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Abstract

This paper uses risk-shifting models to analyze particular policy responses to asset price booms and

bubbles. We argue that the presence of risk shifting can generate many of the features of such booms

and so is a reasonable framework to explore these issues. Our analysis offers several insights. First,

we find that determining whether there is indeed a bubble in asset markets is unimportant, since risk-

shifting leads to the same inefficiencies regardless of whether it gives rise to a bubble or not. Second,

while risk shifting offers a reason for intervention, we find the leading proposals for interventions against

booms have ambiguous welfare implications in our model. Specifically, we show tighter monetary policy

may exacerbate some inefficiencies due to risk shifting even as it mitigates others, and that leverage

restrictions may lead to higher asset prices and exacerbate excessive leverage rather than curb it.

∗The views here do not represent those of the Federal Reserve Bank of Chicago or the Federal Reserve System.



Introduction

Policymakers have long debated how to respond to asset price booms and potential bubbles, i.e., when asset

prices seem to surge above the value of the dividends assets are expected to yield. One view, summarized in

Bernanke and Gertler (1999) and Gilchrist and Leahy (2002), argues that policymakers should not respond

in these cases, but should instead wait to see what happens to asset prices. If asset prices collapse and drag

down economic activity, policymakers should step in, just as they would whenever output is depressed. An

alternative view, summarized in Borio and Lowe (2002), argues that policymakers should not stand idly by

during these episodes. They argue that when asset booms coincide with credit booms, they predictably end

in financial crises and recessions, a claim corroborated in subsequent work such as Jorda, Schularick, and

Taylor (2015) and Mian, Sufi, and Verner (2017). The implication is that policymakers should raise interest

rates during asset booms to dampen asset prices and mitigate the eventual crash.

The severity of the Global Financial Crisis in 2007 and the difficulty central banks faced in its wake to

provide stimulus after lowering short-term nominal interest rates to zero shifted opinion in policy circles

toward favoring a more proactive response to asset booms. But this led to a new debate over what type of

intervention would be most appropriate. The two policies that attracted the most attention are monetary

policy and macroprudential regulation. Svensson (2017) argues against monetary tightening during asset

booms because its costs exceed its benefits. Stein (2013) argues against regulatory policy because it is likely

to be circumvented in practice even if it could work in principle, advocating monetary tightening instead.

This paper revisits the question of how policymakers should respond to asset booms through the lens

of risk-shifting models, i.e., models in which the agents who ultimately finance the purchase of assets

cannot easily monitor the risk associated with any individual borrower they fund. We focus on risk-shifting

because it seems to play an important role in actual booms. First, asset booms that end badly often

feature extensive lending against assets. Second, booms are often associated with new and imperfectly

understood technologies or with assets like housing that are valued idiosyncratically. In both cases, lenders

will find it difficult to assess the risks on any given loan. With new technologies, lenders may find it hard to

distinguish genuinely productive applications of new technologies (dot-com, blockchain, tranched securities)

from speculative investments that may not pan out. With housing, lenders may not be able to distinguish

illiquid borrowers who value home ownership from speculators who bet that house prices will rise and would

walk away from their investments if house prices fell. In both cases, lenders will have a hard time discerning

how likely the agent they lend to is to default if asset prices fall.1

The notion of risk-shifting has spawned a large literature since it was first introduced by Jensen and

Meckling (1976). Much of this literature focuses on how leverage affects investment decisions. A smaller

and more recent literature has examined how these investment decisions affect the prices of the assets that

1While we describe situations where limted information is an exogenous feature of an asset, Asriyan, Laeven, and Martin

(2018) argue asset booms can reduce the incentive to screen borrowers, so information about assets deteriorate endogenously.
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leveraged agents buy. Allen and Gorton (1993) first showed that risk-shifting allows asset prices to exceed

the fundamental value of the dividends assets can generate. This suggests these models may be relevant for

analyzing asset booms. Subsequent work by Allen and Gale (2000), Barlevy (2014), Dow and Han (2015),

Dubecq, Mojon, and Ragot (2015), and Bengui and Phan (2018) has built on this original result.2

This paper contributes to this literature in two ways. First, we explore risk-shifting in a general equi-

librium setting that allows us to study the effects of monetary policy and macroprudential regulation,

something the previous literature on risk-shifting has yet to do. Second, unlike previous work, we allow

default to be costly. We model this as a cost of recovering resources from borrowers who default. While

recovery costs are relatively small in practice, adding them allows our model to generate a decline in avail-

able resources at the end of an asset boom, in line with what empirical work suggests. Hoggarth, Reis,

and Saporta (2002) and Reinhart and Rogoff (2009) estimate that an asset price crash is associated with a

decline in GDP per capita of between 9 and 16%, while Atkinson, Luttrell, and Rosenblum (2013) estimate

the cumulative loss in output in the US in the recent crisis was even larger. Such large costs are obviously

not due to processing defaults but to how agents deal with losses from asset prices declines. For example,

financial intermediaries who lent against assets during the boom may refuse to finance new investment when

asset prices fall given the overhang of debt they face, while indebted households may be forced to delever

and can drag down aggregate demand and output when prices are rigid.3 Capturing these channels would

require a substantially more complicated model. Our way of modelling default costs is simpler while still

implying that larger asset booms translate into larger losses and more severe contractions.

At the heart of our model is an information asymmetry in which borrowers know the risks of their

investments better than lenders. This encourages some agents to borrow and gamble on risky assets,

knowing that lenders will bear the losses if their gamble fails. As speculators buy up assets, they drive the

price of these assets up and the expected return on these assets down. This process leads to two distinct

inefficiencies. The first involves misallocation. Since lenders cannot distinguish among the different types of

investments, borrowers ultimately decide how funds are allocated. They will direct too many resources to

risky investments that offer high private returns to speculation but low overall returns. This is consistent

with evidence of misallocation during credit booms in Borio, Kharroubi, Upper, and Zampolli (2015) and

Charles, Hurst, and Notowidigdo (2018). Second, even if resources are properly allocated, agents borrow

too much because they fail to internalize the costs that others incur when they default. In our model these

are the costs lenders incur in recovering assets, but more generally speculators would likely not internalize

how their actions lead to lower output due to debt overhang or lower aggregate demand.

2Shleifer and Vishny (1997) also study asset pricing with credit and limited information, but without involving risk-shifting.

Asset prices in their model deviate from fundamentals because of noise traders and limits to arbitrage. They show how lender

uncertainty can shape what creditors lend against assets and so how much asset prices deviate from fundamentals.

3 See Phillipon (2010) on debt overhang and financial crises and Korinek and Simsek (2016) and Farhi and Werning (2016)

on aggregate demand externalities and deleveraging. Rognlie, Shleifer, and Simsek (2018) suggest another channel involving

investment overhang, whereby a glut of assets during the boom dampens the production of assets after the crash. Capturing

this in our model is difficult given we assume assets are either endowed or created at date 0.
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Our analysis yields new insights on when and how policymakers should address these inefficiencies. First,

we find that even though risk-shifting can result in bubbles, these are a symptom of risk-shifting rather

than the problem in and of itself. When default costs are large, assets will not exhibit bubbles even though

risk-shifting remains a problem. Intuitively, large default costs discourage lending, helping keep asset prices

in check and equal to fundamentals. But they don’t discourage lending against risky assets altogether, and

the lending that remains is distortionary. This provides a rigorous basis for the assertion in Borio and Lowe

(2002) that policymakers should intervene during booms even if they cannot be sure if assets are overvalued,

since whether assets are overvalued in our model is indeed irrelevant given evidence of risk-shifting.

The other key insight is that since risk-shifting models require productive uses of credit to cross-subsidize

the lending that finances speculation, policy interventions that affect both activities can have ambiguous

and even surprising effects. In particular, we find that tighter monetary policy helps alleviate excessive

leverage associated with risk-shifting, but that it also exacerbates resource misallocation by reducing more

productive investments that are already underfunded. This reveals a counterproductive aspect of tighter

monetary policy. Nevertheless, tighter monetary policy can play a useful role if the first effect dominates, and

there may be ways to mitigate some of the counterproductive aspects of tighter monetary policy if instead

of tightening immediately, policymakers promise to tighten only if the boom continues into the future (and,

by implication, to ease if the price of the asset collapses). We similarly find that macroprudential regulation

can be counterproductive, increasing speculation rather than curbing it. This is because restricting leverage

might especially curb productive investments, leaving more resources for speculation. Macroprudential

regulation can thus make things worse, although in other circumstances it can play a useful role. The

essence of our findings is that risk-shifting can offer a reason to intervene during an asset boom, but it also

implies intervening will be difficult since policymakers will be hampered by the same informational frictions

that give rise to risk-shifting in the first place. Indeed, one of the reasons a promise to act in the future

is more useful in our framework than direct intervention is that it affects speculators and other borrowers

differently, which means it can more effectively target speculation than a direct intervention would.

The paper is organized as follows. Section 1 introduces the basic setup, focusing on a simple case where

assets are riskless. We then build on this framework in Section 2 and consider the case of risky assets. There,

we argue that the equilibrium of our model can capture some of the key features of asset booms. Section 3

describes the ways in which the equilibrium of our model is inefficient and allow a possible role for policy

intervention. Section 4 considers monetary policy, and Section 5 considers macroprudential regulation,

specifically restrictions on leverage. Section 6 concludes.

1 Credit, Production, and Assets

We now set up our framework that includes credit, production, and assets. In this section we will consider

the simple case where the asset involves no risk. In the next section we build on this setup and consider the

more interesting case where assets are risky. It is in the latter case where credit and asset booms emerge.
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Consider an overlapping generations economy where agents live for two periods and only value consump-

tion when old. That is, agents born at date  value consumption  and +1 at dates  and + 1 at

 ( +1) = +1 (1)

There is a fixed supply of identical assets normalized to one. For now, we assume these already exist

at date 0, although later on we will consider the case where they must be produced. Each asset yields a

constant real dividend   0 per period. In the next section we will allow for a stochastic dividend.

There is a cohort of old agents at date 0 who start out owning all the assets. A new cohort is born at

each  = 0 1 2  Each cohort consists of two types of agents. The first, whom we call savers, are endowed

with an aggregate  units of the good when young. They cannot produce or store goods, and must either

buy assets or trade intertemporally to convert their endowment into consumption when old. The second

type, whom we call entrepreneurs, can convert a good at date  into 1 +  goods at date + 1 where   0,

but only up to a finite capacity of one unit of input. Each entrepreneur is endowed with   1 goods while

young. Since this is below their productive capacity, there is scope for savers and entrepreneurs to trade.

In principle,  and  can vary across entrepreneurs. For most of the analysis, though, we assume  = 0 for

all entrepreneurs, meaning they must borrow all of their inputs. We will allow  to vary across entrepreneurs

in Section 5. We do assume  varies across entrepreneurs. Let  () denote the density of entrepreneurs

with productivity . We assume  ()  0 for all  ∈ [0∞) and

 

Z ∞
0

 ()  ∞ (2)

Condition (2) implies entrepreneurs could deploy more inputs than savers are endowed with.

We assume trade between savers and entrepreneurs is subject to the following frictions:

1. Savers cannot monitor whether those they finance produce or buy assets. They also cannot observe

any of the agent’s wealth beyond the particular project the lender finances.

2. Trade is restricted to debt contracts, i.e., for each unit of funding agents receive at date  they must

promise to pay a fixed amount 1 + at date + 1

3. If borrowers fail to pay their obligation, lenders can get a court to transfer any proceeds from the

project agents invested in, but the seizure wastes Φ resources per unit invested in the project and

incurs a utility cost  to the borrower who defaulted.

The first friction captures the idea that asset booms are often associated with uses that lenders cannot

easily evaluate. For example, mortgage lenders may not be able to distinguish liquidity constrained agents

who value homeownership and speculators who would default on their loans if prices fell. The return 1 + 
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of entrepreneurs in our model would be analogous to the surplus to the former from homeownership.4

Assuming wealth is unobservable implies borrowers face limited liability, since lenders can only go after any

resources the borrowers own that they know about. Effectively, we are assuming agents can borrow via shell

entities and hide their other resources, limiting their liability to the project they borrow for. The restriction

to debt contracts accords with the empirical popularity of credit, which in practice is presumably due to

the costs of enforcing contingent payments. Finally, although costly default is uncontroversial, the way we

model these costs merits some discussion. We impose a utility cost  on borrowers only to ensure that

they will not borrow if they expect to default with certainty. As such, we will focus on the limiting case

where → 0 to avoid explicitly accounting for . Assuming seizure costs are proportional to the underlying

investment captures the idea that auditing a borrower requires tracking what happened to all of the inputs

the borrower invested. When we later allow for   0 so that borrowers only need to finance a fraction of

their investment, this will mean seizure is costly for large projects even if they involve little borrowing.

To recap, each period young savers allocate their endowment  to buying assets and making loans, young

entrepreneurs choose whether to borrow to produce, and any young agent can choose to borrow to buy

assets. When dividends are deterministic, as we have assumed so far, no agent who borrows will default. In

that case, the inability to monitor borrowers, the restriction to debt contracts, and the cost of default are

irrelevant. It is only when we assume stochastic dividends in the next section that these frictions matter.

An equilibrium for this economy consists of paths for asset prices {}∞=0 and interest rates on loans
{}∞=0 that ensure both asset and credit markets clear when agents act optimally. To facilitate our

exposition, we will proceed as if these paths are deterministic. In Appendix A we show there are no

equilibria with stochastic prices. To solve for an equilibrium, we need to derive supply and demand for

assets and credit. Agents in their last period of life do not participate in credit markets and so do not enter

into either supply or demand for credit. They are the source of supply in asset markets, however, selling any

assets they own if the asset price   0. Young savers are the only agents with resources to lend. They will

compare the return to lending with the return to the asset and invest only in whatever offers the highest

return. Young entrepreneurs are the only ones who can borrow to produce. Those with productivity   

will find it profitable to do so. Finally, any young agent can borrow to buy assets, and would be willing to

do so if the return to assets 1 +  ≡ ++1


is at least as high as the interest rate on loans 1 +.

Savers use their endowment to either buy assets or make loans. Their borrowers will then either produce

or buy assets. Hence, the endowment is ultimately used to either finance production or buy assets, implyingZ ∞


 ()  +  =  (3)

Since we assume  ()  0 for all , there is a unique interest rate  =  () that satisfies (3) for any asset

price . Moreover,  () is increasing in . Intuitively, a higher  reduces the amount of goods available

for productive investment, so the interest rate on loans  must rise to lower demand from entrepreneurs.

4Of course, the surplus agents who value homeownership obtain are not a constant but depend on the price of housing. For

an example of a proper risk-shifting model of housing, see Barlevy and Fisher (2018).
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Next, we argue the interest rate on loans 1+ must equal the return to buying the asset 1+ ≡ ++1


.

