. In the
Figure, we have shown a case where a high inflation rate πA implies a binding
collateral constraint, and a low inflation rate πB implies a nonbinding collateral
constraint.

2.2.1 The Phillips Curve

When the collateral constraint (3) does not bind, then from (6), cft = c∗ and,
from (7), u′(cst ) = 1

πt
, so higher inflation necessarily increases total output

because it does not affect output of flexible price goods (production is effi cient
in the flexible price sector), but increases output of sticky price goods. Thus,
there is a Phillips curve effect, as sticky-price producers with low relative prices
produce to satisfy demand, and this demand is higher the larger is πt, i.e. the
lower is the relative price of sticky-price goods.
However, if the collateral constraint binds, then things are not so clear-cut.

Dropping t subscripts, and totally differentiating (12) and (7), we can determine
the derivative of total output with respect to π, when the collateral constraint
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(3) binds:

dcf

dπ
+
dcs

dπ
=

u′(cs)
[
u′(cf )− u′(cs)− csu′′(cs) + cfu′′(cf )

]
−πu′′(cs) [u′(cf ) + cfu′′(cf )]− u′′(cf )[u′(cs) + cfu′′(cs)]

(19)

Then, (13) and (14) imply that the expression on the right-hand side of (19)
is strictly positive if and only if cf < cs, and is strictly negative if and only
if cf > cs. Therefore, from equation (7), when the collateral constraint binds
total output is strictly decreasing in π for π < 1, and strictly increasing in π for
π > 1.
There are therefore three cases. In Figures 3-5, y denotes total output, while

π denotes the gross inflation rate. In the first case, depicted in Figure 3, bt > c∗

and π̂ > 1, so there is a suffi cient quantity of government debt that the collateral
constraint binds for only very high inflation rates. Then, there is a Phillips
curve for π < π̂, but even if output and consumption has increased enough that
the collateral constraint binds, for π > π̂ there is still a Phillips curve effect.
In Figure 4, bt > c∗ and π̂ < 1, in which case we obtain a non-monotonic
relationship between output and inflation. In the region where π̂ < π < 1,
increases in output are associated with decreases in inflation. Finally, in Figure
5, bt ≤ c∗, in which case the collateral constraint always binds, and output first
decreases as inflation increases, and then output increases as inflation increases.
Thus, there is a conventional Keynesian mechanism at work, which will tend

to produce a conventional Keynesian Phillips curve. But when the collateral
constraint binds the real quantity of government debt constrains output. In the
region where the collateral constraint binds, the relationship between inflation
and output is determined by the demand for collateral, and how that relates to
the substitution between flexible-price and fixed price goods as inflation changes.

2.3 Optimal Monetary Policy

In this model, the central bank has the power to set the gross nominal interest
rate Rt, and is assumed to treat fiscal policy, {bt}∞t=0, as given. We showed
above that, given how the model solves, Rt is irrelevant for the determination
of inflation and consumption allocations in periods 0, 1, 2, ..., t− 1. Thus, there
is no role for forward guidance, whereby future monetary policy matters for
current economic activity and inflation. From equation (8),

πt+1 = βu′(cft )Rt. (20)

which gives us the effect of monetary policy in period t on inflation in period
t+ 1, given period t consumption of the flexible price good.
If the collateral constraint were not binding in period t+ 1, then from (10),

(7), and (20), if the central bank maximizes period utility of the household in
period t+ 1, it solves

max
πt+1,cst+1

[
u(c∗) + u(cst+1)− c∗ − cst+1

]
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subject to

u′(cst+1) =
1

πt+1
,

πt+1 ≥ βu′(cft ),

where the last constraint is the zero lower bound constraint, from (20). The
solution to this problem is

πt+1 = max
[
1, βu′(cft )

]
and from (20) the monetary policy that maximizes period t+ 1 utility is

Rt = max

[
1,

1

βu′(cft )

]
. (21)

But (21) is also the optimal monetary policy in period t as, so long as the
collateral constraint does not bind in period t + 1, u′(cft+1) = 1 and cft+1 is
maximized, so the central bank’s choices of interest rates in periods t+1, t+2, ...,
are not restricted by the policy choice in period t.
Things get more complicated however, if a binding collateral constraint

comes into play in how the central bank sets the nominal interest rate. Suppose
we consider the same problem as above, except suppose that for the range of
policy choices of interest the collateral constraint binds. Then, if the central
bank were to choose Rt so as to maximize period utility for the household in
period t+ 1, from (7), (12), and (20) it would solve

max
πt+1,c

f
t+1,c

s
t+1

[
u(cft+1) + u(cst+1)− c

f
t+1 − cst+1

]
(22)

subject to
u′(cft+1)− πt+1u′(cst+1) = 0, (23)

cft+1u
′(cft+1) + cst+1u

′(cst+1) = bt+1, (24)

and
πt+1 ≥ βu′(cft ), (25)

Then, (13) and (14) imply that, on the locus defined by (24), the value of the
objective function in (22) increases (decreases) if cft+1 > cst+1 (c

f
t+1 < cst+1) when

cft+1 decreases and c
s
t+1 increases. Therefore, in the case of a binding collateral

constraint, the period-utility-maximizing monetary policy is given by (21). This
is the same as in the case when the collateral constraint does not bind.
What is different in the case with a binding collateral constraint, is that (25)

will necessarily affect monetary policy in periods leading up to the one in which
the zero lower bound constraint binds. That is, suppose that the collateral
constraint binds, and (25) binds in some period, i.e. Rt = 1 maximizes period
t + 1 utility. Also, suppose that Rt−1 > 1 maximizes period t utility and
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the collateral constraint binds in period t − 1. Then, a marginal reduction
in Rt−1 reduces πt and reduces u′(c

f
t ). With Rt = 1, this reduces πt+1, from

(20). Therefore, utility increases in period t + 1, but utility does not change
at the margin in period t, so utility goes up for periods t and t + 1. We can
work backward and show that, if the ZLB constraint binds in any period T, so
RT = 1, and if the ZLB constraint does not bind and the collateral constraint
binds in the previous s periods, i.e. Rt > 1 for t = T − s − 1, T − s, ...T − 1,
then πT > 1 and πt < 1 for t = T − s− 1, T − s, ...T − 1.

So, if the collateral constraint is suffi ciently tight that the ZLB constraint
binds in any period, then the central bank sets interest rates lower in the periods
leading up to this ZLB episode in which the collateral constraint binds, in such
a way that inflation is lower than what would maximize period utility in those
pre-ZLB periods. This contrasts with a forward guidance policy, under which
the central bank commits to a future policy that would otherwise be suboptimal.
In this model, if the central bank sets the current nominal interest rate lower
than would be the case if the central bank were ignoring the future ZLB event,
this results in lower inflation. Inflation is too high given the ZLB constraint,
and reducing inflation in advance of the ZLB event will lower inflation when the
ZLB binds.

2.4 Equilibria Under Optimal Monetary Policy

To understand the implications of binding collateral constraints and low real
interest rates for optimal policy, it helps to consider a set of examples. What
happens if the quantity of safe collateral fluctuates, so that there are recurrent
ZLB episodes? Could ineffi ciencies persist even if safe collateral is plentiful?
What happens if the ZLB constraint binds temporarily? What happens if it
binds permanently? What are the inflation dynamics when the ZLB constraint
binds?