For suppose   . Then agents could earn positive profits by borrowing and buying assets. Demand for

borrowing would be infinite while the supply of credit can be at most , so this cannot be an equilibrium.

Next, suppose   . Then no one would buy the asset: Savers can earn a higher return from lending

than buying the asset, and no agent would borrow to buy the asset knowing she would default. Since the

old sell the asset whenever its price is positive, this would require  ≤ 0. But if the price were nonpositive,
demand for the asset would be infinite. For both the credit and asset market to clear, then, we must have

1 + =
+ +1


= 1 +  (4)

Substituting (3) into (4) implies

+1 = (1 +  ())  − 

≡  () (5)

where 0 ()  1,  (0) = −  0, and lim→∞  ()  . The graph of  () is illustrated in Figure 1

together with the 45o line. The two lines intersect at the unique value  at which  = 
¡

¢
. For any

initial condition, the law of motion +1 =  () defines a unique path of asset prices. For any initial

condition other than 0 = , the path will reach in finite time a value that is either negative or exceeds

, neither of which can be an equilibrium. Hence, the unique deterministic equilibrium is  =  and

 = 
¡

¢
for all . We make note that the steady state price  is increasing in the dividend . Formally,

setting  = +1 =  in the zero-profit condition (4), implies

 = 
¡

¢


The right hand side is increasing in , so a higher  must imply a higher . Graphically, a larger  will

shift the curve +1 =  () in Figure 1 down, and so the steady state 
 will rise.

In Appendix A, we confirm that there are no stochastic equilibria, so  =  for all  is the unique

equilibrium for this economy. We can summarize this result as follows.

Proposition 1 The unique equilibrium when  =  for all  features a constant asset price  =  and a

constant interest rate  = () for all . Only entrepreneurs with productivity    produce.

In equilibrium, then, savers both lend to entrepreneurs and invest in assets, either directly or by lending

to others who buy assets and pass all the proceeds on to savers. Savers are indifferent between the two

activities in equilibrium, and the returns to buying assets and making loans are equal. Denote this return

by  = 
¡

¢
. Consider the present value of dividends discounted at this return. This is given by

 ≡
∞X
=1

µ
1

1 +

¶
 =  = 
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The value of dividends discounted according to the return agents can earn thus coincides with the price of

the asset. When  =  for all , the asset will not be associated with a bubble.

Remark 1: We can easily allow for multiple riskless assets. Suppose there were  assets indexed

 = 1   , each with fixed supply of 1 but potentially different fixed dividends  . Let  denote the price

of the -th asset at date . Define  ≡P
=1  as the total dividends from all  assets and  ≡

P
=1 

as the value of all  assets. Resources that don’t finance production will be used to buy assets, so (3)

continues to hold. In addition, the return on each asset 1 +  ≡ ++1


must equal the interest rate on

loans 1 + . Combining these equalities implies (4). Hence, the equilibrium conditions for  and  are

unchanged. We can reinterpret  from our model as the value of all assets, each offering return . ¥

Remark 2: With some modifications, we can also allow for a growing set of assets. This will be relevant

in the next section, where the periodic arrival of new types of assets can serve as a trigger for asset booms.

Suppose each period’s old are endowed with a stock of new assets normalized to 1. Stocks pay dividends

one period after arrival. For aggregate dividends to remain constant, dividends on any single asset must

decay over time. Let  denote the dividend at date  on assets that arrived at date , and set

 =

(
(1− )

−1
 if  = 0

(1− )
−(+1)

 if  = 1 2 3 
for  ≥ + 1

By design, total dividends
P−1

=0  in each period  sum to . Let  denote the date- price of the asset

that arrived at date , and set  =
P

=0  as the total value of all assets around at date . The market

clearing condition (3) is unchanged. The return on each asset 1 +  ≡ +1++1


will equal the interest

rate on loans 1 +. Aggregating over all assets available at date  yields the following alternative to (4):

1 + =
+ (+1 − +1+1)



The equilibrium value of all assets  will be constant and equal to


+
, where  denotes the equilibrium

interest rate on loans. The price of any individual asset equals  =
+1


 =
+1
+

. ¥

We conclude our discussion with a brief comment on welfare. In equilibrium, the amount savers spend

on assets equates the return on the asset to the productivity of the marginal entrepreneur. Is this efficient?

At first, it might seem that any resources spent on the asset are wasted, since the asset will yield 

regardless of how much is spent on it while lending to entrepreneurs yields additional output. However,

shifting resources to production would rob the current owners of the asset from resources they earn selling

their assets. Redirecting all resources towards production is therefore not Pareto improving. In fact, the

equilibrium is efficient. Intuitively, suppose current asset owners could destroy their assets so that they stop

yielding any dividends going forward. Paying the old for their assets can thus be viewed as an investment

to preserve the asset. Efficiency dictates the returns to all investments should be equal at the margin, as

they indeed are. In the next section, we show that returns will not be equated when assets are risky.
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2 Risky Assets, Credit Booms, and Bubbles

We now consider the case where the asset pays stochastic dividends. We return to assuming only one

asset. Let the dividend on this asset follow a regime-switching process such that the dividend  starts at

   when  = 0 and then switches to  with a constant probability  ∈ (0 1) in each period if it has yet
to switch. Once the dividend falls to , it will remain equal to  forever.

An equilibrium still consists of paths for asset prices {}∞=0 and interest rates on loans {}∞=0, but now
also includes a path for the share of lending used to buy assets {}∞=0  These paths must be consistent
with optimizing behavior by agents and must ensure asset and credit markets clear at all dates  for any .

In what follows, it will prove convenient to distinguish for each date  whether the dividend  is  or .

If  = , agents who buy the asset at date  will be unsure about the dividends +1 it will pay at +1. If

 = , agents who buy the asset at date  know it will pay a dividend of  at date +1. Let
¡
  


  




¢
denote an equilibrium if  =  and

¡
  


  




¢
denote an equilibrium if  = . Once dividends fall, the

equilibrium will be the same as in Section 1, with  =  and 
 =  for all . Although Proposition 1

does not characterize  , recall that when  =  those who borrow to buy assets know they will pass on

all of the return from the asset to their lender. This implies  is indeterminate and can assume any value

in
h
0 





i
. All that remains is to solve for

©
(  


  


 )
ª∞
=0
.

We first show that we can solve for the equilibrium price  and interest rate on loans 

 independently

of  . As before, savers allocate all of their endowment  to either fund production or buy assets. The

price  must thus continue to satisfy (3). Next, we argue that in equilibrium,¡
1 +



¢
 = +1 + (6)

That is, the interest rate on loans 1 + 
 is equal to the return on the asset if +1 = . We first argue

that +1 + represents the maximum possible payoff to the asset, in the sense that

+1 +   + 

For suppose  +  ≤  +  for some . Since   , this implies   . From (3), we know the

equilibrium interest rate on loans  must equal  (). If 

  , then since 0 (·)  0, we have


 = 

¡

¢
 

¡

¢
= 

But then we would have ¡
1 +



¢
 

¡
1 +

¢
 =  + 

This means that an agent who borrows to buy assets can make positive profits after paying their debt

obligation at date + 1 if +1 = . But then there would be infinite demand for borrowing to buy assets,

which cannot be an equilibrium given supply of credit is finite. It follows that  +   + .
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To show that
¡
1 +



¢
 must equal the highest return on the asset, suppose

¡
1 +



¢
  +1+.

In this case, demand for borrowing would be infinite: Agents can earn positive profits if +1 =  but

default and earn zero if +1 = . Since the supply of credit is finite, this cannot be an equilibrium. Next,

suppose
¡
1 +



¢
  +1+. In this case, no agent would borrow to buy the asset knowing they would

surely default and incur the cost . Nor would any agent buy the asset given they can earn more making

loans. In particular, since no agent borrows to buy assets, the only agents who borrow are entrepreneurs

with productivity   
 , and they will repay for sure. The return to lending  would then exceed the

return to buying the asset. If no agent buys the asset, the price of the asset  would have to be nonpositive

to ensure the old don’t want to sell the asset. But this cannot be an equilibrium price, since if  ≤ 0 there
would be infinite demand for the asset. The only remaining possibility is

¡
1 +



¢
 =  +.

Condition (6) is identical to the condition for an asset that offers a constant dividend  =  for all .

From the previous section, we know there is a unique path
©
  




ª∞
=0

that satisfies both this condition

and (3). The equilibrium price  is constant and equal to , where  solves


¡

¢
 = 

Likewise, the interest rate on loans 
 is constant and equal to  = 

¡

¢
. The fact that the asset

trades as if it delivers  =  forever, even though the dividend can fall with a probability  that can be

arbitrarily close to 1, suggests the asset is overvalued. We return to this point below.

The only part of the equilibrium we still need to solve for is  . Let us first derive the expected returns

to buying an asset  and lending 


 , respectively. The expected return to buying the asset satisfies

1 +  = (1− )
³
1 + 



´
+ 

³
+



´
≡ 1 +  (7)

As for the expected return to lending, by definition a fraction  of lending is used to buy assets. Since

all of the proceeds from asset purchases accrue to the lender, the expected return to these loans is just the

expected return to buying an asset net of default costs, 1+−Φ. All remaining loans are used to finance
production and will be repaid in full, so the return on those loans is 1 +. This implies

1 + ̄
 =

¡
1− 

¢ ¡
1 +

¢
+ 

¡
1 +  − Φ

¢
=

¡
1− 

¢ ³
1 + 



´
+ 

¡
1 +  − Φ

¢
(8)

If 


  , savers would prefer lending over buying assets. The only agents who would buy assets would

be those who borrow to do so, and so  =



. If 



 = , savers would be indifferent between buying

assets and lending. This means  can assume any value between 0 and 


. Finally, if 



  , savers

would prefer buying assets over lending. No agent would borrow to buy assets, implying  = 0. Hence,

the expected return to lending 


 and the share of lending used to buy assets  are jointly determined:

We just described how  depends on 


 relative to , while (8) implies 


 depends on  .

To solve for 


 and  , consider first the case where  = 


. This can only be an equilibrium if

9






 ≥  when  =



, i.e., only if³

1− 



´


+ 



¡
 − Φ

¢ ≥ 

Rearranging this equation and substituting in for  implies  =



is an equilibrium only if

Φ ≤
³



− 1
´³

+−−


´
≡ Φ∗ (9)

Next, consider the case where  ∈
³
0 





´
. This can only be an equilibrium if 



 =  when we evaluate




 at the relevant  . Since 


 is decreasing in  , this requires that 


   when  =



, or

Φ  Φ∗ (10)

In this case, the equilibrium value of  is the one that equates 


 and , which implies

 =
+−−

+−−+Φ (11)

Finally, there cannot be an equilibrium in which  = 0. This would require 


 ≤  when  = 0. But

 = 0 implies 


 =



 . Hence, the value of  is unique and is either equal to 


or some value

between 0 and 


, depending on the cost of default Φ. We can summarize this result as follows:

Proposition 2 When the dividend process follows a regime-switching process, in the limit as  → 0, the

unique equilibrium is given by

( ) =

( ¡
 

¢
if  = ¡

 
¢

if  = 

The equilibrium share of loans  is constant when  =  and given by

 =  =

(



if Φ ≤ Φ∗

+−−
+−−+Φ if Φ  Φ∗

When  = , the equilibrium  is indeterminate and can assume any value in
h
0 





i
.

While dividends are high, some agents must borrow to bet on assets. Intuitively, if this were not the

case, the interest rate on loans  would have had to equal the expected return on the asset for savers to

be willing to both buy assets and make loans. But this would have made it profitable to borrow to buy

assets, earn positive profits if +1 =  and default and shift losses to the lender if +1 = . So some

agents must speculate in equilibrium, and the price of the asset and the interest rate on loans must ensure

zero expected profits from speculation to avoid the demand for borrowing for speculation to be infinite. At

the same time, the model makes no predictions on which agents will borrow to buy assets. Less productive

entrepreneurs who do not produce would certainly be willing to speculate. But since agents can hide any

wealth not associated with the particular project they borrow for, entrepreneurs who borrow to produce

and savers who make loans would be equally willing to borrow through a shell entity and speculate.
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Now that we have characterized the equilibrium when assets are risky, we argue it can capture many

features of the episodes documented by Borio and Lowe (2002), Jorda, Schularick, and Taylor (2015), and

Mian, Sufi, and Verner (2017). Specifically, we show that our equilibrium can be associated with asset price

booms and credit booms, asset bubbles, high realized returns but cheap borrowing during the boom, and

an eventual crisis when asset prices collapse, speculators default, and consumption falls.

Asset Price Booms: We begin with asset price dynamics. The equilibrium price of the asset while

 =  will be the same as in an economy in which the dividend is equal to  for all . But as we noted

earlier, the price of an asset with a fixed dividend is increasing in the value of the dividend. Hence,   .

Our economy therefore starts with a high asset price that collapses when dividends fall.

Historically, asset price booms are characterized by both high prices and high price growth. But our

environment implies a constant price within each regime. This is because we assume constant dividends

within each regime, which simplifies the analysis by allowing us to solve for a single price within a regime

rather than a price path. If we allowed dividend to rise within each regime, we could generate a rising

price path during the boom. That is, suppose dividends in the high regime followed an increasing sequence

{}∞=0 where 0 ≥ , until a random date when dividends fall to  forever.5 Intuitively, new technologies

are often not immediately profitable but offer the possibility of an eventual stream of profits. Likewise,

rents often don’t rise quickly in hot housing markets, but there is an expectation that continuing housing

demand could eventually lead to scarcity and high rents. The equilibrium interest rate on loans 1 + 


would still have to equal the maximum return on the asset at date . Using the fact that 
 = 

¡

¢
, the

price path  would have to satisfy the sequence of difference equations

+1 =
¡
1 + 

¡

¢¢
 −+1

In the case where  is constant once  ≥  for some finite  , we can use backwards induction to solve for

the unique equilibrium path  and show that it rises during the boom. Our model can thus accommodate

price growth during the boom, but this offers little new insight at the cost of substantial complexity.

Our setup also abstracts from how an asset boom starts. Suppose  were equal to  at  = 0 and then

dividends switched with some probability to a high dividend regime that gives way with constant probability

 to a permanently low dividend regime. Before dividends rise, agents would have an incentive to borrow

and gamble on a high future dividend, and the asset would trade at . The boom would then be present

from inception, before dividends rose. This is reminiscent of the Diba and Grossman (1987) result that asset

bubbles cannot suddenly appear but must be present from the inception of the asset. Martin and Ventura

(2012) show we can get around the latter result and model the onset of bubbles by allowing for the constant

arrival of new assets that cannot be traded before they come into existence. We can similarly capture the

start of asset booms by allowing for new assets as per Remark 2. That is, we assume the economy keeps

5Zeira (1999) previously analyzed asset pricing when dividends grow up to a stochastic date. He emphasized that asset

prices can rise with dividends and then crash once dividends stop growing even if dividends themselves do not change. By

contrast, we allow dividends to fall when growth stops. Zeira also did not consider risk-shifting or credit.
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generating new assets, most of which pay a predictable but decaying return, but periodically new assets

arrive which offer a temporarily high return that gives way to a predictable but decaying return. The arrival

of these assets would trigger a boom on a new class of assets that did not previously trade.6

In short, although our model as specified only features a high initial asset price that eventually falls, it

can be modified to incorporate periodic asset booms with rising prices that eventually crash.

Credit Booms: Next, we show that the asset boom is associated with a boom in lending against assets.

Recall that lending by savers finances both production and asset purchases. When  = , the amount

agents borrow to buy assets is unique and given by



1− 

Z ∞


 ()  (12)

By contrast, the amount of lending when  =  is indeterminate given agents are indifferent about borrowing

to buy assets. However, this indeterminacy is not robust to the introduction of small transaction costs for

borrowing; if it were even a little costly to borrow, agents would only buy riskless assets with their own

wealth when  = . By contrast, agents will continue to borrow both to buy risky assets and to produce

when transaction costs are small. Thus, if we introduce small borrowing costs and take the limit as these

costs go to zero, lending against assets will disappear when  = . The boom in asset prices when  = 

would then be associated with a boom in borrowing to buy assets.

If we cannot distinguish lending for speculation and lending for production, the relevant empirical measure

of credit is total borrowing. Adding the amount borrowed to produce and to buy assets at date  yields

1

1− 

Z ∞


 () 

The term 1
1− will be higher when  =  and  =  ∈

³
0 





´
than when  =  and  = 0. But the

interest rate on loans  will go from  to , so the amount agents borrow to produce
R∞


 ()  will be

lower when  = . Total lending can therefore either rise or fall when  falls to . When Φ ≤ Φ∗, savers
lend out all of their endowment  when  =  but strictly less than  when  = . Only when ΦÀ Φ∗ is
it possible for total borrowing to fall with dividends. The asset boom is therefore associated with a boom

in lending for speculation, and with a boom in total lending when default costs are not too large.

Asset Bubbles: Our model also implies that during the boom, assets can trade at a price above their

fundamental value, i.e., the present discounted value of the dividends assets are expected to generate.

Although in practice it is difficult to measure the fundamental value of an asset, asset booms are often

suspected to be associated with bubbles given how fast asset prices rise without any reasonable changes in

the expected flow of dividends to justify this increase. In the model, of course, we can exactly compute the

fundamental value of an asset and determine if asset booms coincide with bubbles.

6To ensure the return on assets is riskless outside of booms may require one-off changes in the dividends of existing assets if

the assets that arrive ar risky to ensure the return on existing assets is the same as it would be if the new assets were riskless.
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We begin by defining the fundamental value of the asset in our model. For this, it will help to distinguish

among several rates of return when  = . The first is the interest rate on loans  that borrowers are

asked to repay. Recall this rate is the maximal possible return on the asset, i.e.,

1 + = 1 + 


(13)

During the boom, lenders will not expect to always collect this interest in full, since a fraction   0 of

lending is used to buy assets and may end in default. Lenders instead expect to earn 

given by

1 +

=
¡
1− 

¢ ³
1 + 



´
+ 

³
+


−Φ

´
(14)

Finally, the expected return to buying the asset in equilibrium is given by

1 +  =
(1−)(+)+(+)


(15)

These three returns can be ranked, with   
 ≥ . To derive the last inequality, note that if the

expected return to buying the asset 1 +  exceeded 1 +

, no agent would agree to lend given they can

buy the asset. But at any finite interest rate, demand for credit from entrepreneurs will be positive.

We now need to take a stand on the rate at which to discount dividends when we define the fundamental

value of an asset. Given the information frictions in our economy, the relevant discount rate should arguably

be the rate any agent with wealth would expect to earn in the absence of any information about who they

might be lending to. The expected return such agents earn in our economy is the expected return savers

anticipate. Since savers always lend in our economy, this expected return is equal to 

. Using the fact

that the equilibrium is stationary, we can define the fundamental value of the asset  recursively as

 =
(+)+(1−)(+)

1+̄
(16)

Equation (16) incorporates 1 + 

as the discount rate and uses the fact there  = , since recall from

the previous section that with constant dividends the price  coincides with the fundamental value of the

asset . Rearranging (16) implies

1 +

=

(+)+(1−)(+)


(17)

Comparing (17) with (15) shows that    whenever 


  and  =  whenever 

= .

From Proposition 2 we can infer that when Φ  Φ∗, the expected return on loans 

exceeds the expected

return on the asset . In this case the asset will exhibit a bubble. But when Φ ≥ Φ∗, the expected return
on loans 


will equal the expected return on the asset . In this case the price of the asset coincides

with fundamentals. As we summarize in the next proposition, whether a bubble exists depends on Φ:

Proposition 3 Let  denote the value of dividends discounted at the expected return on loans ̄. Then

the difference between the price of the asset and its fundamental value  =  −  is

 = (
¡
+ 

¢
+ (1− ))

∙
1

 + ̄
− 1

 + ̄

¸
(18)

Hence, there exists a bubble when Φ  Φ∗ but not when Φ ≥ Φ∗.
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Bubbles can arise because leveraged agents who have the option to default only care about the upside

potential of the asset and are willing to pay above its expected value to buy it. When Φ is large, savers

will be reluctant to lend if there is too much speculation. This requires that savers buy some fraction of the

assets. But since savers value an asset at its fundamentals, the asset cannot be a bubble in this case.

Although bubbles only arise when Φ  Φ∗, there is a sense in which agents spend too much on assets for

all Φ. To see this, note that since   
 ≥ , the marginal entrepreneur during the boom can earn

a higher return  than the expected return  an asset can generate regardless of whether 

  or



= . Hence, it is not bubbles that lead to misallocation in our model, but risk shifting. This suggests

that the relevant question for whether to intervene during an asset boom is not whether the asset is a bubble

but whether there is evidence of risk shifting. We return to this point in the next section.

Realized Returns and Interest Rates: We next consider rates of return during the boom. Since

  , the high dividend regime will be associated with a higher realized return on investment, both for

those who buy assets and for those who lend.7 A boom will appear to be a good time for savers.

However, there are two important caveats to this result. First, even if realized returns are higher during

the boom, expected returns may be lower. The expected return to lending during the boom is 

and after

the boom is . The expected return 

defined in (14) is a weighted average of 1 + 


and +


minus

expected default costs. Since  =    and  =   , we have

1 + 


 1 +  +



If the weighted average of 1+ 

and +


gives enough weight to the latter, the expected return to lending

will be below 1 +  even before accounting for default costs. Asset booms can therefore be times of low

expected returns even though realized returns while the boom continues are high.

Second, notwithstanding the high returns agents earn during the boom, there is a sense in which interest

rates are too low during the boom. Consider an economy in which lenders could monitor borrowers. Lenders

would charge borrowers different rates depending on whether they produce or buy assets. Those who borrow

to buy assets would be charged an interest rate at least as high as the maximum return on the asset, 1+b,
where a hat denotes the asset price in the counterfactual economy with monitoring. If Φ  0, the only

possible equilibrium with monitoring would involve no borrowing to buy the asset while  = . Savers

would instead have to buy the asset directly from the old. But they must also make loans to entrepreneurs.

Hence, the expected return on the asset with monitoring, (1− )
¡
1 +b¢+

¡
+ 

¢
b, must be the

same as the interest rate on loans to those who produce and repay in full. We can show that this impliesb  . Intuitively, savers will lend more to entrepreneurs to produce when they can monitor borrowers,

meaning fewer resources will be spent to buy the asset. This implies

 = 


 
7 In our model, the high return on the asset is due to higher dividends. In practice, the high returns in boom are primarily

due to asset price growth. As we noted above, we can introduce such growth by allowing for time-varying dividends.
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The interest rate when lenders cannot monitor borrowers will be lower than the interest rate charged to

those who buy assets with perfect monitoring. Lending against risky assets thus carries too low of an interest

rate. Essentially, imperfect monitoring forces entrepreneurs to cross-subsidize speculators so the latter face

interest rates that don’t reflect the risk of the assets they buy.

Fallout from the Crash: Finally, we turn to how asset booms end in our model. When dividends fall,

agents who previously borrowed to buy assets will be forced to default and will impose costs Φ on their

lenders. The collapse in asset prices thus triggers a fall in the resources this cohort can consume above and

beyond the decline in the dividend income they earn. By construction, the decline is proportional to the

price of assets  during the boom. A larger boom thus implies a larger loss once the boom ends. In our

model this is because recovery costs are larger the more resources were invested in assets. But, as we noted

in the Introduction, we view this as a stand-in for other channels in which a fall in asset prices would lead to

lower output, e.g. debt overhang and or deleveraging. These mechanisms also suggest the decline in output

after a crash should depend on the magnitude of losses associated with the crash.

To recap, our model can capture several key features of asset booms. In the remainder of the paper, we

examine whether there is a reason to intervene against a boom in our model and to analyze some of the

interventions that have been proposed by policymakers.

3 Inefficiency of Equilibria

In this section, we argue that there are two distinct senses in which the equilibrium of our model is inefficient

when  = . The first concerns resource misallocation: The marginal return to production during the

boom exceeds the expected return on assets, so there are potential gains to redirecting some of the resources

spent on assets to production. The second concerns excessive leverage: Agents who borrow to buy assets

ignore the default costs Φ they impose on others and take on too much debt. As we noted in the

Introduction, there is suggestive evidence that these distortions indeed occur during booms.

We begin with misallocation. As we noted above, when  = , the productivity of the marginal en-

trepreneur is . The interest rate on loans  exceeds the expected return on loans 

, since agents

who borrow to buy assets can default. At the same time, 

weakly exceeds the expected return on the

asset . Otherwise, savers would refuse to lend and opt to buy assets instead, yet demand for credit from

entrepreneurs is always positive. Hence,   . This inequality implies that young agents could coordi-

nate to earn a higher return by shifting some of what they spend on assets to the marginal entrepreneur.

Intuitively, agents who borrow to buy the asset ignore the losses that their lenders incur. As a result, their

private gain to buying the asset will exceed its social return, and they end up allocating too many resources

to buying assets. This distortion only occurs during the boom. Once the boom ends, the return on the

asset  will be the same as the productivity of the marginal entrepreneur .
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Although the young could earn a higher return by agreeing to shift some resources from buying assets to

production, doing so would leave the old agents from whom they buy assets poorer. Redirecting resources to

production would therefore not constitute a Pareto improvement. This point was already made in Grossman

and Yanagawa (1993). They also studied an overlapping generations economy in which agents use resources

to produce and buy assets. While their model did not feature risk shifting, it did feature a production

externality that implied the return to production is higher than the return on the asset. One of their key

results is that even though resources are misallocated, it will be impossible to make all agents better off

by reallocating resources. We now argue that this impossibility result hinges on assuming an exogenously

fixed endowment of assets. If agents must use resources to create assets, as is true for new technologies

or housing, the resources buyers pay for assets are no longer pure rents to sellers. In this case, shifting

resources from asset creation to entrepreneurs could potentially make all agents better off.

Formally, suppose the old at date 0 are endowed with neither goods nor assets, but they know how to

convert goods into assets. For simplicity, suppose assets can only be created at date 0. The technology for

producing assets is summarized by an increasing function  () which denotes the amount of goods needed

to produce the -th asset. Since goods are endowed to the young, the old must obtain goods from them. We

will proceed as if the old collect the revenue from asset sales in advance. They will use some of the goods

they receive as payment to produce assets and consume the rest. Optimality dictates they should create

assets up to the point ∗ at which the marginal cost of producing assets  (∗) equals the price 0. The old

will then collect 0
∗, which exceeds the amount of goods  (∗) ≡ R ∗

0
 ()  they need to produce ∗.

With endogenous asset creation, the equilibrium condition (6) remains unchanged. However, we need to

replace  in (3) with 
∗ = 

−1 (0). This expression is increasing in 0 for  = 0, and so we can show that

the equilibrium remains unique and qualitatively similar to before. Suppose we intervene and marginally

reduce the quantity of assets produced at date 0 from its equilibrium value ∗. Since  (∗) = 0, this

intervention will leave the consumption of the old unchanged. Cohorts born at dates  ≥ 0 can redirect the
 resources they would have spent on the last asset to entrepreneurs. If  =  at date , the productivity

of the marginal producer  exceeds the expected return on the asset . If  =  at date , the return

from the marginal producer  would equal the return on the asset . Since Pr ( = )  0 for all , a

marginal reduction in ∗ makes all cohorts better off ex ante. As long as the resources the young spend on

the asset at date 0 are not pure rents to the old, there is room for a Pareto-improving intervention.

The inefficiency associated with misallocation we’ve described holds for all values of Φ. But when Φ  0,

our model admits an additional inefficiency associated with excessive leverage. Even if we hold the quantity

of assets created at date 0 fixed, we can make all agents better off if we let lenders directly buy the assets

their borrowers would have purchased and reimburse borrowers for their forgone income. This avoids the

default costs Φ lenders incur when dividends fall. Essentially, there is no socially useful purpose for

agents to borrow and buy risky assets. Yet in equilibrium they do so because they don’t bear the costs

of their default. The same would be true in models in which instead of recovery costs, Φ represents the

amount of forgone output when asset prices fall due to debt overhang or deleveraging.
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These two sources of inefficiency suggest there may be scope for intervention to reduce the amount

of assets created during a boom and to discourage borrowing against any assets that are created. But

policymakers face the same difficulties as private agents in distinguishing between speculation and more

productive uses of assets, and cannot design policies directed at those who create or purchase risky assets.

However, policymakers might still rely on blunt tools, e.g. changing interest rates using monetary policy or

restricting leverage for all borrowers. The remainder of the paper considers these two interventions.

To study these interventions, however, we need to relax some of the simplifying assumptions we have

relied on so far. First, to capture the effects of monetary policy, we need to relax our assumption that the

amount of resources  each cohort can allocate to production and assets is fixed. While this assumption

is convenient, models of how monetary policy affects interest rates often assume that price rigidities allow

economic activity to expand or contract when the monetary authority moves. In the next section, we drop

the assumption that agents are endowed with a fixed amount of goods to incorporate monetary policy.