2.4.1 Example 1: Alternating ZLB Episodes

In this case, suppose that bt = be in even periods, and bt = bo in odd periods,
and confine attention to the equilibrium in which all variables depend only on
whether the period is even or odd. Further, assume that u(c) = 2c

1
2 , which

permits a closed-form equilibrium solution. Assume that be < 2 and bo < 2,
which is suffi cient for collateral constraints to bind in every period given an
optimal monetary policy. From (7), (8), and (12), letting the superscripts e
and o denote variables in even and odd periods, respectively, the equilibrium
consumption allocation, in terms of gross inflation rates, is

cfi =

(
bi

1 + πi

)2
,

csi =

(
biπi

1 + πi

)2
,
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for i = e, o, where πe and πo solve

πo =
βRe(1 + πe)

be
, (26)

and

πe =
βRo(1 + πo)

bo
. (27)

First, if be ≥ 2β and bo ≥ 2β, i.e. if collateral constraints are not too tight, then
πo = πe = 1 is optimal, and this is supported by a monetary policy

Ri =
bi

2β
, (28)

for i = e, o, and given our assumptions the ZLB constraint does not bind at the
optimum. Note, in (28), that the nominal interest rate is low (high) in periods
when the quantity of safe collateral is low, i.e. when the collateral constraint
is tighter. That is, a tighter collateral constraint reduces the real interest rate,
implying that inflation is higher, given the nominal interest rate, so the nominal
interest rate must fall to keep the inflation rate at zero.
Next, suppose that we start with be ≥ 2β and bo ≥ 2β, so that the policy

given by (28) is optimal, with gross inflation rates determined by (26) and (27),
as depicted in Figure 6 by the intersection of lines A1 and B1. So, initially,
the inflation rate is zero in all periods. Then, suppose that be falls, holding
nominal interest rates constant. This results in a shift in B1 to B2, resulting
in increases in inflation rates in both even and odd periods. So now, given the
initial settings for nominal interest rates, inflation is too high in both even and
odd periods. This is because a lower supply of safe collateral in even periods
acts to tighten the collateral constraint and reduce consumption in even periods.
The real interest rate falls in even periods and, given the nominal interest rate,
inflation rises in odd periods, reducing consumption of flexible price goods in
odd periods, and reducing the odd period real interest rate, which increases
even period inflation.
To increase welfare, then, the central bank reduces nominal interest rates

in both even and odd periods. However, be is suffi ciently low that the ZLB
constraint binds in even periods. A feasible allocation is the one that achieves
πe = 1, but πo > 1, as depicted by the intersection of lines A2 and B3. How-
ever this allocation is not optimal, as the central bank can increase welfare by
reducing Ro further, shifting A2 to A3. At the optimum, πe < 1, and πo > 1,
as monetary policy trades off distortions in the allocation of flexible-price and
sticky-price goods in even and odd periods.
It is sometimes asserted (e.g. Williams 2014) that, if the real interest rate

is on average low, then the ZLB will bind more frequently. Some policymakers
claim that it would then be preferable to raise the inflation target, as then the
ZLB would bind less frequently. In our setting, a low supply of safe collateral
will indeed lower the real interest rate, and there are conditions, as illustrated
in this example, under which the ZLB will bind more frequently. However,
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the inflation target in the example is determined optimally in this model: the
optimal inflation rate is always zero. A binding ZLB constraint will result in
an inflation rate that is too high when the ZLB constraint binds. The optimal
response to this problem is to tolerate inflation below the inflation target in
periods when the constraint does not bind.

2.4.2 Example 2: With Suffi ciently Plentiful Collateral, Eliminating
Both Ineffi ciencies Can Be Feasible in the Long Run

In this case, we will assume that bt = b, a constant, for all t, and that b ≥ 2c∗,
so that π̂ ≥ 1. Recall that π̂ is defined by (17) and (18), as the gross inflation
rate above which the collateral constraint binds. In this case there is suffi cient
government debt that the collateral constraint binds only for inflation rates
greater than zero.
Given our assumptions, there exists an equilibrium in which monetary policy

supports an optimal allocation from the first date, indefinitely. That is, if the
central bank sets the nominal interest rate at Rt = 1

β for all t, then from (7),

(8), and (10), one equilibrium is πt = 1, and cft = cst = c∗ for all t. But what
about all the other equilibria? We need to determine inflation dynamics for all
π0 > 0, as the initial inflation rate is indeterminate.

In any period t, given the current gross inflation rate, πt, which is determined
from previous monetary policy decisions (except in period 0, when the gross
inflation rate is arbitrary), if it is feasible for the central bank to set Rt so that
πt+1 = 1, then that is optimal. That is, from (20), if πt ≤ π̃ where π̃, c̃, and c̃s
satisfy

u′(c̃) =
1

β
(29)

1 = βπ̃0u
′(c̃s) (30)

f(c̃) + f(c̃s) = b, (31)

then the optimal monetary policy for period t, from (20), is

Rt =
1

βu′(cft )
,

Then, πt+1 = 1 < π̃, and so by induction optimal policy achieves πs = 1, for
s = t+ 2, t+ 3, ... .
But what if πt > π̃? Then, the optimal policy in period t is Rt = 1, as that

maximizes period t+1 utility, and relaxes constraints on future monetary policy
as much as possible. This implies, from (7) and (20), that

πt+1 = βu′(cst )πt. (32)

But given that b > c∗, from (12), βu′(cst ) < 1, so πt+1 < πt. Therefore, in
finite time, the gross inflation rate will pass the threshold for which the ZLB
constraint binds. That is, there exists some s ≥ t + 1 such that πs ≤ π̃. As a
result, πt = 1 for t = s+ 1, s+ 2, ... .
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We can then conclude that, given a suffi ciently large quantity of safe collat-
eral, any equilibrium path under which monetary policy is conducted optimally
converges in finite time to the equilibrium in which period utility is maximized
and the inflation rate is zero.

2.4.3 Example 3: Even With a Permanently Binding Collateral Con-
straint, Elimination of the ZLB Ineffi ciency Can Be Feasible
in the Long Run

In this case, suppose that bt = b for all t, with b < 2c∗, so that the collateral
constraint binds when πt = 1, and assume that c̃ < c̄, where c̄ solves

f(c̄) =
b

2
.

As in the previous example, if πt ≤ π̃ for any t, then πs = 1, for s = t+1, t+2, ...,
under optimal monetary policy. If πt > π̃, then Rt = 1 is optimal, by similar
arguments to Example 2, and inflation evolves according to (32). But, since
c̃ < c̄, therefore if πt > π̃, βu′(cst ) < 1, so πt+1 < πt under the optimal policy.
Therefore, just as in the previous case, all equilibria under optimal policy

converge to an equilibrium with πt = 1 in finite time. The only difference here
from Example 2 is that the collateral constraint binds in the long run.

2.4.4 Example 4: Collateral Constraint and ZLB Can Both Bind in
the Long Run

In this case, we will make the same assumptions as in the case in the previous
subsection —Example 3 —except that c̃ ≥ c̄ and f(c̃) < b. In this case, there is
a steady state in which cst = c̃, and cft = c̃f < c̃, where, from (12), c̃f solves

f(c̃f ) + f(c̃) = b. (33)

Since c̃f < c̃, therefore in the steady state πt > π̃0, so the ZLB constraint binds.
This is a steady state as, under the ZLB, inflation evolves according to (32).
The steady state inflation rate, from (20) is

πss = βu′(c̃f ) > 1. (34)

We can then show, by totally differentiating (7), (12), and (20), given Rt = 1,
that

dπt+1
dπt

=
βu′′(cft )u′(cst )f

′(cst )

f ′(cft )πtu′′(cst ) + u′′(cft )f ′(cst )
.