To capture the effects of leverage restrictions, we need to relax our assumption that entrepreneurs are

endowed with nothing. When borrowers lack resources as we have assumed so far, there is no way to restrict

leverage other than cutting off credit altogether. In Section 5 we return to assuming savers are endowed with

a fixed amount of goods, but we assume entrepreneurs are also endowed with goods. While entrepreneurs

without wealth must take on infinite leverage, those with wealth face a choice of how much leverage to take

on. This requires us to move from a single credit market to many markets with different degrees of leverage.

We can then study the effect of leverage restrictions that shut down markets with especially high leverage.

4 Monetary Policy

We begin with monetary policy. As we noted above, this requires us to abandon our assumption that savers

are endowed with an exogenous amount of goods. We follow Galí (2014), who also considers monetary policy

in an overlapping generations economy with assets. In particular, we introduce two modifications. First,

we assume savers are endowed with labor rather than goods. Second, we introduce a monetary authority

that moves after goods producers set their prices but before they hire labor. This allows the real wage —

and consequently output — to respond to monetary policy.

We leave the formal details of the analysis to Appendix B and only sketch the results here. Our assump-

tions imply that labor supply by savers only depends on the real wage. This in turn implies that in the

absence of money, the equilibrium real wage that clears the labor market will be constant over time and

independent of . Thus, in the absence of money, the reduced-form representation of our economy would

be the same as the model we have assumed up to now: Each cohort of savers has a constant budget  which

it must allocate between entrepreneurial activity and purchasing assets.

We then introduce money. As in Galí (2014), we consider an equilibrium in which money doesn’t circulate.
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In equilibrium, inflation adjusts to equate the real value of the nominal rate set by the monetary authority

and the real return agents earn elsewhere. Agents are therefore indifferent to holding money. Producers set

the prices of their goods each period. If they set prices after the monetary authority moves, or can perfectly

anticipate what the monetary authority will do, the monetary authority will not be able to affect the real

wage or any other real variable: Producers will set their prices in a way that leaves the real wage the same

as without intervention. But if producers set their prices before the monetary authority moves and cannot

perfectly anticipate what it will do, producers will set their price as a markup over the expected wage that

will prevail after the monetary authority moves. If the nominal interest rate turns out to be higher (lower)

than expected, the real wage can be higher (lower) than expected. Essentially, an unanticipated move by

the monetary authority allows a self-fulfilling fall in demand for goods. Lower demand for goods means

producers don’t need to hire as much labor, the real wage falls, and since agents earn less, demand for

goods will indeed be lower. Such a surprise move by the monetary authority can change earnings , just

as an income tax or subsidy would. We will refer to any intervention at date 0 that reduces the earnings

0 at date 0 to below the level  that would have prevailed without intervention as a contractionary policy.

We can deduce the implications of such a policy from the comparative statics of changing 0 in our original

endowment economy. The next proposition, based on our analysis in Appendix B, summarizes these effects.

Proposition 4 An unanticipated monetary intervention at date 0 that reduces earnings 0 below the earn-

ings  that would have prevailed absent any intervention leads to a lower asset price 0 and a higher real

interest rate on loans 
0 than would have prevailed absent any intervention.

Given this result, we can discuss the welfare implications of a contractionary monetary intervention at

date 0. Since prices are set each period, an intervention at date 0 will have no impact on any cohorts born

at dates  = 1 2 3  The expected amount available for agents born at date 0 to consume is£
(1− )

¡
 + 1

¢
+ 

¡
+ 1

¢¤− Φ0 +

Z ∞
0

(1 + ) ()  (19)

The first term in (19) represents the expected payout on the asset at date 1 and is unaffected by what the

monetary authority does at date 0. The next term represents expected default costs. A contractionary

policy at date 0 drives down the price 0 and lowers the expected costs of default. The last term represents

the proceeds from production by entrepreneurs in this cohort. Since tighter monetary policy increases 
0 ,

fewer entrepreneurs produce. A contractionary monetary policy thus mitigates excessive borrowing against

assets but exacerbates underproduction by entrepreneurs. The impact of the intervention on this cohort is

ambiguous, although for sufficiently large Φ the first effect will dominate and it will be better off. Finally,

the old at date 0 will be worse off given their earnings 0 fall. However, since the effect of policy on 0

and 
0 is independent of Φ, then when Φ is sufficiently large it should be possible for the cohort at date

0 to leave the old at date 0 whole and still be better off on account of the lower default costs. Hence,

although contractionary monetary policy has generally ambiguous effects on welfare, it can potentially lead

to a Pareto improvement. This result is reminiscent of Svensson (2017), who argues tighter monetary policy

is generally costly but can lower the odds of a financial crisis. In our framework, the probability the boom

ends is fixed at , but tighter monetary policy mitigates the severity of the output decline if the boom ends.
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Given that a contractionary intervention mitigates excessive borrowing during the boom but exacerbates

the underprovision of production, in Appendix B we consider an alternative that avoids this tradeoff.

Suppose the monetary authority does nothing at date 0 but can credibly promise to be contractionary at

date 1 if the boom continues. Since producers set prices anticipating the average outcome at date 1, this

means the monetary authority will be expansionary at date 1 if the boom ends by date 1. This is equivalent

to promising a temporarily high endowment 1   at date 1 if 1 =  and a temporarily low endowment

1   if 1 = . Per Proposition 4, the contractionary policy at date 1 will depress 1 and increase 

1 .

However, as the next result states, this will reduce both 0 and 
0 at date 0.

Proposition 5 A commitment by the monetary authority at date 0 to set 1    1 leads to a lower asset

price 0 and a lower interest rate on loans 

0 at date 0 than would have prevailed absent any intervention.

A promise to tighten if a boom continues (and consequently ease if the boom ends) mitigates both

excessive leverage and insufficient entrepreneurial activity at date 0, in contrast to tightening immediately.

Not surprisingly, this policy can raise welfare under more general circumstances than immediate tightening.

Formally, cohorts born at  = 2 3  after the intervention will be unaffected, We show in Appendix B

that the cohort born at date 1 will be better off if 1 = . Although they work more than without the

intervention, the monopoly power we need to allow for price setting implies employment is too low in the

absence of intervention, and so higher employment raises welfare. Whether this cohort will be better off

if 1 =  is ambiguous, just as a direct intervention at date 0 was ambiguous: This cohort will fund less

entrepreneurial activity given 
1 is higher but will incur smaller default costs Φ1 . Even if Φ is small so

default isn’t very costly, as long as the probability  that dividends fall is close to 1, this cohort will be

better off ex ante. The cohort born at date  = 0 will be strictly better off, since both expected default costs

Φ0 are lower and more entrepreneurial activity is financed when 
0 is lower. Finally, the old at date 0

will be worse off given the amount they earn from the assets they sell 0 will be lower. But the young at

date 0 would be better off even if they had to fully compensate the old when Φ  0. Hence, this intervention

can be Pareto improving even when Φ is small and tightening at date 0 is not Pareto improving.

The advantage of a commitment to tighten in the future is that it discourages speculation by punishing

those who buy risky assets but not those who produce. Lenders would do the same if we allowed them to

write contingent financial contracts. We ruled this out on the grounds that enforcing contingent contracting

is too costly. But contingent monetary policy does not involve enforcement and may serve as a substitute.

5 Macroprudential Regulation

We now turn to interventions that involve regulating credit. As we already anticipated, this will require us

to relax our assumption that entrepreneurs are endowed with no resources. When entrepreneurs have no

wealth, any arbitrarily small down-payment requirement would shut down all credit. This would eliminate

speculation, but it would also end all trade between savers and entrepreneurs. To analyze interventions
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that only restrict rather than eliminate leverage, we need borrowers to be able to produce and speculate

even when leverage is restricted. We therefore allow for entrepreneurs to be endowed with some resources.

But this modification introduces a complication. When agents have no wealth, they can only be infinitely

levered. When they have wealth, they can choose how much leverage to take on. This requires multiple

markets that can accommodate a choice of leverage rather than a single market as we have analyzed so far.

Since our analysis no longer involves monetary policy, we return to assuming agents are endowed with

goods rather than inputs used to produce goods. As before, each cohort consists of savers endowed with 

goods who want to save them and entrepreneurs who can convert goods at date  into goods at date + 1.

Up to now, we assumed entrepreneurs were all endowed with no resources but varied in productivity . We

now consider the opposite case: Entrepreneurs vary in their endowment but all have the same productivity

∗. We discuss the case where entrepreneurs vary in both wealth and productivity at the end of this section.

We assume a uniform distribution for wealth . That is, for each  ∈ [0 1], the density of entrepreneurs
with wealth  is equal to 2, where  is a constant such that 0    1 and  is the endowment of savers.

The total endowment of all entrepreneurs is thereforeZ 1

0

 (2)  = 

Together, savers and entrepreneurs are endowed with (1 + ) . To produce at capacity, entrepreneurs needZ 1

0

(1− ) (2)  = 

Since   1, entrepreneurs require fewer resources than savers have, in contrast to what we assumed in (2).

As for the common productivity ∗, we assume it is large enough to exceed the maximal return on the

asset. To see that the maximal return on the asset is finite, observe that the asset price  is at least

(1− ) , the amount of resources available to spend on the asset if all entrepreneurs produce at capacity,

and at most (1 + ) , the total resources each cohort is endowed with. The maximal return on the asset

occurs when +1 = , the price of the asset at date  assumes its lowest value (1− ) , and the price at

+ 1 assumes its maximum value (1 + ) . We assume 1 + ∗ exceeds this return, i.e.,

1 + ∗ 
 + (1 + ) − (1− ) 

(1− ) 
=

 + 2

(1− ) 
(20)

Our assumptions ensure all entrepreneurs can and will produce at capacity in equilibrium. By contrast, up

to now we have assumed only an endogenously determined fraction of entrepreneurs is funded in equilib-

rium. Assuming all entrepreneurs are fully funded allows us to avoid solving for the endogenous fraction of

entrepreneurs funded in each of a continuum of markets, which greatly simplifies the analysis.

Now that entrepreneurs have positive wealth, they can help finance their own investments. We assume

lenders can observe the resources borrowers use to finance their investment but not what borrowers choose
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to invest in. Verifying how much borrowers invest is different than understanding what they invest in.

By paying for a share of their investment, the borrower commits resources that can be used to repay the

lender in case of default, since a lender who knows about the borrower’s share of the project can go after its

proceeds. However, we continue to assume lenders cannot observe any resources the agent has beyond what

she invests in her project, i.e., borrowers can use shell entities to hide any additional wealth they have.

Formally, borrowers choose the fraction  ∈ [0 1) of their investment to finance. We model this as a
continuum of markets indexed by  ∈ [0 1). An agent who borrows in market  can borrow 1−


units

for each unit of her own wealth that she invests. She can thus leverage her endowment of  to finance an

investment of size 

. When   0, the choice of leverage is non-trivial: By going to a market with a lower

, an entrepreneur can borrow more and produce at a larger scale, but this will leave their lender with

a smaller cushion to go after in case of default. Back when we assumed all entrepreneurs had no wealth,

agents had no choice. They could only borrow in market  = 0 and choose infinite leverage. Now that

agents have wealth, we need a market for each  ∈ [0 1) to accommodate any leverage they might choose.

We now define and solve for an equilibrium when there is a continuum of markets. To anticipate our

results, we describe an equilibrium in which entrepreneurs with wealth  go to market  =  and borrow

1 −  to produce at capacity. Thus, entrepreneurs sort into different markets. Intuitively, entrepreneurs

are happy to invest all of their wealth in production and reassure their lender about any potential losses

in case of default. At the same time, other agents will borrow to speculate, but all such borrowing will be

confined to markets with low  (alternatively, to markets with high leverage). This motivates us to consider

the effect of leverage restrictions, i.e., shutting down markets where  is below some floor .

5.1 Equilibrium with Multiple Markets

An equilibrium now consists of a path of interest rates { ()}∞=0 for each market  ∈ [0 1), together with
a path of asset prices  and amounts borrowed in each market. Rather than track the share of lending used

to buy assets in each market, we must now track the amount borrowed for each purpose in each market.

Let  () and 

 () denote the rate at which agents borrow in market  to buy assets and to produce,

respectively, and define  () ≡  () + 

 () as total borrowing in market  for any purpose. We can

integrate these rates to obtain the total amounts borrowed in all markets,
R 1
0
 ()  and

R 1
0


 () .

Although we refer to borrowing rates, we are not ruling the possibility that agents borrow non-infinitesimal

amounts in some markets. Indeed, once we introduce leverage restrictions, there will be a market that will

attract a mass of borrowers. We discuss how to deal with this formally in Appendix C, but, loosely, we

can think of such markets as featuring infinite borrowing rates. We will refer to market  as inactive if

 () = 0 and active if  ()  0. The price , interest rates  (), and amounts borrowed  () and



 () must ensure all markets clear when agents acts optimally.

To determine if lenders are optimizing, we need to know what they expect to earn from lending in any

market  ∈ [0 1). Building on our previous notation, let  () denote the expected return to lending at
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date  in market . If market  is active, the expected return  () to lending in this market depends on the

amounts agents borrow in this market to buy assets and produce that determine the probability a borrower

defaults. We can thus deduce  () from the interest rate  () and the amounts 

 () and 


 () agents

borrow. But if market  is inactive, there is nothing to guide lenders on what to expect if they were to

lend to a market where no borrowers show up. Instead, we need to assign an expected return  () to each

inactive market as part of our definition of an equilibrium. In what follows, we first look for an equilibrium

in which all markets are active to avoid the question of how to assign  () in inactive markets. We then

discuss equilibria in which markets can be inactive. This naturally leads into our analysis of regulatory

interventions in which some markets are inactive by decree rather than because of beliefs agents hold.

As in Section 1, we proceed as if equilibrium prices are deterministic within each regime and verify

there are no stochastic equilibria in Appendix C. We begin with the case where  =  for all . With no

uncertainty there is no risk of default, so the expected return to lending  () in each active market  is

equal to the interest rate on loans  () in that market. The expected return in all active markets must be

the same for lenders to agree to lend in all markets. Hence, there exists a value  such that  () =  for

all  ∈ [0 1). It follows that the interest rate on loans  () also equals  for all  ∈ [0 1). In equilibrium,
this common interest rate on all loans 1 +  must equal the return on the asset 1 +  ≡ ++1


. For

suppose the interest rate on loans  exceeded the return on the asset . Then no agent would borrow to

buy the asset, nor would any buy the asset given they can earn a higher return from lending. But old agents

who own assets will want to sell them, so this cannot be an equilibrium. Suppose instead that the interest

rate on loans  were lower than the return on the asset . Then no agent would agree to lend given she

can buy the asset and earn a higher return. But this contradicts the fact that all markets are active. The

only possible equilibrium in which all markets are active is the one where  () =  for all  ∈ [0 1), i.e.,
where the interest rate on loans in all markets equals the return on the asset.