So,

0 <
dπt+1
dπt

< 1.

Therefore, for any initial inflation rate π0, inflation converges monotonically to
the steady state.
So, in this case, the collateral constraint is tight enough that the ZLB con-

straint must bind in the long run.
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2.4.5 Example 5: With A Very Tight Collateral Constraint, Inflation
Increases Without Bound

In this case, we make the same assumptions as in Example 4, except that b <
f(c̃), so now the steady state in Example 4 is not attainable. This implies that
πt > π̃0, c

f
t < c̃, and cst < c̃ for all t. Therefore,

πt+1 = βu′(cst )Rtπt,

so since βu′(cst )Rt > βu′(c̃) > 1, therefore πt+1 > πt for t = 0, 1, 2, ... . There-
fore, in all equilibria inflation increases without bound.
So, if the economy is extremely short of safe collateral, implying an extremely

low real interest rate, then inflation increases indefinitely. In this economy,
deflationary black holes are not a possibility, but hyperinflations are, under
extremely tight collateral constraints.

2.5 A Period of Tight Collateral Constraints Followed By
Relaxed Constraints

This experiment is in the spirit of the scenario Werning (2011) considers, ac-
cording to which the real interest rate is low for an extended period, and optimal
monetary policy will imply a zero nominal interest rate for that extended period.
After this extended period at the ZLB, the real interest rate rises permanently.
How should monetary policy be conducted after the low real interest rate period
ends?
Here, we will assume that bt = bl for t = 0, 1, 2, ..., T, and bt = bh for

t = T + 1, T + 2, T + 3, ... . First, assume that the period when bt = bl looks
like example 4 above, so c̃ ≥ c̄ and f(c̃) < bl. Therefore, for the period t =
0, 1, 2, ..., T, the collateral constraint must bind, and if bt = bl were permanent,
under optimal monetary policy the economy would converge to a steady state
with the nominal interest rate at zero and inflation above zero.
Also, assume that bh ≥ 2c∗, so once the quantity of safe collateral rises in

period T + 1, we have conditions as in Example 2, so that optimal monetary
policy from date T+1 forward will imply convergence in finite time to a long run
steady state in which πt = 1 and neither the ZLB constraint nor the collateral
constraint binds.
It is straightforward to put Example 2 together with Example 4, to derive

results for this scenario. First, suppose we focus on the steady state equilibrium
under the tight collateral constraint as the equilibrium up to period T. This
implies that, for periods t = 0, 1, 2, 3, ..., T, given optimal monetary policy, Rt =
1 (the ZLB binds),

cst = c̃,

and, from (34) and (33),
cft = c̃f < c̃,

where c̃f solves
f(c̃f ) + f(c̃) = bl, (35)
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The gross inflation rate for periods t = 0, 1, 2, 3, ..., T is then

πl = βu′(c̃f ) > 1. (36)

In period T+1, the supply of safe collateral increases, though the optimal policy
in period T is the ZLB policy RT = 1, and in period T + 1 inflation remains
high, i.e. πT+1 = βu′(c̃f ) = πl. Because of the increase in government debt
to bh, consumption of both flexible-price and fixed-price goods must increase in
period T + 1, so total output increases. Then, we simply follow Example 2 to
determine monetary policy from period T + 1 onward.

Over the period t = T + 1, T + 2, ..., the goal of monetary policy is to reduce
inflation as quickly as possible to πt = 1. From Example 2, we know that the
optimal policy is determined by the current inflation rate, which is given by
history. Specifically, if πt ≥ π̃, then Rt = 1 is optimal, and πt+1 = βu′(cft ).
However, once πt ≤ π̃, then Rt = 1

βu′(cft )
< 1

β , and πt+1 = 1. From (29), (30),

and (31), since πT+1 = πl > π̃, therefore RT = 1 at the optimum. That is, there
is at least one period in the high-safe-collateral period when the ZLB binds, and
one and only one period after that when the ZLB does not bind, but Rt < 1

β ,
so the nominal interest rate is lower than its steady state value.
Here, a low supply of safe collateral produces an episode during which the

collateral constraint binds, the real interest rate is low, and monetary policy is
constrained by the zero lower bound. In contrast to conventional analysis of
ZLB episodes, e.g. Werning (2012), in our model the ZLB episode is reflected
in inflation above the central bank’s target. Just as in Werning’s model, output
is low during the ZLB episode, and optimal monetary policy is to extend the
period of low interest rates beyond the period when the cause of the tight col-
lateral constraint goes away. In our model, however, the ZLB problem does not
get worse the longer is the ZLB episode —under the tight collateral constraint
the economy will converge to a unique steady state. Also, the reason the nom-
inal interest rate is low after the low-safe-collateral period is that this brings
inflation down quickly to the inflation target, relaxes the collateral constraint,
and corrects the sticky-price ineffi ciency.

3 Money, Collateral, and Credit

The next step is to expand the model to include a richer set of assets. This
will allow for retail payments using currency, and for a more explicit treatment
of monetary policy, in that open market operations are required to support
the central bank’s interest rate policy. Our interest is in showing how these
model elements make a difference for how monetary policy should deal with
low-real-interest rate episodes.
As a result of the changes to the model, there will potentially be three

distortions to be concerned with: (i) a standard Friedman-rule distortion under
which there is a suboptimally low quantity of currency, in real terms; (ii) a
shortage of interest-bearing debt, reflected in a low real rate of interest; (iii) a
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sticky price friction. To understand how this version of the model works, it will
help to first consider a setup with flexible prices, which includes only the first
two distortions. After we have done that analysis, we will consider the sticky
price case, which includes all three distortions.

3.1 Flexible Prices

This case will work in a manner similar to Andolfatto and Williamson (2015),
though a key difference from that work is in the role that government debt plays
in the model. In particular, in this model government debt serves as collateral
rather than being traded directly, as in Andolfatto and Williamson (2015).
We need to be explicit about how exchange works. Assume that a household

consists of a continuum of consumers with unit mass, and a producer. Each
consumer in the household has a period utility function u(ct), and there are
two markets on which goods are sold. In the cash-only market, sellers of goods
accept only money, as there is no technology available to verify collateral if the
consumer attempts to make a credit transaction. In the cash-and-credit market,
sellers are able to verify the ownership of government debt posted as collateral
in a credit transaction, and sellers will also accept money. Unsecured credit is
not a possibility in purchasing goods, as the memory (recordkeeping) needed to
support this does not exist. The household would always default on unsecured
credit, so none is extended. Each consumer in a household receives a shock
which determines the market he or she participates in. With probability θ the
consumer goes to the cash-only market, and with probability 1−θ, he or she goes
to the cash-and-credit market. The household allocates assets to each consumer
in the household —money and any government debt to be posted as collateral
—and consumers consume on the spot in the markets where they arrive. That
is, consumption cannot be shared within the household.
The producer in the household supplies labor nt and, as in the cashless

model, can produce one unit of output for each unit of labor input. Output
is perfectly divisible and can be sold on either the cash-only market or the
cash-and-credit market, or both.
A household maximizes

∞∑
t=0

βt
[
θu(cmt ) + (1− θ)u(cbt)− nt,

]
where cmt denotes the consumption of each consumer who goes to the cash-only
market, while cbt is consumption of each consumer in the cash-and-credit market.
At the beginning of the period, the household trades on the asset market

and faces the constraint

bt + θcmt +m′t ≤
mt−1 +Rt−1bt−1

πt
+ τ t. (37)

On the right-hand side of inequality (37), the household has wealth at the be-
ginning of the period consisting of the payoffs on currency and bonds held over
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from the previous period and the lump-sum transfer from the fiscal authority.
Here, mt−1 denotes beginning-of-period currency balances in units of the period
t − 1 cash market consumption good. The left-hand side of (37) includes pur-
chases of one-period nominal government bonds, currency (in units of the period
t cash market good) the household requires for cash market goods purchases,
and currency, m′t, that is sent with consumers to the cash-and-credit market.
In the cash-and-credit market, consumers from the household can purchase

goods with currency m′t, or with credit secured by government debt, so the
following constraint must hold:

(1− θ)cbt ≤ Rtbt +m′t. (38)

In inequality (38), note that the IOUs issued by the household (by way of
consumers in the household) are settled at the end of the period, at which time
the bonds the household acquired at the beginning of the period are worth Rtbt.
That is, at the end of the period, the forthcoming payoffs on government bonds
are equivalent to cash. Inequality (38) states that, for cash-and-credit purchases
in excess of what is paid for with cash, the household will prefer to pay its debt
at the end of the period rather than face seizure of the bonds posted as collateral.
Finally, the household must satisfy its budget constraint

θcmt + (1− θ)cbt + bt +mt ≤ nt +
mt−1 +Rt−1bt−1

πt
+ τ t. (39)

We can summarize the first order conditions from the household’s problem
with the following three equations:

u′(cbt)Rt = u′(cmt ), (40)

1 = β

[
u′(cmt+1)

u′(cmt )πt+1

]
︸ ︷︷ ︸

fundamental

+
u′(cmt )− 1

u′(cmt )︸ ︷︷ ︸
liquidity premium

, (41)

1

Rt
= β

[
u′(cmt+1)

u′(cmt )πt+1

]
︸ ︷︷ ︸

fundamental

+
u′(cbt)− 1

u′(cmt )︸ ︷︷ ︸
liquidity premium

. (42)

First, (40) reflects intratemporal optimization. Note that the price of goods
purchased on the cash market relative to the price of goods on the cash-and-
credit market is Rt, which is also the gross nominal interest rate. Second,
equations (41) and (42) have been written so as to show the similarities in asset
pricing between money and government debt, respectively. In equation (41), the
left-hand side is the current price of money, normalized, while the right hand
side consists of the fundamental and a liquidity premium. The fundamental
is the expected payoff on money in the next period, appropriately discounted,
while the liquidity premium is related to the ineffi ciency in the market for goods
purchased with cash. That is, u′(cmt )−1 is an ineffi ciency wedge in this market.
The liquidity premium on money is something we observe in most mainstream

23



monetary models, and it typically disappears if the central bank runs a Friedman
rule. Similarly, in equation (42), the price of government debt, appropriately
normalized, on the left-hand side, is equal to the sum of a fundamental plus
a liquidity premium, on the right-hand side. The fundamental is identical to
the one in equation (41), since the explicit payoff on the asset is the same as
for money (appropriately normalized). But government debt has a different
liquidity premium, which is related to the ineffi ciency wedge, u′(cbt)− 1, in the
cash-and-credit market.
The consolidated government budget constraints are:

m0 + b0 = τ0, (43)

mt + bt −
mt−1 +Rt−1bt−1

πt
= τ t, (44)

wheremt−1 denotes the real quantity of currency outstanding at the beginning of
period t, before government intervention occurs, in units of the period t−1 cash
market good. Here, we will assume that the fiscal authority fixes exogenously
the path for the real value of the consolidated government debt, i.e.

vt = mt + bt, (45)

where vt is exogenous. This follows the approach of Andolfatto and Williamson
(2015) and Williamson (2016, 2018a, 2018b), and is an extension of our treat-
ment of fiscal policy in the cashless version of the model. Here, the fiscal policy
rule whereby vt is exogenous provides a nice demarcation between fiscal and
monetary policy: fiscal policy determines the total real quantity of consolidated
government debt, and monetary policy determines its composition. As in the
cashless model, the fiscal authority is assumed to set an endogenous path for
lump sum taxes to achieve a particular path for consolidated government debt,
given monetary policy. Further, the path for vt may be suboptimal, just as in
the cashless model.
Solving for an equilibrium, in any period t, (40) and (41) hold and either

u′(cbt) = 1

and

θcmt +
(1− θ)cbt

Rt
≤ vt

or
u′(cbt) > 1

and

θcmt +
(1− θ)cbt

Rt
= vt

Thus, in period t, either exchange is effi cient in the cash-and-credit market and
the collateral constraint (38) does not bind, or exchange is ineffi cient in the
cash-and-credit market and the collateral constraint binds.
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3.1.1 Optimality

Note that the model solves period-by-period for cmt and cbt , and thus for labor
supply, with output equal to consumption in equilibrium,

nt = θcmt + (1− θ)cbt .

Letting c∗ denote the solution to u′(c∗) = 1, as in the cashless model, if

vt ≥ c∗,

then Rt = 1 at the optimum —the nominal interest rate is zero —and cmt = cbt =
c∗. This is essentially a Friedman rule result. If the collateral constraint does
not bind, then exchange is effi cient in the cash-and-credit market. Therefore, if
Rt = 1, and the collateral constraint does not bind, exchange is effi cient in both
markets in period t.
However, if

vt < c∗, (46)

then the household’s collateral constraint binds for Rt = 1.When the collateral
constraint binds, then

θcmt +
(1− θ)cbt

Rt
= vt, (47)

u′(cbt)Rt = u′(cmt ), (48)

and equations (47) (48) solve for (cmt , c
b
t) given policy (vt, Rt). It will prove

convenient, for purposes of comparison with the previous model, and when we
include sticky prices in this model, to rewrite (47) using (48), obtaining

θcmt u
′(cmt ) + (1− θ)cbtu′(cbt) = vtu

′(cmt ) (49)

Then, totally differentiate (49) and (48), and drop t subscripts for convenience,
to get

dcm

dR
=

(1− θ)u′(cb)
[
u′(cb) + cbu′′(cb)

]
{θ [u′(cm) + cmu′′(cm)]− vu′′(cm)}Ru′′(cb)

+(1− θ)
[
u′(cb) + cbu′′(cb)

]
u′′(cm)

, (50)

dcb

dR
=
−u′(cb) {θ [u′(cm) + cmu′′(cm)]− vu′′(cm)}
{θ [u′(cm) + cmu′′(cm)]− vu′′(cm)}Ru′′(cb)

+(1− θ)
[
u′(cb) + cbu′′(cb)

]
u′′(cm)

, (51)

Recall that we have assumed that f ′(c) > 0, where f(c) = cu′(c), so we can
sign both derivatives. That is, dcm

dR < 0 and dcb

dR > 0, so that an increase
in the nominal interest rate target of the central bank, given fiscal policy v,
causes substitution from cash market transactions to cash-and-credit market
transactions.
It is important to recognize that in this economy, in contrast to the one in

the previous section, the central bank’s interest rate policy must be supported
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by appropriate open market operations. That is, the fiscal authority sets v,
the total quantity of consolidated government debt, and the central bank swaps
outside money for government debt so as to supply the private sector with the
appropriate mix of consolidated-government liabilities. This appropriate mix
will support desired transactions by the private sector at the nominal interest
rate target chosen by the central bank.
So, our results tell us that activity in the cash market declines, and activity

in the cash-and-credit market increases as the nominal interest rate increases.
Therefore, the collateral constraint is relaxed, i.e. the degree of ineffi ciency
in the cash-and-credit market, u′(cb) − 1, falls, as R increases. We can then
conclude that the collateral constraint binds if and only if it binds for R = 1,
i.e. if and only if (46) holds.
But, suppose (46) holds. Do conditions exist under which the collateral

constraint will not bind? That is, does there exist a critical nominal interest
rate R̃ such that, if (46) holds and R < R̃, then the collateral constraint binds,
and if R ≥ R̃ it does not bind? If R̃ exists, then from (48) and (49), R̃ and c̃
solve the following two equations:

u′(c̃) = R̃ (52)