Given these interest rates, entrepreneurs with productivity ∗ can earn more producing than from buying

the asset or lending. Moreover, they will have an incentive to borrow enough to produce at capacity, and

will be indifferent about which markets to borrow in as long as they borrow enough to reach capacity.

One possibility is to let entrepreneurs with wealth  borrow an additional 1 −  in market  = . This

arrangement ensures all markets will be active, confirming such an equilibrium exists.

With all entrepreneurs producing at capacity, total resources invested in production will equal 2. Since

young agents want to consume when old, any of the total endowment (1 + )  of a given cohort that is not

used to produce will be spent on the asset. This implies

 + 2 = (1 + )  (21)

It follows that  = (1− )  for all . The return to buying the asset  and the interest rate on loans

 () in all markets  will then be


(1−) . This leads to the following analog to our earlier Proposition 1:

Proposition 6 When  =  for all , there exists an equilibrium in which all markets are active. In any
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such equilibrium,  = (1 − ) ≡  for all , () =


(1−) ≡  for all  ∈ [0 1) and all , and all
entrepreneurs borrow enough to produce at capacity.

Next, we turn to the case where  =  at date 0 but switches permanently to  with probability  each

period. Once again, we use a superscript  to refer to an equilibrium object at date  when  =  and a

superscript  when  = . We already know the values  and 

 () in any equilibrium where all markets

are active from Proposition 6. We only need to solve for the case where  = .

We begin with interest rates. For each active market , either agents borrow to buy assets in that market,

i.e.,  ()  0, or they do not, i.e., 

 () = 0. In the latter case, there will be no default and the expected

return to lending 


 () will equal the interest rate on loans 

 (). Since 



 () is the same in all active

markets, we have 
 () = 



 () = 


 in any market  where  ()  0 but 

 () = 0.

Next, consider an active market  in which agents do borrow to buy assets, i.e.,  ()  0. In equilibrium,

agents must expect to earn the same from borrowing in market  to buy assets as from lending out the

resources they would need to spend on assets if they borrowed. If the return to lending were higher, nobody

would borrow to buy assets in market . Conversely, if the return to buying assets were higher, no agent

would lend in any market given they can speculate in market . But then market  would be inactive.

So the two returns must be equal. The expected payoff to lending out  units of resources is (1 + 


 ).

Leveraging these resources to buy assets and defaulting if returns are low yields an expected payoff of

(1− )
h
+1+


− (1− )

¡
1 +

 ()
¢i

Equating the two, we can solve for the interest rate on loans 
 () in an active market  with speculation:

1 +
 () =

1
1−

∙
+1+


− 


1+






1−

¸
(22)

The next lemma, derived in Appendix C, shows there exists a cutoff Λ such that the interest rate in

markets   Λ is given by (22) and in markets  ≥ Λ is equal to 


 .

Lemma: If all markets are active, then there exists a cutoff Λ ∈ [0 1) such that

1 +
 () =

⎧⎪⎨⎪⎩
1

1−

∙
+1+


− 


1+






1−

¸
if  ∈ [0Λ )

1 +


 if  ∈ [Λ  1)
(23)

Our proof also shows 
 ()  



 when   Λ . This means some in markets   Λ there is some

risk of default, since the interest rate exceeds the expected return to lending, but in markets  ≥ Λ there
is no such risk. Intuitively, when  is low, borrowers can shift enough losses to creditors that they would

be willing to speculate. But when they have enough skin in the game, they will not engage in speculation.

Figure 2 shows the schedule of interest rates in (23). In market  = 0, where agents are infinitely levered,

the interest rate 
 (0) is equal to the maximal return on the asset,

+1+


. This is the same as we saw in
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Section 2, where  = 0 was the only possible market. The logic is the same: When agents put no resources

down, they must hand over all of the returns from the asset to the lender to ensure they earn no profits.

For 0   ≤ Λ , the interest rate on loans  () decreases with . We prove this in Appendix C, but

intuitively, when the borrower pledges more of her own resources, the lender need not charge as high of an

interest rate on those who do not default to keep the expected return to lending equal to 


 . For  ≥ Λ
where default is no longer a concern, the interest rate  () is the same for all . There is a set of markets

where agents speculate, those where   Λ , and a set where they don’t, those where  ≥ Λ .

Given the schedule of interest rates in (23), what would entrepreneurs choose? Their productivity ∗

exceeds the maximum return on the asset, which recall is equal to 
 (0). We also know that 

 (0)

exceeds 


 , the expected return to lending. Entrepreneurs can therefore earn a higher return investing in

production than from buying assets or from lending. So they should use their endowment  to produce.

But they can leverage their endowment to produce at a larger scale. They must therefore choose which

market  ∈ [0 1] to go to, where we include the option  = 1 to allow them to take on no leverage.

Consider first an entrepreneur with wealth   Λ . If she borrowed in market  = , she could borrow

up to 1−  at an interest rate of 


 , the lowest available interest rate on loans. If she borrowed in some

market   , she would be able to borrow more than 1− . But she has no use for this extra borrowing

given her capacity. Moreover, the interest rate in this market would be the same or higher than 


 . So

there is no benefit to going to markets    over going to market  = . If she borrowed in some market

  , she would have to borrow less than 1− , and she would face the same interest rate 


 . This too

offers no benefit over going to market  = . The best these entrepreneurs can do is go to market  = 

to borrow 1− , although they can achieve the same payoff going to any market  ∈ £Λ  ¤.
Next, consider an entrepreneur with wealth  ≤ Λ . If she borrowed in market  = , she could borrow

up to 1 −  at an interest rate of 
 (). If she borrowed in some market   , she would be able

to borrow more than 1 − , but she has no use for this extra borrowing. Moreover, the interest rate in

this market would be higher than 
 (). If she borrowed in some market   , she would have to

borrow less than 1 − . But she would face a lower interest rate. The question is whether it is worth

reducing capacity to obtain a lower rate. Her payoff from borrowing in market  ∈ [Λ ] would be


[1 + ∗ − (1− ) (1 + ())]. Substituting in from (23), this is equal to





∙
1 + ∗ − +1+


+



1+






1−

¸
This payoff is decreasing in , so there is no advantage to borrowing in these markets instead of  = .

Borrowing in any market  ∈ (Λ  1) is dominated by borrowing in market  = Λ , which we already
argued was worse than borrowing in  = . So borrowing 1−  in market  =  is uniquely optimal.

In any equilibrium where all markets are active, then, entrepreneurs with wealth  ∈ [0Λ ) will choose
market  = , while entrepreneurs with  ∈ (Λ  1) will choose borrow in markets in the set [Λ  1).

Formally, 

 () = 2 for  ∈ [0Λ ), while  () for  ∈ [Λ  1) is indeterminate. Just as in the case
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where  =  for all , entrepreneurs with enough wealth are indifferent about exactly which markets offering

the interest rate  they borrow their 1 −  resources. The indeterminacy of 

 () for   Λ is thus

irrelevant for allocations or welfare, since total borrowing to produce
R 1
0


 ()  = 2 in any equilibrium

where all markets are active. Just as before, we can ensure all markets are active by assuming entrepreneurs

with wealth  ≥ Λ borrow in market  = . In that case,  () = 2 for all  ∈ [0 1).

Once again, any resources the young do not use to produce will be spent on the asset. This implies

 + 2 = (1 + )  (24)

It follows that  = (1− )  for all . This is the same price as when  = . Although the price is the

same, the expected return to buying the asset when  =  is higher at 1 +  =
(1−)+
(1−) .

We now turn to the amount agents borrow to buy assets,  (). Recall that the expected return to

lending 


 () = 


 for all . Let  () ≡  ()  () denote the fraction of lending in market  that

is used to buy assets, which is well defined given all markets are active. Equating 


 () with 


 implies

(1−  ())

 () +  ()

∙


(1− ) 
−Φ

¸
= 



 (25)

Consider first markets   Λ . Since 

 ()  



 , it is indeed the case that 

 ()  0 for   Λ .

This confirms agents speculate in these markets. Using the value of  () in (23), we can solve for  ().

We can then derive  () from  () using the fact that 

 () = 2. Given that the interest rate on

loans 
 () is decreasing in  for  ∈ [0Λ ), then  (), and consequently  (), will be decreasing in

 for   Λ . That is, there will be more borrowing to finance speculation in markets with more leverage.

This is not because leverage makes speculation more attractive, but because there has to be just enough

speculation in equilibrium to ensure the return to lending is equal to 


 in all markets. Speculators borrow

more to speculate in markets where lending to entrepreneurs is more profitable.

Next, we turn to markets  ≥ Λ . Since  () =  for these , we know there is no default in

these markets. This could be because agents don’t borrow to buy assets in these markets, or because they

contribute enough of their own resources to avoid default. In Appendix C, we confirm agents do not borrow

to buy assets in these markets, i.e.,  () = 0 for  ∈ [Λ  1). Intuitively, interest rates on loans will have
to cover the expected losses from those borrowers who do speculate. This makes borrowing costly, which

discourages agents from borrowing to buy assets they would otherwise be indifferent to holding.

To recap, the amount agents borrow to buy assets  () is uniquely determined for all  ∈ [0 1) in
any equilibrium in which all markets are active. We can also say something about which agents borrow to

speculate. Recall that before, when entrepreneurs had no wealth, any agent could borrow to buy assets.

This remains true here for market  = 0. But in markets   0, borrowers must invest their own wealth to

speculate. We argued above that entrepreneurs invest all of their resources in production, so only savers will

be able to borrow in markets   0 to buy assets. In equilibrium, then, savers will be indifferent between

lending and speculating, and some will borrow in markets  ∈ (0Λ ) and speculate.
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We have thus solved for the equilibrium price  , the amounts 

 () and 


 () agents borrow to buy

assets and produce, and the interest rates on loans 
 () for all . However, some of these objects are

defined in terms of the expected return to lending 


 , which we have yet to derive. To solve for 


 , we

can track what savers earn in equilibrium. First, they lend to entrepreneurs, on which they earnZ 1

0

¡
1 +

 ()
¢
(1− ) (2) 

Second, all of the funds used to purchase assets comes from savers, either as lenders or as speculators who

help finance their asset purchases. Hence, they also collect all the returns on these assets, which equal¡
1 + 

¢
 . However, we need to net from this expected default costs. Let  denote the fraction of

spending on assets that is financed with some debt. The agents who buy these assets will default if returns

are low. Since default is proportional to the size of the borrower’s project, expected default costs are  Φ

 .

Substituting in for the price  = (1− )  and equating what savers earn with (1 +


 ) yields

(1 +


 ) =
£
1 +  −  Φ

¤
(1− ) +

Z 1

0

¡
1 +

 ()
¢
(1− ) (2)  (26)

We need an additional equation to characterize  . When the expected return to lending 


 exceeds the

expected return to buying the asset , only agents who borrow in market   Λ buy the asset. In that

case,  = 1. If instead 


 = , then  would have to ensure that 


 is indeed equal to . We can

combine the two conditions into a single equation:

1 +


 = max

½
1 + 

£
1 +  − Φ

¤
(1− ) +

Z 1

0

¡
1 +

 ()
¢
(1− ) (2) 

¾
(27)

It is easy to verify that when 


  , equations (26) and (27) imply  = 1, and when 


 =  we

can find a unique value of  that will equate the two. Since  is time invariant, the solutions to these

equations, 

and , are also time invariant. Given 


, we can solve for the time invariant cutoff Λ

as the smallest value of  for which  () = 

. This completes the characterization of an equilibrium

when all markets are active, which we can summarize as follows.

Proposition 7 There exists an equilibrium in which all markets are active while  = . In any such

equilibrium, the asset price is given by

 = (1− ) ≡ 

and, in the limit as → 0, the interest rates on loans in different markets are given by

1 +
 () = max

n
1 + ̄ 1

1−
h
1 + 


− (1+̄)

1−
io

where ̄ is the value that solves (26) and (27) together with . Borrowing for production is given by



 () = 2 for  ∈ [0Λ) and for  ∈ [Λ 1) is any distribution for which

R 1
Λ



 () = (1− (Λ)2).

Borrowing for buying assets  () ensures ̄
() = ̄ for  ∈ [0Λ) and  () = 0 for  ∈ [Λ 1).

The equilibrium above is similar to the one in Proposition 2 when entrepreneurs were endowed with

nothing. Poor entrepreneurs still take on high leverage, although this is now by choice rather than because
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they can only take on infinite leverage. Markets with low  allow for shifting risk, and in equilibrium agents

borrow to speculate in these markets. Rich entrepreneurs who do not need much leverage can avoid being

lumped in with speculators and obtain low interest rates. Although we don’t show it explicitly, the high

dividend regime can once again give rise to credit booms and, if Φ isn’t too large, bubbles. One difference

worth noting is that since in this specification all entrepreneurs produce at capacity, there is no sense in

which resources spent on assets could have been better deployed in production. In other words, there is no

misallocation during the boom. However, if Φ  0, borrowing to buy assets remains socially wasteful, and

an intervention might still improve welfare by curbing excessive leverage.

So far, we have only considered equilibria where all markets are active. But we can always construct

an equilibrium in which for any , the interest rate on loans  () exceeds 
∗ to ensure no agent would

want to borrow in that market, and then set the expected return  () arbitrarily low to ensure no one

would want to lend in market . Such equilibria are essentially coordination failures where markets that

could sustain trade are instead inactive. Inactivity in some markets will generally affect prices and interest

rates in remaining active markets, and so characterizing equilibria with inactive markets requires deriving

interest rates, asset prices, and amounts borrowed. Below, we study the effects of interventions that shut

down markets with low . This illustrates how inactivity in particular markets affects an equilibrium, since

inactive markets have the same effect whether they are inactive by decree or because of the beliefs of agents

about that market. Given our interest is in the effect of policy interventions that shut down markets that

would have otherwise been open, it seems natural to focus on an equilibrium where all markets are active

as the benchmark and limit our analysis of inactive markets to those consistent with our intervention.

5.2 Leverage Restrictions

To introduce leverage restrictions, consider a restriction that shuts down all markets with  below some

floor . This is equivalent to a cap on leverage. Agents with wealth    could only undertake projects

of size   1, while entrepreneurs with wealth  ≥  could operate at full capacity. For simplicity we

consider a permanent floor, although one could equally consider a floor that is only in effect while  = .

We will continue to focus on equilibria in which all markets  ≥  are active to avoid assigning expected

returns  () to inactive markets. The equilibrium where all markets are active can then be viewed as a

special case in which  = 0. When   0, we can apply a similar analysis to conclude that interest rates

 () will be given by (23) when  = , although the expected return to lending 


 will depend on .