θc̃u′(c̃) + (1− θ)c∗ = vu′(c̃) (53)

where c̃ is the quantity of cash-market consumption when the collateral con-
straint just binds. It is straightforward to show that, given (46), there always
exists a unique solution to (52) and (53) with 1 < R̃ <∞, and 0 < c̃ < c∗. We
can then conclude that the binding collateral constraint —and the low real inter-
est rate that goes with it —is a low-nominal -interest-rate phenomenon. Given v,
the central bank can relax the collateral constraint and eliminate the liquidity
premium on government debt if if raises the nominal interest rate suffi ciently.
What about the welfare consequences of monetary policy when the collateral

constraint binds atR = 1 and the real interest rate is low for low nominal interest
rates? Do such conditions imply that the central bank should adopt a zero lower
bound policy, as in the New Keynesian literature?
We can evaluate welfare period-by-period, with the period utility of the

household equal to W (R), where

W (R) = θ [u(cm)− cm] + (1− θ)
[
u(cb)− cb

]
, (54)

and cm and cb are determined by (48) and (49), dropping t subscripts. Then,
using (50) and (51), we get

W ′(R) =

θ(1− θ)u′(cb)
{

[u′(cm)− 1]
[
u′(cb) + cbu′′(cb

]
−
[
u′(cb)− 1

]
[u′(cm) + cmu′′(cm)]

}
+u′(cb)(1− θ)vu′′(cm)

[
u′(cb)− 1

]
{θ [u′(cm) + cmu′′(cm)]− vu′′(cm)}Ru′′(cb)

+(1− θ)
[
u′(cb) + cbu′′(cb)

]
u′′(cm)
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When R = 1, then from (47) and (48), we have cm = cb = v. Therefore, from
(54), we get

W ′(1) = (1− θ)v [u′(v)− 1] > 0

so increasing the nominal interest rate above zero is optimal for the central bank
if the collateral constraint binds when the nominal interest rate is zero. As well,
from (54),

W ′(R̃) =
θ(1− θ)

{[
R̃− 1

]
[1 + c∗u′′(c∗]

}
{θ [u′(c̃) + c̃u′′(c̃)]− vu′′(c̃)} R̃u′′(c∗)

+(1− θ) [1 + c∗u′′(c∗)]u′′(c̃)

< 0.

Therefore, either vt is suffi ciently large that the collateral constraint does not
bind for any R ≥ 1, in which case R = 1 is optimal, or vt is low, the collateral
constraint binds for Rt ∈ [1, R̃), and the optimal setting the nominal interest
rate has the property Rt ∈ (1, R̃).
Therefore, so long as the supply of consolidated government debt is suffi -

ciently low, the central bank should conduct open market operations so as to
raise the nominal interest rate above zero, but it is not optimal for the central
bank to entirely relieve the safe asset shortage, even though it can. When vt and
Rt are low enough, the collateral constraint binds, and the real interest rate is
low. That is, if we price a real bond, which has the same characteristics as nom-
inal bonds —in particular it can be posted as collateral in the cash-and-credit
market —then the gross real interest rate is given by

rt =
u′(cmt )

βu′(cbt)u
′(cmt+1)

,

so the factor 1
u′(cbt)

captures the liquidity premium on the government debt.

The greater the ineffi ciency in the cash-and-credit market, the higher is u′(cbt)
and the lower is the real interest rate. Then, our results above tell us that,
for example in a stationary equilibrium in which vt = v and Rt = R forever,
a permanent increase in R lowers the liquidity premium, and raises the real
interest rate —permanently.
Further, from (41), in equilibrium current inflation depends only on current

consumption in the cash market, i.e.

πt = βu′(cmt ),

so from our results above, in a stationary equilibrium with vt = v and Rt = R
forever, a permanent increase in R will lower consumption in the cash market
and raise inflation —a Fisher effect. But the Fisher effect is not one-for-one, as
the real interest rate rises when the nominal interest rate rises, as long as the
collateral constraint binds.
We obtain these results because the low real interest rate is caused by a

shortage of safe collateral —a shortage of government debt. In the context of
such a shortage, an increase in the nominal interest rate is accomplished if the

27



central bank swaps government debt for money, thus relieving the collateral
shortage. While this has the effect of making cash more scarce, so that the
ineffi ciency wedge goes up in the cash-only market, the decrease in effi ciency in
this respect is more than offset by an increase in effi ciency in the cash-and-credit
market, evaluated in welfare terms.
It is useful to note the difference between the results in this section and the

typical properties of New Keynesian models, for example Werning (2011). In
Werning (2011), with a standard sticky price distortion, the nominal interest
rate should be above zero when the “natural”real interest rate is high, and the
nominal interest rate should go to zero when the natural real interest rate is
suffi ciently low. But, in this model with a standard monetary distortion, and a
further friction caused by the safe asset friction, the nominal interest rate should
be zero when the real interest rate is high, and the nominal interest rate should
be above zero when the real interest rate is low.
There are also important differences between the policy conclusions in this

model, and those from the cashless model we started with. Recall that the
cashless model, in which the frictions are sticky prices and a potential scarcity
of safe collateral, implies that the central bank’s response to tight collateral
constraints is to set the nominal interest rate to zero. As well, the nominal
interest rate should be kept low for a period after the collateral scarcity goes
away. In this model relative to the cashless model, we have added details of
monetary exchange and taken out sticky prices, which essentially reverses the
result —tight collateral constraints imply that the nominal interest rate should
be off the ZLB. So, what explains the difference? Is it the details of exchange,
or is it sticky prices? To answer that question, we need to put in sticky prices,
as in the next subsection.

3.2 Sticky Prices

Next, we will extend our model of money and credit to include sticky prices,
as in the baseline model. Assume, as in the previous subsection, that there
exists a continuum of consumers in each household. Each period, an individ-
ual consumer in a household receives a shock that determines whether he or
she receives utility from flexible-price or sticky-price goods. With probability
1
2 the consumer gets utility only from the flexible price good, and with proba-
bility 1

2 the consumer receives utility only from the sticky price good. As well,
goods are sold in the cash-only market, and the cash-and-credit market. Each
consumer in a household receives a shock each period determining their goods
market participation. With probability θ the consumer goes to the cash-only
market, and with probability 1−θ, he or she goes to the cash-and-credit market.
Further, the preference shock and the shock determining market participation
are independent for an individual consumer and are also independent across
consumers.
On the production side, households can choose the quantities of flexible

price goods to supply in each market. However, as in the cashless model with
sticky prices, the demand for sticky price goods is distributed uniformly among
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households, and each household must supply the quantity of sticky price goods
demanded at market prices. As above, one unit of labor supply produces one
unit of any good sold in any market.
A household then maximizes

∞∑
t=0

βt
{
θ

2

[
u(cmft ) + u(cmst )

]
+

(1− θ)
2

[
u(cbft ) + u(cbst )

]
− (nft + nst )

}
. (55)

Thus, there are now four different goods: cmft (cmst ) denotes consumption of
flexible-price (sticky-price) goods that are purchased in the cash-only market,
while cbft (cbst ) denotes consumption of flexible-price (sticky-price) goods pur-
chased in the cash-and-credit market. At the beginning of the period, the house-
hold faces a financing constraint

bt +
θ

2

[
cmft +

cmst
πt

]
+m′t ≤

mt−1 +Rt−1bt−1
πt

+ τ t. (56)

The constraint (56) is a modification of (37) that includes both flexible-price
and sticky-price goods purchases using cash on the left-hand side. Similarly,
we can adapt (38) to include flexible-price and sticky-price goods so that the
household’s collateral constraint in the cash-and-credit market is

(1− θ)
2

[
cbft +

cbst
πt

]
≤ m′t +Rtbt. (57)

Finally, the household’s budget constraint is

bt +
θ

2

[
cmft +

cmst
πt

]
+

(1− θ)
2

[
cbft +

cbst
πt

]
+mt (58)

≤ mt−1 +Rt−1bt−1
πt

+ τ t + nft +
nst
πt

The government’s budget constraints are the same as in the flexible-price version
of the model, i.e. (43) and (44) hold. As well, the fiscal authority follows the rule
(45), i.e. the real value of the consolidated government debt is set exogenously
at vt in period t.
Given optimization and market clearing, we can characterize an equilibrium

as follows. In each period, from the first-order conditions for the household’s
problem, the following hold:

1 = β

[
u′(cmft+1)

πt+1

]
, (59)

πtu
′(cmst ) = u′(cmft ), (60)

u′(cbft )Rt = u′(cmft ), (61)

πtRtu
′(cbst ) = u′(cmft ), (62)
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Here, (59) is essentially an asset-pricing equation for currency, and (60)-(62)
reflect intratemporal optimization with regard to the four goods in this economy.
The relevant relative prices are πt, the relative price of flexible price goods in
terms of sticky price goods, and Rt, the relative price of flexible price cash goods
in terms of flexible price cash-and-credit goods.
As well, either the collateral constraint does not bind, so

1

Rt
= β

[
u′(cmft+1)

u′(cmft )πt+1

]
, (63)

u′(cbft ) = 1, (64)

(government bonds are priced at their fundamental price and the flexible-price
cash-and-credit market is effi cient) and

θ

[
cmft +

cmst
πt

]
+

(1− θ)
Rt

[
cbft +

cbst
πt

]
≤ 2vt (65)

(the demand for collateral does not exceed the supply).
Alternatively,

1

Rt
=
u′(cbft )− 1

u′(cmft )
+ β

[
u′(cmft+1)

u′(cmft )πt+1

]
, (66)

u′(cbft ) > 1, (67)

(government bonds are priced above their fundamental value and the flexible-
price cash-and-credit market is ineffi cient) and

θ

[
cmft +

cmst
πt

]
+

(1− θ)
Rt

[
cbft +

cbst
πt

]
= 2vt. (68)

(the demand for collateral is equal to the supply).
Thus, in period t, the collateral constraint (57) may not bind, in which case

(63) holds —government debt sells at its fundamental price, the appropriately
discounted value of the payoff stream on the asset — and (65) holds in equi-
librium, i.e. the value of the consolidated government debt is large enough to
finance all consumption purchases. Alternatively, (57) binds, so that there is a
liquidity premium on government debt, reflected in a tight collateral constraint
and a resulting ineffi ciency in the market for flexible price goods in the cash-
and-credit market (inequality (67)). As well, in (68), the value of consolidated
government debt is just suffi cient to purchase all goods.
The initial inflation rate π0 is indeterminate (the initial price, in units of

money, of sticky price goods is arbitrary), but otherwise the model solves period-
by-period. So, dropping t subscripts for convenience, and given fiscal and mon-
etary policy (v,R), an unconstrained equilibrium in which the collateral con-
straint does not bind is determined, using (59)-(62), and (64), by

u′(cmf ) = R, (69)
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u′(cms) =
1

β
, (70)

u′(cbf ) = 1, (71)

u′(cbs) =
1

Rβ
, (72)

So, (69)-(72) determines the consumption allocation (cmf , cms, cbf , cbs). The
consumption allocation depends only on the current nominal interest rate, and
not on v, as of course the collateral constraint does not bind. Recall that a
particular market is effi cient if u′(c) = 1 in that market, where c is consumption
of that market’s good. So, from (69), the distortion in the market for flexible
price goods purchased with currency increases with the nominal interest rate, as
is standard in monetary models. From (70), there is a distortion in the market
for sticky-price goods purchased with currency, and this distortion is unaffected
by monetary policy, because inflation distorts markets for all goods purchased
with money in the same way, given the Fisher effect on the nominal interest
rate. That is, from (59) and (69), in an unconstrained equilibrium,

R =
π

β
, (73)

and the real interest rate is a constant, equal to the subjective rate of time
preference. From (71), the market in flexible price goods purchased with credit
is effi cient, as the collateral constraint does not bind. Finally, (72) states that
consumption in the market for sticky price goods consumption purchased with
credit depends on the nominal interest rate. A higher nominal interest rate
lowers the relative price of such goods, so that more are consumed —consumption
in this market is demand-determined.
An unconstrained equilibrium exists if and only if the solution (cmf , cms, cbf , cbs)

to (69)-(72), which is unique, satisfies the collateral constraint, which we can
write, using (59)-(62), (65), and (69)-(72) as

θcmfR+
θc̃

β
+ (1− θ)c∗ +

(1− θ)cbs
Rβ

≤ 2Rv, (74)

where c̃ is defined as in the cashless model, by u′(c̃) = 1
β .

Similarly, in a constrained equilibrium, (cmf , cms, cbf , cbs) solves

u′(cbf )R = u′(cmf ), (75)

θcmfu′(cmf ) +
θc̃

β
+ (1− θ)cbfu′(cbf ) +

(1− θ)cbs
Rβ

= 2u′(cmf )v, (76)

and equations (70) and (72). It is straightforward to show that (75) and (76)
solve uniquely for cmf and cbf , and of course (70) and (72) solve uniquely for
cms and cbs, respectively. The gross inflation rate, from (59), is given by

π = βu′(cmf ) = βRu′(cbf ),
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so the tighter is the collateral constraint, the larger is u′(cbf ), which makes the
real interest rate lower and the inflation rate higher. If this unique solution for
the consumption allocation satisfies

u′(cb) > 1, (77)

then it is a constrained equilibrium.
It will be illuminating at this juncture to deal with a more restrictive speci-

fication, i.e. a constant relative risk aversion (CRRA) utility function. We want
to answer two questions. First, for what policies (v,R) does the collateral con-
straint bind, and how is this affected by other parameters —risk aversion and
θ, in particular? Second, under what conditions, if any, is a zero lower bound
monetary policy, i.e. R = 1, optimal?

3.2.1 Constrained or Unconstrained Equilibrium?

Assume a constant CRRA utility function, that is u(c) = c1−α−1
1−α , with 0 <

α < 1, in line with our maintained assumptions. This appears not to restrict
the behavior of the model in any important ways, and helps us make the key
points in a transparent fashion. Then, in an unconstrained equilibrium, from
(69)-(72), the equilibrium consumption allocation is

(cmf , cms, cbf , cbs) = (R−
1
α , β

1
α , 1, R

1
α β

1
α ) (78)

and the gross inflation rate is
π = βR.