Given interest rates still satisfy (23), entrepreneurs will want to produce at full capacity. But entrepreneurs

with    can no longer do so. Since their profits decrease with  for   , these entrepreneurs will all

flock to  and produce at scale . The total inputs entrepreneurs will use to produce is thenZ 

=0

2

µ




¶
 +

Z 1

=

(2)  =



2
Á

0

+ 2 (1− )

= + (1− ) 2
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The amount that remains to spend on the asset is (1 + )  minus the above, which pins down its price:

 = (1−  (1− ))  (28)

Increasing  will lead to a higher asset price. Intuitively, leverage restrictions force poor entrepreneurs

to operate at a smaller scale. Since savers want to save a fixed amount  regardless of , the decline in

production will release resources to buy assets, pushing  up. Assuming  is imposed permanently, the

same logic implies  = (1−  (1− )) . The expected return on the asset when  =  is thus

1 +  =
(1− )

¡
 + +1

¢
+ 

¡
+ +1

¢


= 1 +
(1− ) + 

(1−  (1− )) 

This reveals that leverage restrictions reduce the expected return to buying the asset. While it is hard to

describe the effects of increasing  on the entire schedule of interest rates  (), we show in Appendix C

that the expected return to lending 

declines with . We summarize the effects of raising  as follows.

Proposition 8 The asset price  = (1 − (1 − )) is increasing in , while the expected returns from

the asset ̄ =
(1−)+
(1−(1−)) and from lending ̄ when  =  are decreasing in  for a permanent floor .

Note the contrast between the effects of contractionary monetary policy we discussed in the previous

section and the effects of restrictions on leverage above. Both policies reduce output: Monetary policy

reduces what is produced today, while leverage restrictions reduce the amount entrepreneurs today produce

for next period. However, tighter monetary policy dampens asset prices and raises the returns to saving while

leverage restrictions increase asset prices and lower the return to saving. This suggests leverage restrictions

may be counterproductive, stoking asset prices rather than dampening them. This counterproductive aspect

of leverage restrictions is new as far as we know. Stein (2013) argues leverage restrictions may be limited

and ineffective, but his point was that borrowers can often circumvent them, not that regulations might

contribute to more speculation. The logic for our result is that in risk-shifting models there must be an

investment activity cross-subsidizing speculation. If this other investment is particularly sensitive to leverage

restrictions, restricting leverage may redirect resources toward speculation. We anticipate that the same

would hold true in risk-shifting models of housing in which speculators buy the same asset that liquidity

constrained households buy. If the demand for housing by constrained households is particularly sensitive

to leverage restrictions but the amount of funds available for mortgage lending is relatively inelastic with

respect to interest rates, leverage restrictions could end up encouraging speculation on housing.

Proposition 8 establishes that tighter leverage restrictions drive up asset prices. But that does not

necessarily mean that total borrowing against assets must rise. Even if a higher  increases , it could still

lower the share of assets purchased with debt . Our next result shows that when  is low and all assets

are purchased with debt, or when  is high enough to discourage speculation altogether, increasing  will

increase  without changing . In these cases, raising  will make agents worse off. For intermediate

values, increasing  at some point must reduce both the share of assets purchased with debt and expected

default costs. On its own this would make society better off, but increasing  also reduces what poor

entrepreneurs can produce. For large Φ, however, reducing default costs would be paramount.
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Proposition 9 There exist cutoffs Λ0 ≤ Λ1  1 in [0 1) such that

1. If   Λ0, increasing  leaves  = 1, increases expected default costs Φ, and leaves fewer

goods for cohorts to consume from date  = 1 on.

2. If  ≥ Λ1,  = 0 and there is no default. Increasing  then leaves fewer goods for cohorts to consume
from date  = 1 on.

3. If Λ0    Λ1, increasing  there exist values of  at which increasing  lowers  and expected

default costs Φ. In this case, increasing  while  =  can be Pareto improving for large Φ.

In contrast to monetary policy, a threat to tighten credit conditions in the future rather than tighten

them immediately will not mitigate this counterproductive aspect. Raising  next period will increase +1,

and regardless of how it affects +1, a higher 

+1 at date +1 makes speculation at date  more attractive.

However, our finding that increasing  raises asset prices contemporaneously will not necessarily hold in

general. Suppose that instead of the cases we considered in which entrepreneurs are identical in either wealth

or productivity, we allow the wealth and productivity of entrepreneurs to follow some general distribution

 ( ). Entrepreneurs with positive wealth and low productivity would behave like savers. An increase in

 that lowers the return to saving could induce some of the entrepreneurs who are on the margin between

lending and producing to switch from lending to borrowing in order to produce. If enough entrepreneurs

switch from lending to producing, the fall in lending and the increase in demand for borrowing to produce

may leave fewer resources to spend on the asset, and its price will fall. We confirm numerically that there

exist distributions  ( ) for which increasing  reduces  .
8

While increasing  can lower asset prices when  =  under some circumstances, this will only be true

when there is risk-shifting. When  = , increasing  will raise  regardless of the distribution  ( ).

To see this, note that when  =  there is no default. 
 () is then equal to a constant 


 for all . This

common rate 
 and the asset price 


 satisfy two equilibrium conditions similar to (3) and (4). First, since

all the resources of savers and entrepreneurs will be used to produce or buy the asset, we haveZ ∞


Z 1

0

min

½
1




¾
 ( )   +  =

Z ∞
0

Z 1

0

 ( )   +  (29)

This defines 
 as a function 

¡

¢
of the price  which is increasing in  for a fixed  and decreasing

in  for a fixed  . Second, the interest rate on loans must equal the return on the asset, and so¡
1 +



¢
 = + +1 (30)

Substituting in 
 = 

¡

¢
implies +1 = 

¡

¢ − . Figure 3 illustrates the effect of increasing 

graphically. Since 
¡

¢
is decreasing in  for a fixed , the curve that plots 


+1 as a function of 


 is

8Even without relying on a more general distribution  ( ), our results are in part due to our assumption that savers

only like to consume when old. This means their saving is inelastic to the interest rate. If we modified this, tighter leverage

constraints that reduce the returns to savings could lead them to save less, which might lead to lower asset prices.
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lower for all   0, which implies a higher steady state 
. Intuitively, the return on the asset is negatively

related to its price. In the absence of risk-shifting, the return on the asset is equal to the interest rate on

loans. Increasing  requires the interest rate on loans to fall so that credit markets clear even after demand

for borrowing by poor entrepreneurs falls. Hence, the return on the asset must fall and the price of the

asset must rise. By contrast, with risk-shifting, the return on the asset and the interest rate on loans are

different, so it will be possible for interest rates on loans to fall but the return on the asset to rise. The fact

that tighter leverage restrictions only reduce asset prices when there is risk-shifting suggests a possible way

for policymakers to detect its presence even when there is no other evidence that it is taking place.

6 Conclusion

This paper examines the role of policy in a risk shifting model of asset pricing. As in previous work on

risk-shifting, we show that our model can capture many observable features of asset booms, including high

asset prices that may exceed fundamentals, accompanying credit booms, and an eventual crisis. The general

equilibrium framework we use allows us to go beyond this and analyze policy and welfare. We show that

risk-shifting leads to misallocation and excessive leverage, opening up a possible role for intervention. We

then look at whether the leading policy proposals of contractionary monetary policy and leverage restrictions

can help mitigate these distortions. In our model, tighter monetary policy increases interest rates and lowers

asset prices, which reduces excessive leverage but further inhibits investment that is already underfunded.

Leverage restrictions have the opposite effect, lowering interest rates and, at least under certain conditions,

increasing asset prices. But they also discourage borrowing against assets. Both policies turn out to have

ambiguous welfare implications. Whether a policy improves welfare depends on how it affects speculators

vis-a-vis the productive activity that cross-subsidize them. It will also depend on how it is implemented;

credibly promising to tighten if a boom persists may improve welfare even when tightening immediately

does not. Finally, we find that when default costs are large, risk shifting can occur without giving rise

to bubbles, something previous work, has overlooked by ignoring default costs. This has the important

implication that there may be no need for policymakers contemplating intervening against high asset prices

to first determine if there is a bubble given evidence of risk-shifting.

We focus on risk shifting because asset booms tend to be associated with opaque assets that make it

difficult for lenders to judge the risks they face with any given borrower. There is a large literature on

bubbles that seeks to explain asset booms without risk shifting. However, these models should not be

viewed as competing explanations, since the mechanisms they consider are complementary to the risk-

shifting we study. For example, there is a large literature which shows how bubbles can arise with fully

rational agents because of dynamic inefficiency as in Galí (2014, 2017) or binding credit market frictions as

in Martin and Ventura (2012), Hirano and Yanagawa (2017), Miao and Wang (forthcoming). Recent work

by Bengui and Phan (2018) showed it is possible combine risk-shifting and dynamic inefficiency. One can

similarly combine risk-shifting and borrowing constraints by replacing our assumption that entrepreneurs

have a finite capacity with the assumption that an entrepreneur’s scale is bounded by how much they can
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borrow. In this case, the distortions from risk-shifting that we emphasize would have to be balanced against

the fact that overvalued assets may help entrepreneurs relax their borrowing constraints. There is also a

literature that shows how disagreement can give rise to bubbles, e.g. Scheinkman and Xiong (2003), Hong,

Scheinkman, and Xiong (2006), Simsek (2013), and Barberis, Greenwood, Jin, and Shleifer (2018). This

too can be combined with risk-shifting. In the last section of the paper, savers lend to otherwise identical

savers who then speculate on assets. Differences in beliefs can help down who lends to whom, since savers

who are pessimistic about assets will presumably end up lending to savers who are optimistic about them.

Whether risk-shifting interacts with these forces in interesting ways remains an open question.

Our model also suggests directions for future research on risk-shifting models of asset prices. For example,

we assumed lenders suffer a cost Φ when their borrowers default. In practice, the main costs associated

with the collapse of asset prices involve a decline in output due to the way agents respond when asset prices

fall. To get at these channels would require introducing financial intermediaries or borrowing constraints for

individual households. These may have important implications for what type of interventions are best during

booms, since how interventions affect outcomes once asset prices collapse will likely matter for welfare. In

terms of applications, we have described the analog between our setup and the housing market. However,

cross-subsidization in the housing market works differently, since there both types of agents buy the same

asset. By contrast, in our model only speculators buy an asset. This raises the question of whether an

intervention that shifts resources from illiquid home buyers to speculators still drives house prices up as in

our setting. It is also not obvious whether the policy implications we deduce in our model would hold in

open economy settings. For example, we argued that a contractionary monetary policy raises interest rates

and dampens asset prices. But if contractionary monetary policy leads to higher real rates that attract

capital inflows, it is not clear whether asset prices will still fall. Extending our framework to deal with these

issues is essential for figuring out its relevance and limitations for real world scenarios.
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Appendix A: Proof of Proposition 1

Proof of Proposition 1: In the text, we showed there is a unique deterministic equilibrium. Here we allow

for stochastic equilibrium paths for { }∞=0 and confirm that the equilibrium is in fact deterministic.

First, note that for any date , in equilibrium it must be the case that 0   ≤ . If the price  ≤ 0 there
would be infinite demand for the asset given its dividend   0 and there is free disposal. But the supply

of assets is finite, so this cannot be an equilibrium. At the same time, the most any cohort can spend to

buy the assets is . Let  denote the return to buying the asset, i.e.,  ≡ ++1


. This can be random if

+1 is random. Let  () denote the (possibly degenerate) distribution of the return . Since 0   ≤ 

for all , the maximum return max is finite, since max =
+max+1


≤ +


∞, where max+1 is the maximum

possible realization of the price at date + 1.

The equilibrium satisfies two conditions. First, as in (3), all resources will be used either to buy assets

or to initiate production: Z ∞


 ()  +  =  (31)

The implies  =  () where 
0 (·)  0. Second, the interest rate on loans  must satisfy

(1 +)  = + max+1 (32)

If the interest rate on loans 1 +  exceeded
+max+1


, no agent would want to buy assets, which cannot be

an equilibrium. If interest rate on loans 1 +  exceeded
+max+1


, agents could earn positive profits from

borrowing, so demand for credit would be infinite. Substituting  =  () into (32) implies

max+1 = (1 +  ())  − 

Suppose   . Consider the sequence {e}∞= that comprises the upper support of prices at each date
given the history of previous prices, starting from . Formally, set e =  and define

e+1 = (1 +  (e )) e − 

Since   , the sequence e would shoot off to infinity and would exceed  in finite time. This means

there is a state of the world in which the price exceeds , which cannot be an equilibrium. So  ≤ .

Next, suppose   . Again, we can construct the sequence {e}∞= that comprises the upper support
of prices at each date given the history of previous prices, starting from . That is, we set e =  and then

e+1 = (1 +  (e )) e − 

Since   , the sequence e would turn negative. Hence, there is a state of the world in which the price
is negative, which cannot be an equilibrium. The distribution of the price at date  is degenerate with full

support at . From (31),  =  () is uniquely determined as well. ¥
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Appendix B: Monetary Policy

This appendix introduces within-period production, a monetary authority, and nominal price rigidity into

our setup as in our discussion in Section 4. We set up the model and derive the results that underlie

Propositions 4 and 5 in the text.

B.1 Agent Types and Endowments

Our approach largely follows Galí (2014) in how we incorporate production, nominal price rigidity, and

monetary policy into an overlapping generations economy with assets. As in our benchmark model, agents

live two periods and care only about consumption when old. Each cohort still consists of two types — savers

who are endowed with resources but cannot produce intertemporally and entrepreneurs endowed with no

resources who can convert goods at date  into goods at date + 1. We continue to model entrepreneurs as

in the benchmark model, but we now assume savers are endowed with the inputs to produce goods rather

than with the goods themselves. This allows for an endogenous quantity of goods that can potentially vary

with the stance of monetary policy.

More precisely, we assume two types of savers, each of mass 1. Half are workers, endowed with 1 unit of

labor each who must choose how to allocate it. The other half are producers, endowed with the knowledge

of how to convert labor into output but not with labor itself.9 Producers set the price of the goods they

produce and then hire the labor needed to satisfy their demand. Although producers and entrepreneurs

both produce output, they differ in when and how they produce it. Producers born at date  convert labor

into goods at date . Entrepreneurs then convert the goods producers created at date  into goods at date

+ 1. Producers operate within the period; entrepreneurs operate across periods.

B.2 Production, Pricing, and Labor Supply

Workers allocate their one unit of labor to home and market production. Home production yields the same

good as the market, but using a technology  () that is concave in the amount of labor  allocated to home

production. We assume 0 (0) = 1 and 0 (1) = 0 for reasons that will become clear below.