The unconstrained equilibrium exists if and only if this solution satisfies (74),
that is

σ(R) ≤ 2v, (79)

where

σ(R) = θ
[
R−

1
α + β

1
α−1R−1

]
+ (1− θ)

[
R−1 + β

1
α−1R

1
α−2

]
. (80)

Similarly, in a constrained equilibrium, from (70), (72), (75), and (76),

(cms, cbs) = (β
1
α , R

1
α β

1
α ) (81)

and (cmf , cbf ) is the recursive solution to[(
cmf

)1−α
+ β

1
α−1

] [
θ + (1− θ)R 1

α−1
]

= 2v
(
cmf

)−α
, (82)

and
cbf = cmfR

1
α . (83)

The consumption allocation determined by (81)-(83) is unique, and the solution
is an equilibrium if and only if (77) is satisfied or, from (83), cmf < R−

1
α . From

(82), this is equivalent to
σ(R) > 2v. (84)
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Therefore, from (80) and (84), an equilibrium always exists, and it is either a
constrained or an unconstrained equilibrium. Further, from our analysis above,
the equilibrium is unique. The key to determining the conditions under which
the collateral constraint binds or does not, is uncovering the properties of the
function σ(R). Differentiating the left-hand side of (79), we get

σ′(R) = θ

[
− 1

α
R−

1
α−1 +−β

1
α−1R−2

]
+(1−θ)

[
−R−2 −

(
2− 1

α

)
β

1
α−1R

1
α−3

]
(85)

Proposition 2 There are three cases of interest: (i) 1
2 ≤ α < 1, implying

σ′(R) < 0 for R ≥ 1; (ii) 0 < α < 1
2 and σ

′(R) < 0 for R ∈ [1, R̃) and
σ′(R) > 0 for R > R̃, with R̃ > 1; (iii) 0 < α < 1

2 and σ
′(R) ≥ 0 for R ≥ 1.

Proof. Case (i) is clear from inspection of (85). For the other two cases, note
that we can write (85) as

σ′(R) = R−2
{
−
[
θ

1

α
R−

1
α+1 + θβ

1
α−1 + (1− θ)

]
+ (1− θ)

(
1

α
− 2

)
β

1
α−1R

1
α−1

}
Then, let

φ(R) = θ
1

α
R−

1
α+1 + θβ

1
α−1 + (1− θ),

and

ω(R) = (1− θ)
(

1

α
− 2

)
β

1
α−1R

1
α−1.

Then, if 0 < α < 1
2 , φ(0) =∞, φ(∞) = θβ

1
α−1 + (1− θ), φ′(R) < 0 for R > 0,

ω(0) = 0, ω(∞) =∞, ω′(R) > 0 for R > 0. So, by continuity, there exists R̃ > 0
such that σ′(R̃) = 0, ψ′(R) < 0 for 0 < R < R̃, and σ′(R) > 0 for R > R̃. This
gives us cases (ii) and (iii), where in case (ii), R̃ > 1, and in case (iii), R̃ ≤ 1.
Whether we get case (ii) or (iii) depends on the sign of σ′(1) when 0 < α < 1

2 .
That is, for case (ii), σ′(1) < 0, and for case (iii), σ′(1) ≥ 0. From (85),

σ′(1) = −
[
θ

1

α
+ θβ

1
α−1 + (1− θ)

]
+ (1− θ)

(
1

α
− 2

)
β

1
α−1

=
1

α

[
−θ + (1− θ)β

1
α−1

]
− β

1
α−1 [θ + 2(1− θ)]− (1− θ)

so, if θ is suffi ciently large, we have case (ii), and if θ is suffi ciently small and α
is suffi ciently small, we will have case (iii).
Figures 7 through 9 illustrate how equilibria depend on the policy (R, v).

These figures depict the locus v = σ(R)
2 , which separates the policy space into

regions where the collateral constraint binds, and where it does not. In Figure
7, case (i), policy and parameters are such that the properties of the model are
similar to the flexible price case. That is, given fiscal policy v, if the collateral
constraint binds, then it will bind for low nominal interest rates. However, in
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Figure 8, case (ii), if the collateral constraint binds, it could bind only for high
nominal interest rates, it could bind for low nominal interest rates and high
nominal interest rates, or it could bind for any nominal interest rate. Finally,
in Figure 9, case (iii), the collateral constraint will bind only for high nominal
interest rates, or it will bind for any nominal interest rate.
Why do we get different results here from the case with flexible prices? From

(65), (68), (80), and (84), we can interpret v as the supply of safe collateral,
and σ(R)

2 is the demand for safe collateral that would be forthcoming, given the
nominal interest rate R, if the collateral constraint were not binding. In the
event that σ(R)

2 > v, then prices have to adjust, given R, so that the demand
for collateral equals the supply. From the left-hand side of (79), if the collateral
constraint does not bind in equilibrium, then the demand for safe collateral
arising from transactions in the cash market, and transactions in the cash and
credit market involving flexible price goods, is strictly decreasing in the nominal
interest rate R. However, as R increases, note that the demand for fixed price
goods in the cash and credit market is strictly increasing in R. If the demand
for these goods is suffi ciently price elastic (i.e. if α is suffi ciently low), then
demand could increase at a suffi ciently high rate with R that total demand for
safe collateral ultimately increases with R for R suffi ciently high. So, there
can be conditions under which the total demand for safe collateral is strictly
decreasing in R, and conditions under which the demand for safe collateral will
increase with R when R is suffi ciently high.

3.2.2 Could the Zero Lower Bound be Optimal?

With flexible prices, we showed that, if the collateral constraint binds when
R = 1, then it will bind when the nominal interest rate is low, but not when
the nominal interest rate is high. Further, if the collateral constraint binds
when R = 1, then R = 1 is a suboptimal setting for monetary policy. There
is a welfare improvement if the nominal interest rate is positive. Thus, given
conditions under which the zero lower bound would be optimal with sticky prices
and no monetary exchange (the first model we considered) with flexible prices
and monetary exchange the zero lower bound is not optimal. So, what makes
the difference? Is it sticky prices or monetary exchange?
To explore this question, first consider the case in which the collateral con-

straint does not bind, so that the consumption allocation (cmf , cms, cbf , cbs) is
determined by (69)-(72). Let W (R) denote the period utility of a household,
and recall that, since the model solves period-by-period, the current nominal
interest rate affects only the current consumption allocation. From (69)-(72),
we get

W ′(R) =
(R− 1)

u′′(cmf )
−

(
1
βR − 1

)
βR2u′′(cbs)

.

So, W ′(1) > 0, and W ′(R) < 0 for R ≥ 1
β . Therefore, the optimal mone-

tary policy is R ∈ (1, 1β ), and this implies that the optimal gross inflation rate
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π ∈ (β, 1). Optimal inflation is then higher than Friedman rule deflation, but
lower than zero inflation, as this trades off the distortions in two markets: the
market for flexible price goods purchased with currency, and the market for
sticky price goods purchased with cash and credit. A Friedman rule would cor-
rect the flexible-price monetary distortion, and zero inflation would correct the
sticky price distortion in the sticky-price cash-and-credit market. So, with a
nonbinding collateral constraint, the sticky price friction pushes optimal mone-
tary policy off the zero lower bound. If the collateral constraint does not bind
at the zero lower bound, the zero lower bound is suboptimal.
But what if the collateral constraint binds in the neighborhood of the zero

lower bound? To make the analysis productive, consider the CRRA case u(c) =
c1−α−1
1−α , 0 < α < 1, as in the previous subsection. Then, from (81)-(83), we can
derive

W ′(1) =

(1− θ)
[(
cf
)−α − 1

]{(
cf
)1−α

+ β
1
α
[
β−1 + 1− 1

α

]}
+(1− θ)

(
β−1 − 1

)
β

1
α

[(
cf
)1−α

+ β
1
α−1 + 1

α − 1
]

(1− α) (cf )
−α

+ 2αv (cf )
−α−1 (86)

In (86), note that a suffi cient condition for W ′(1) > 0 is g(α) ≥ 0 where

g(α) = β
1
α

[
β−1 + 1− 1

α

]
So, if

β

1 + β
≤ α < 1,

then W ′(1) > 0. Further, we can show that limα→0 g(α) = 0, so W ′(1) > 0 for
α suffi ciently small, by continuity.
Therefore, with sticky prices we know there exists a range of parameter

values for which the zero lower bound is suboptimal, and a range of parameter
values for which the zero lower bound may be optimal. However, if the zero lower
bound is optimal, then such a policy can only be optimal when the collateral
constraint binds. But, from (82), at the zero lower bound, a tighter collateral
constraint (lower v) decreases cmf at the zero lower bound, which from (59)
increases inflation at the zero lower bound. Therefore, if the zero lower bound
were optimal, such a state would arise when the inflation rate is high at the
zero lower bound, just as in the cashless model we first analyzed. However, in
typical analysis of baseline New Keynesian models (e.g. Werning 2012), optimal
zero-nominal-interest-rate policy is associated with low inflation.
To show what can happen in cases for which the zero lower bound is never

optimal, consider u(c) = ln c. Then, if the collateral constraint does not bind,
from (69)-(72) we get

(cmf , cms, cbf , cbs) =

(
1

R
, β, 1, Rβ

)
,
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and welfare as a function of R is

W (R) = θ

(
− lnR− 1

R
+ lnβ − β

)
+ (1− θ) (−1 + lnR+ lnβ − βR)

Then, letting

R̂ =
−2θ + 1 +

[
(1− 2θ)2 + 4(1− θ)θβ

] 1
2

2(1− θ)β

where 1 < R̂ < 1
β , we haveW

′(R) > 0 for R ∈ [1, R̂), andW ′(R) < 0 for R > R̂.

Next, determining σ(R) for the log utility case, we can determine that the
equilibrium is unconstrained for R ≥ max

(
1
v , 1
)
, and is otherwise constrained.

In a constrained equilibrium,

(cmf , cms, cbf , cbs) = (v, β,Rv,Rβ) ,

and welfare is given by

W (R) = θ [ln v − v + lnβ − β] + (1− θ) [lnR+ lnR+ ln v + lnβ −Rv −Rβ]

= ln v + lnβ − θ(v + β) + (1− θ) [2 lnR−R (v + β)]

For a constrained equilibrium, v < 1. So, W ′(1) > 0 when equilibrium is con-
strained, and the optimal policy choice in a constrained equilibrium is given
by

R = min

(
2

v + β
,

1

v

)
Therefore, if the equilibrium is constrained, and β ≤ v ≤ 1, then an optimal
monetary policy is R = 1

v , and if v ≤ β, then the optimal policy is R = 2
v+β . In

the former case it is optimal to relax the collateral constraint at the optimum,
and in the latter case it is not.
So, in conclusion, we have three cases:

1. If v ≥ 1
R̂
, then the optimal monetary policy is R = R̂.

2. If β ≤ v < 1
R̂
, then the optimal policy is R = 1

v .

3. If 0 < v < β, then R = 2
v+β .

Figure 10 depicts the optimal gross nominal interest rate policy as a function
of fiscal policy v. So, in this case, if the collateral constraint never binds (v ≥ 1),
then as is more generally true, optimal monetary policy trades offFriedman-rule
and sticky-price distortions, so there is deflation at the optimum, but not to the
extent prescribed by the Friedman rule, i.e. R = R̂ > 1. If v is small enough that
the collateral constraint binds for low nominal interest rates, but R = R̂ implies
the collateral constraint does not bind, then R = R̂ is still optimal. But, once
the collateral constraint becomes tight enough that it binds when R = R̂, then
it is optimal to raise the nominal interest rate to the point where the collateral
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constraint does not bind. If the collateral constraint is even tighter, then the
constraint will bind at the optimum.
As shown in Figure 10, the optimal nominal interest rate is monotonically

decreasing in v, so as the collateral constraint gets tighter, reducing the real
interest rate, the nominal interest rate should increase. This result is driven
by the same forces that arose in the flexible price case in that, with a tight
collateral constraint, a higher nominal interest rate is brought about through a
central bank open market sale of bonds, and this relaxes the collateral constraint.
It may be possible that sticky price demand-driven effects could be enough to
make a zero nominal interest rate optimal. But to get this, it is necessary that
the demand for sticky price goods be suffi ciently elastic with respect to inflation,
so as to induce a large increase in the demand for collateral when the nominal
interest rate goes up —an effect large enough to offset the increased supply of
collateral.

4 Conclusion

In this paper, we developed a tractable model for the analysis of monetary policy
in a low-real-interest-rate context. The model can incorporate various sticky-
price, scarce-collateral, and standard monetary frictions, in alternative com-
binations. In several ways, the model contradicts consensus views concerning
optimal monetary policy in low-real-interest-rate environments. In particular,
the model has Neo-Fisherian properties.
In a cashless version of the model, in the spirit of baseline New Keynesian

approaches, low real interest rates become a problem when the ZLB constraint
binds, and inflation is greater than the natural inflation target. When there
is a period of tight collateral constraints and low real interest rates, followed
by a permanent relaxation in collateral constraints, then optimally-low nominal
interest rates will extend beyond the period when collateral is low. This is not
for forward guidance reasons, but because this lowers inflation quickly to the
inflation target.
Extending the model to include retail currency transactions and open market

operations, the ZLB is typically not optimal when collateral is scarce. That is,
when the stock of safe assets and the real interest rate are low, an open market
operation that increases the nominal interest rate also relaxes the collateral
constraint, increasing welfare on net. This helps illustrate why the assumption
of a cashless economy is not innocuous, in contrast to what is typically alleged
in the New Keynesian literature (e.g. Woodford 2003). Lagos and Zhang (2018)
come to a similar conclusion, for different reasons.
What do these results have to say about the post-financial-crisis period in

the United States, 2009-2015, when the Fed kept the federal funds rate target
in a range of 0-0.25%? By most accounts, measured real rates of return on
government debt were historically low during this period, and a good case can
be made that a scarcity of safe assets contributed in an important way. The
financial crisis effectively destroyed part of the market in privately-supplied
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safe collateral, sovereign debt problems in some countries made US government
debt more attractive, and new banking regulations increased the demand for
safe collateral.
But, during the 2009-2015 period, the inflation rate in the US was on average

lower than 2%. If we were looking at this experience through the lens of a New
Keynesian model, we might say that the binding ZLB constraint was making
inflation low, and the real interest rate was actually too high relative to the
natural rate of interest. However, in the context of our model, we would say
that it was monetary policy — low nominal interest rates — that was keeping
inflation low during this period. That is, the ZLB constraint was not actually
a problem for inflation control during this period. If it had been, than inflation
would have been above 2%.
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Figure 6: Equilibrium With Alternating ZLB Episodes
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Figure 10: Log Example, Optimal Monetary Policy Given Fiscal Policy
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