Workers who sell their labor on the market earn a wage  per unit labor. Their labor services are

hired by producers, whom we index by  ∈ [0 1]. Each producer can produce a distinct intermediate good
according to a linear technology. In particular, if producer  hires  units of labor, she will produce

 =  units of intermediate good . The different intermediate goods can then be combined to form final

9This setup borrows from Adam (2003) rather than Galí (2014). The latter assumes agents are homogeneous, selling labor

when young and hiring labor when old. We want income to only accrue to the young as in our benchmark model.
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consumption goods according to a constant elasticity of substitution (CES) production function available

to all agents. That is, given  of each  ∈ [0 1], the amount of final goods  that can be produced is

 =
³R 1

0
1− 

´ 1
1−

(33)

Let  denote the price of the final good and  denote the price of intermediate good . At these prices,

the  that maximize the profits of a final goods producer solve

max




³R 1
0
1− 

´ 1
1− − R 1

0


The first-order condition with respect to  yields

 = 

µ




¶− 1


(34)

If we set  = 1, we can compute the price of the cost of the optimal bundle of intermediate goods

 =
³



´−1
needed to produce one unit of the final good:R 1

0
 =

R 1
0

1− 1



 
1


 

Since any agent can produce final goods, the price  must equal the per unit cost of producing a good in

equilibrium. Equating the two yields the familiar CES price aggregator:

 =
³R 1

0


−1


 
´ 
−1

(35)

Each intermediate goods producer chooses their price  to maximize expected profits given demand (34)

and wage . To allow producers to move either before or after the monetary authority, we condition

producer ’s choice on their information Ω when choosing their price. Each producer will set  to solve

max




"
( −)

µ




¶−1 ¯̄̄̄¯Ω
#

The optimal price is then

 =
 [|Ω]

(1− ) [|Ω] (36)

By symmetry, all producers will charge the same price, produce the same amount, and hire the same amount

of labor, i.e.,  =  for all  ∈ [0 1]. The output of consumption goods is thus

 =
³R 1

0
1− 

´ 1
1−

= 

Workers receive () of these goods and producers get the remaining (1−). Workers also

produce goods at home. Their income is thus () +  (1− ), which is maximized at

0 (1− ) = (37)

By contrast, the total resources available to young agents is  =  +  (1− ), which is maximized at

0 (1− ) = 1

Our assumption that 0 (0) = 1 implies total resources are maximized when  = 0 and all goods are

produced in the market, and  =  +  (1− ) is increasing in  for all  ∈ [0 1].
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B.3 Assets, Credit, and Money

Since agents want to consume when old, they will wish to save their earnings  =  +  (1− ). As in

the benchmark model, they can buy assets and make loans. Without money, this specification would be

equivalent to our benchmark model, the only difference being that the income of savers  which before was

exogenous and fixed is now endogenous and potentially time-varying. Equilibrium in the asset and credit

markets involves the same conditions as in the benchmark model. First, regardless of the income they earn,

the young will spend all of their resources either funding entrepreneurs or buying assets, and so we still haveZ ∞


 ()  +  = 

where  is the real price of the asset and  is the real interest rate on loans. The interest rate  must

still ensure agents cannot earn profits by borrowing and buying assets. When  = , this requires¡
1 +



¢
 = + +1

and when  = , this requires ¡
1 +



¢
 =  + +1

We can then use  and  to solve for the expected return on loans:

 =

(

 if  = 

max
n
 

³
1− 



´

 +




¡
 − Φ

¢o
if  = 

(38)

where  is the expected real return to buying the asset. Below, we show that when prices are flexible or

money is absent altogether, the equilibrium real wage  will be constant over time. Employment 

and total earnings of all savers  =  +  (1− ) will then also be constant. The reduced form of our

model in the absence of money thus coincides with our benchmark model.

To introduce money, we follow Galí (2014) in assuming money does not circulate in equilibrium. That is,

money is the numeraire, and  and  denote the price of goods and labor relative to money. However,

no agent actually holds money in equilibrium. The monetary authority announces a nominal interest rate

 at each date . The monetary authority commits to pay this rate at date  + 1 to those who lend to it

(with money it can always issue), and will charge  to those who borrow from it with full collateral. This

is roughly in line with what central banks do in practice, paying interest on reserves and lending at the

discount window against collateral. To ensure money doesn’t circulate, the real return on lending to the

monetary authority must equal the expected return on savings. Let Π = +1 denote the gross inflation

rate between dates  and + 1. Since agents always lend to entrepreneurs, the expected return on savings

will equal , the expected return on loans. This implies

1 +  =
¡
1 +

¢
Π (39)

When the monetary authority changes the nominal interest rate , either inflation Π or the expected return

1+ or both will have to adjust to ensure agents will neither borrow nor lend to the monetary authority.
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B.4 Defining an Equilibrium

Given a path of nominal interest rates {1 + }∞=0, an equilibrium consists of a path of prices {  }∞=0
and a path of employment {}∞=0 such that agents behave optimally and markets clear. Collecting the
relevant conditions from above yields the following five equations for these five variables:

(i) Optimal pricing:  =
 [|Ω]

(1− ) [|Ω]
(ii) Optimal labor supply: 0 (1− ) =

(iii) Optimal saving:
R∞


 ()  +  = 

(iv) Credit market clearing: 1 + =

⎧⎨⎩
++1


if  = 

++1


if  = 

(v) Money market clearing: Π =
1 + 

1 +

where the expected return on loans  in the last condition is given by (38).

B.5 Equilibrium with Flexible Prices

We begin with the case where producers set their prices  after observing the wage . This corresponds

to the case where prices are fully flexible, or alternatively where there is no money and so no sense in which

nominal prices are set in advance. Producers can deduce what other producers will do and the labor workers

will supply, they can perfectly anticipate total output . Hence, their information set Ω = {}. It
follows that  [|Ω] = and  [|Ω] = . The optimal pricing rule (i) then implies

 =


1− 

The real wage is thus constant and equal to 1− . Substituting this into (ii) yields

0 (1− ) = 1−  (40)

Since  (·) is concave,  is equal to some constant ∗ for all . It follows that  = ∗ +  (1− ∗) is also

constant for all . We can then use (iii) and (iv) to solve for  and  as in the benchmark model, and then

use (38) to compute . Finally, given  we can use the implied Π from (v) to derive {}∞=1 for any
initial value for 0. The initial price level 0 is indeterminate, in line with the Sargent and Wallace (1975)

result on the price level indeterminacy of pure interest rate rules. The nominal wage  = (1− ).

B.6 Equilibria with Rigid Prices

We now turn to the case where producers set the price of their intermediate good  before the monetary

authority moves. That is, producers set prices, the monetary authority sets 1+ , and then producers hire

workers at a nominal wage . This formulation implies prices are only rigid for one period.
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If monetary policy is deterministic, producers can perfectly anticipate the nominal interest rate and the

equilibrium nominal wage , and so Ω = {} and  = 1−  as before.

Next, suppose monetary policy is contingent on some random variable, i.e.,  =  () where {}∞=0 is a
sequence of random variables. For simplicity, consider the case where  is only random at  = 0, i.e.,

0 =

(
 w/prob 

 w/prob 1− 

 is deterministic for  = 1 2 

From date  = 1 on, we know from the optimal price-setting condition (i) that  = 1 − . It then

follows that  = ∗ and  = ∗ ≡ ∗ +  (1− ∗) for all  ≥ 1, and we can determine , , and  for

 ≥ 1 just as in the case where prices are flexible. All we need is to solve for the equilibrium at date 0.

We use a superscript  ∈ {} to denote the value of a variable as for a given realization of 0. Assume
wlog that 0  0 . The optimal price setting condition (1) is now

0

0

0
+ (1− )0


0

0

0 + (1− )0
= 1−  (41)

That is, the output-weighted average real wage over the two values of  is equal to 1 − . Optimal labor

supply (ii) then implies

0
¡
1− 0

¢
= min

n

0

0
 1
o

0
¡
1− 0

¢
= min

n

0

0
 1
o

These are three equations for four unknowns, meaning the set of all equilibria can be parameterized by a

single parameter. Wlog, we choose the real wage when  =  to be this parameter. The three equations

above yield values for 
0 0, 


0 , and 0 given 

0 0. From these, we can deduce earnings 

0 =



0 + 

³
1− 


0

´
for each  ∈ {}. We can then use (iii) and (iv) to derive 0 and 


0 by solvingZ ∞



0

 ()  + 

0 = 


0 (42)³

1 +

0

´


0 =  +  (43)

and then compute the expected return on loans 


0 using (38), and, via (v), the inflation rate Π

0 for each

 ∈ {}. As before, the price level 0 is indeterminate. Optimal pricing only restricts the average
real wage across states but not the real wage for each realization of 0, introducing an indeterminacy. The

equilibrium real wage can exceed 1− for one realization of 0 if it falls below 1− for the other realization.

There case where monetary policy has no effect on real variables at date 0 remains an equilibrium. In this

case, 
0 0 = 

0 0 = 1− . But price rigidity expands the set of equilibria to include ones in which

real variables vary with the nominal interest rate. Since the nominal interest rate only serves as a signal
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to coordinate real activity rather but does not directly affect it, there are equilibria in which 
0  

0

as well as equilibria in which 
0  

0 .
10 Since higher nominal interest rates seem to be contractionary

in practice, we focus on equilibria in which 
0 0  1 −   

0 0, i.e., real wages are lower when

the monetary authority unexpectedly raises the nominal interest rate. In this case, from condition (ii) we

know that a higher nominal interest rate will be associated with lower employment (0  ∗  0 ) and

hence lower earnings (0  ∗  0 ). From (42), we can infer that 

0 = 

³


0

´
where  ()   () for

the same value . As is clear from Figure 1, this implies a higher nominal interest rate will be associated

with a lower real asset price (0    0 ). This also implies a higher real interest rate on loans

(
0    

0 ). The real expected return to buying assets will also be higher (

0    0 ). However,

whether the real expected return to lending 


0 will be higher is ambiguous. (38) implies 


0 is either

equal to 

0 or to a weighted average of 


0 and 


0. In the latter case, although both terms are higher when

 =  the weight on 

0, which is 


0


0, can be higher or lower for  = . These results are summarized in

Proposition 4 in the paper.

B.7 Promises of Future Intervention

Our last point concerns the effects of a promise at date 0 to be contractionary at date 1 if the boom continues

into that date. In this case, 0 and  for  ≥ 2 are deterministic, while 1 = 1 ∈ {}. That is, we
assume producers set prices each period before  is revealed. Solving for equilibrium at date 1 is identical

to how we solved for the equilibrium at date 0 when we assumed 0 was random. Consider equilibria in

which the real wage is lower if the boom continues, so


1 1  1−    

1 1

This implies 1  ∗  1 and so 1    1. In other words, if dividends fall and the boom ends,

monetary policy must be expansionary. By the same logic as above, such a policy would imply 1  

and 1  , as well as 
1   and 

1  . Turning back to date 0, conditions (iii) and (iv) implyZ ∞
0

 ()  + 0 = ¡
1 +

0

¢
0 =  + 1

Comparative statics of this system with respect to 1 reveals that 0   and 
0  . That is,

while contractionary monetary policy at date 0 dampens 0 but raises 
0 at date 0, a threat to enact

contractionary monetary policy at date 1 if dividends remain high will dampen both 0 and 
0 at date 0.

These results are summarized in Proposition 5 in the paper.

10One way to avoid such multiplicity is to assume dynamic monetary policy rules that are conditioned on past economic

variables. This allows a central bank to take actions that are unsustainable if a high interest rate today leads to certain

outcomes, eliminating equilibria with those outcomes. See Cochrane (2011) for a discussion of these issues.
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Appendix C: Macroprudential Regulation

In this appendix, we define an equilibrium for an economy with multiple markets as in Section 5. We then

show that for an equilibrium in which all markets are active, various aspects of the equilibrium are uniquely

determined. We then discuss some comparative static results with respect to the set of active markets.

C.1 Defining an Equilibrium

We begin with some notation. Let  denote the price of the asset at date . Given asset prices, we can

define the return to buying the asset at date  as

 ≡ +1++1


The return  can be random both because +1 might be uncertain (if  = ) and because +1 might in

principle be stochastic. Let  () denote the (possibly degenerate) cumulative distribution of the return

, i.e.,  () ≡ Pr ( ≤ ). Let 1 + max denote the maximum possible return on the asset. As discussed

in the text, 1 + max is finite, since max ≤ +2
(1−) . We will use  to denote the expected return to buying

the asset at date , i.e.,

1 +  ≡
Z 1+max

0

 ()

We now define variables for the different markets  ∈ [0 1) agents can borrow in. Let  () denote the

interest rate on loans in market , so an agent who agrees to pay a share  of the project she undertakes

will promise to pay back 1 + () for each unit she borrows. Since agents may default, let  () denote

what lenders expect to earn from lending in market  given the possibility of default. Finally, we represent

borrowing in markets with density functions  () and 

 () for all  ∈ [0 1) such that the total amount

of resources borrowed to buy assets and produce are given by
R

 ()  and

R



 () , respectively.

Let  () ≡  () + 

 () denote the density of borrowing for any purpose in market .

Representing the quantities agents borrow in each market as a density function ignores the possibility

that there may be equilibria in which agents borrow a positive mass of resources in certain markets. More

generally, we can allow for a set ∆ ⊂ [0 1) with countably many elements such that each market  ∈ ∆ is

associated with a positive mass of borrowing 
 ()  0. The amount borrowed in any market  ∈ [0 1)\∆

can still be represented with a density function. Heuristically, we can appeal to the Dirac-delta construction

and represent the amount borrowed in any market as if it were a density. That is, for any  ∈ ∆, we set
the density  () = 

 ()  (), where  () is the Dirac-delta function defined so that  () = 0 for

 6= 0 and R 1
0
 ()  = 1. This convention treats markets  ∈ ∆ as essentially having an infinite density.

We will refer to a market  as inactive if  () = 0 and active if  ()  0 or if  ∈ ∆.

Given these preliminaries, we define an equilibrium as a path
©
 


 ()  


 ()   ()   ()

ª∞
=0

that

satisfies conditions (44)-(49) below to ensure that all markets clear when agents are optimizing.
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Our first three conditions stipulate that agents act optimally. We begin with lenders. Optimality requires

that agents will only invest their wealth where the expected return is highest. Let  denote the maximal

expected return to lending in any market , i.e.,

 ≡ sup
∈[01)

 ()

Optimal lending requires that agents lend in market 0 only if it they expect to earn  and if this rate

exceeds the expected return to buying the asset, i.e.,


¡
0
¢
 0 only if 

¡
0
¢
=  and  ≥  (44)

Next, entrepreneurs must act optimally. We first argue this means they should use their endowment to

produce. Recall entrepreneurs have productivity ∗ where ∗  max ≥  from (20), so producing is better

than buying assets. But ∗ must also exceed the expected return to lending . For suppose  were

higher than ∗. Since ∗  max , then  must also exceed max . In that case, no agent would use their

endowment to buy assets, nor would any agent borrow to buy assets given the interest rate on loans in any

active market must be at least . Yet assets must trade in equilibrium: Owners sell their assets whenever

the asset price is positive, while demand for the asset would be infinite if its price were nonnegative. Since

production offers the highest return, entrepreneurs should use their endowment  to produce.

Since entrepreneurs can leverage their endowment to produce at a larger capacity, we also need to char-

acterize their borrowing. If they borrow in market  where   , they can borrow enough to reach full

capacity. Optimality requires that there will be borrowing to produce in market 0 only if some entrepreneur

finds it optimal to borrow in that market from all  ∈ [0 1], including  = 1 for no borrowing. This implies





¡
0
¢
 0 only if 0 ∈ arg max

∈[01]

(
[1 +  − (1− ) (1 + ())] if  ≤ 




[1 +  − (1− ) (1 + ())] if   

)
for some  (45)

Third, agents who borrow to buy assets must act optimally. They will agree to borrow in market  ∈ [0 1)
to buy assets only if doing so yields a higher expected return than lending out the same resources. Define

 () ≡ (1 + ()) (1− )

The expected profits from borrowing in market  to buy one consumption unit’s worth of assets isZ ∞
()

( −  ())  () (46)

Agents will borrow in market  to buy assets only if (46) equal
¡
1 +

¢
, the return on what they must

spend on assets. If (46) were lower than
¡
1 +

¢
, no agent would borrow to buy assets. If (46) were

higher than
¡
1 +

¢
, then no one would ever lend given they can borrow in market 0, and so 

¡
0
¢
= 0.

But this contradicts the fact that  ()  0. Optimality implies


¡
0
¢
 0 only if

Z ∞
(

0)

¡
 − 

¡
0
¢¢
 () =

¡
1 +

¢
0 (47)
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Fourth, savers will not waste any resources. Since entrepreneurs use their endowment to produce, all

the resources spent to buy the asset must come from savers. This implies that  must be either lent to

entrepreneurs to produce or be spent on assets:Z 1

0



 () +  =  (48)

Finally, we turn to equilibrium beliefs. In any active market 0, lenders must expect the return on lending



¡
0
¢
to conform with the actual fraction of borrowers who borrow in market 0 with the intent to produce

and to buy assets, respectively. That is,



¡
0
¢
=





¡
0
¢


¡
0
¢

¡
0
¢
+


¡
0
¢


¡
0
¢ max

½


¡
0
¢

+1 + +1


− 1
¾
if 

¡
0
¢
 0 (49)

In a market  ∈ ∆ with a positive mass of borrowing, the expression
 (

0)
(

0) will be replaced by

 ()

()
.

Condition (49) does not impose any restrictions on expectations in inactive markets where 
¡
0
¢
= 0.

C.2 Solving for Equilibrium

We now proceed to solve for an equilibrium. As in the text, we restrict attention to equilibria in which all

markets  ∈ [0 1) are active. Such equilibria are natural given we focus on the effects of interventions to
shut down markets. Our first result characterizes the schedule of interest rates in such an equilibrium.

Proposition C1: In an equilibrium where all markets are active, there exists a value Λ ∈ [0 1] such
that the equilibrium interest rate schedule will be given by

1 + () =

( ()
1− if  ∈ [0Λ)
1 + if  ∈ [Λ 1)

(50)

where e () is the value of  that solvesZ 1+max

=

( − )  () =
¡
1 +

¢
 (51)

The schedule of interest rates  () is a decreasing and continuous function of  for  ∈ [0Λ].

Proof of Proposition C1: Our proof relies proceeds as two lemmas.

Lemma C1: In an equilibrium where all markets are active, 1 +  () = max
n()
1−  1 +

o
, wheree () equals the  that solves (51) and  is the expected return to lending in any market .

Proof of Lemma C1: Recall we defined  () ≡ (1 + ()) (1− ) as the equilibrium debt obligation

for an agent who invests one unit of resources in assets. As we argued above, for all  we haveZ 1+max

=()

( −  ())  () ≤
¡
1 +

¢
 (52)
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since otherwise agents would refuse to lend, which is incompatible with  ()  0 for all  ∈ [0 1). The
expression

R 1+max

=
( − )  () is strictly decreasing in . It also tends to +∞ as  → −∞ and to 0 as

→ 1+ max . Hence, for any  ∈ [0 1) and any  ≥ 0, there exists a unique  ∈ (−∞ 1+ max ] for whichZ 1+max

=

( − )  () =
¡
1 +

¢
 (53)

Denote e () as the unique solution to equation (53). By contrast,  () refers to the value of (1 + ()) (1− )

evaluated at the equilibrium interest rate  ().

For any 0 ∈ [0 1) in which (52) holds with equality, we have e ¡0¢ = 
¡
0
¢
and so

1 +

¡
0
¢
=
e ¡0¢
1− 0

For any remaining values of 0 ∈ [0 1), condition (52) holds as a strict inequality. This means borrowing
in market 0 and buying assets yields a lower payoff than lending out the resources needed to borrow in

market 0. Hence, no agent will borrow in market 0 to buy assets, implying 
¡
0
¢
= 0. In an equilibrium

where all markets are active, 



¡
0
¢
 0. From (44) we know that 

¡
0
¢
= , and from (49) we know

that since 
¡
0
¢
= 0 then 

¡
0
¢
= 

¡
0
¢
. Combining these implies 

¡
0
¢
= .

Hence, in an equilibrium where all markets are active, we must have either  () =  or  () =
()
1−

for all  ∈ [0 1). To further show that 1 +  () = max
n
1 +

()
1−

o
, consider a value of  for which

()
1−  1 +, i.e., for which e ()   (). Since

R 1+max

=
( − )  () is decreasing in , this meansZ 1+max

=()

( −  ())  () 

Z 1+max

=() ( − e ())  () =
¡
1 +

¢


Since in equilibrium we must satisfy (52), it follows that in this case we have 1 + () =
()
1− .

Next, consider a value of  for which
()
1−  1 +, i.e., for which e ()   (). Then we would have

¡
1 +

¢
 =

Z 1+max

=() ( − e ())  () 

Z 1+max

=()

( −  ())  ()

In this case, (52) can only hold as a strict inequality. But we already know that in this case  () = .

This establishes the lemma. ¥

Our next lemma establishes that
()
1− is a weakly decreasing and continuous function of . Combined

with Lemma C1, this implies there exists a cutoff Λ such that  () =  for  ≥ Λ.

Lemma C2: In any equilibrium where all markets are active,
()
1− is nonincreasing and continuous in .

Proof of Lemma C2: The function e () corresponds to the value of  which solves (51). Although
the distribution  () can contain mass points, the integral

R 1+max

=
( − )  () is still continuous in .
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This implies e () is a continuous function of . However, e () may exhibit kinks, meaning its directional
derivatives need not be equal at all values. To show that e () is decreasing, it will suffice to show that all
of its directional derivatives are nonpositive for all  ∈ [0 1). Totally differentiating (51) implies

e ()


= − 1 +R 1+max()  ()

For any  where e () is a mass point of  (), lim0→+
R 1+max(0)  () 6= lim0→−

R 1+max(0)  ().

Nevertheless, both lim0→+
(0)
0 and lim0→−

(0)
0 are negative, so e () is strictly decreasing in .

Next, define e () ≡ ()
1− − 1. The function e () is also continuous in  with possible kink-points.

Differentiating the equation e () = (1− ) (1 + e ()) implies

e ()


= −(1 + e ()) + (1− )
 e ()



Rearranging and using the expression for
()


above yields

 e ()


=

1

1− 

∙
1 + e () +

e ()


¸

=
1

1− 

⎡⎣1 + e ()− 1 +R 1+max()  ()

⎤⎦
=

1

(1− )
R 1+max()  ()

"
(1 + e ())

Z 1+max

()  ()−
¡
1 +

¢#
(54)

Once again,
 ()


is discontinuous at  where e () is a mass point of  ().

To evaluate the sign of
()


, we must consider two cases. First, suppose e ()  . Then

(1 + e ())

Z 1+max

()  () 
¡
1 +

¢ Z 1+max

()  ()

≤ 1 +

In that case, we have
()


 0 from (54) regardless of the direction we take the derivative. Next, supposee () ≥ . From Lemma C1, in this case (52) holds with equality. Rearranging this equation, we getZ 1+max

()
h
 −

³
1 + e ()

´i
 () = 

"¡
1 +

¢− Z 1+max

()
³
1 + e ()

´
 ()

#

We can establish that
 ()


in (54) is nonnegative for   0 if we can show thatZ 1+max

()
h
 −

³
1 + e ()

´i
 () ≥ 0
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Towards this, observe that the expected profits from borrowing in market  to buy assets are given byZ 1+max

() (1− ) ( − (1 +))  () +

Z 1+max

()  ()

Since these are equal to
¡
1 +

¢
 when e () ≥ , we have

¡
1 +

¢
 =

Z 1+max

() (1− ) ( − (1 +))  () +

Z 1+max

()  ()

≤
Z 1+max

() (1− ) ( − (1 +))  () +

Z 1+max

0

 ()

=

Z 1+max

() (1− ) ( − (1 +))  () +
¡
1 + 

¢
 (55)

But in an equilibrium where all markets are active, we must have 


 ≥  . This implies

0 ≤ ¡ − 
¢
 ≤ (1− )

Z 1+max

() ( − (1 +))  ()

This confirms
R 1+max() ( − (1 +))  () ≥ 0. All directional derivatives  ()


are nonnegative. ¥

From Lemmas C1 and C2, set Λ to be either 1 or the minimum value in [0 1] for which  () = . It

follows that  ()   for   Λ and  () =  for all  ≥ Λ. This establishes the proposition. ¥

We can use the schedule of interest rates in Proposition C1 to determine how much entrepreneurs should

produce and in which markets to borrow if they do.

Proposition C2: In an equilibrium where all markets are active, entrepreneurs with wealth  will borrow

1−  units to produce, in a market with an interest rate equal to  ().

Proof of Proposition C2: Consider an entrepreneur with wealth . If she borrows in a market  where

 ≤ , she can produce at full capacity and would only need to put down 
³
1−
1−

´
resources to borrow

1−  to reach full capacity. This would earn her an expected profit of

1 + ∗ − (1 + ()) (1− )

This value is maximized by choosing  to minimize  (). From Proposition C1, we know  () is weakly

decreasing in  and is therefore maximized at  = .

Next, suppose she borrows in a market  where   . In that case, she could not produce at full

capacity. Since ∗  max =  (0) ≥  () for all  ∈ [0 1), it will be optimal to borrow enough to

produce at the maximal capacity possible. For   , this maximum is 

. Her profits would thus equal




(1 + ∗ −  ()) (56)
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where recall  () = (1− ) (1 + ()) is the amount a borrower is required to repay per each unit of

resource she borrows. Since  () =  for all  ∈ (Λ 1), there would be no benefit to going to market
  Λ: She would have to produce less at the same interest rate as in market Λ. The only case that

remains is the interval of markets  ∈ [Λ]. In that case, we can differentiate profits in (56) to get




³

(1 + ∗ −  ())

´
= − 

2

∙
(1 + ∗ −  ()) + 

 ()



¸
= − 

2

"
(1 + ∗ −  ())− 

¡
1 +

¢R 1+max


 ()

#

= − 

2
R 1+max


 ()

"Z 1+max



(1 + ∗ −  ())  ()− 
¡
1 +

¢#
Since ∗  +2

(1−)  max , we have





³

(1 + ∗ −  ())

´
 − 

2
R 1+max


 ()

"Z 1+max



( −  ())  ()− 
¡
1 +

¢#
But for  ≤ Λ, the expression in brackets is equal to 0. Hence, borrowing in a market with    will

be strictly dominated by borrowing in the market with  = . At the optimum, each entrepreneur borrow

1−  at a rate of  (). ¥

Proposition C3: In an equilibrium where all markets are active, the equilibrium price of the asset will

be given by  = (1− ) 

Proof of Proposition C3: Condition (48) implies that all the resources of the young in cohort  will be

used to either produce or to buy assets. From Proposition C2, we know that all entrepreneurs will produce

at capacity, so the total amount used to produce is given byZ 1

0

(2)  = 2

This implies

 + 2 = (1 + ) 

and so  = (1− )  as claimed. ¥

Propositions C1-C3 do not require any restrictions on the distribution of . When  = , the return

on the asset 1 +  will have a degenerate distribution with full mass at


(1−) . Substituting this into

(51) reveals that e () = (1− )
³
1 + 

(1−)
´
for all , that

 ()


= 0 for all , and the cutoff Λ = 0.

Hence, when all markets are active,  () =  =


(1−) for all  ∈ [0 1) as described in the text. One
equilibrium in which all markets are active if it entrepreneurs with wealth  borrow in market  = . But

other equilibria in which all markets are active also exist.

When dividends follow a regime-switching process, then if  =  at date ,  would be distributed as

 =

(


(1−) w/prob 1− 


(1−) w/prob 
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We can verify that this distribution implies that
()


 0 when  ≤ Λ . In particular, observe that (55) in

Lemma C2 relies on the fact that
R 1+max()  () ≤

R 1+max

0
 (). But for the above distribution, the

first expression is equal to (1− )
³
1 + 

(1−)
´
, which is strictly less than 1+

(1−)+
(1−) which corresponds

to the second expression. Hence, we can replace (55) with a strictly inequality, implying
()


is strictly

negative for  ≤ Λ . This is in line with what we discuss in the text and depict in Figure 2.

Since Λ is the minimum value of  at which
()
1− = 1 +



 , we have

1
1−Λ

h
1 + 

(1−) −
³
1 +





´
Λ
1−

i
= 1 +





which, upon rearranging, yields

Λ =
1−



1+





 ³ 
(1−) −





´
Since 

 () is decreasing in  for  ∈ [0Λ ), Proposition C2 implies only borrowers with wealth  borrow
in market  =  for  ∈ [0Λ ). Hence,  () = 2 for  ∈ [0Λ ). By contrast,  () is indeterminate
for  ∈ [Λ  1). However, we know that 


 (Λ)  0, since borrowers with wealth  = Λ will have to

borrow in this market to borrow 1− . As for the amount borrowed to buy assets,  (), we can deduce

 () for  ∈ [0Λ ] from 
 (), 



 , and 

 () using (49). For   Λ , the fact that

 ()


 0 at

 = Λ , combined with the fact that
 ()


 0 for   Λ from Lemma C2, implies that no agent would

want to borrow to buy assets. So  () = 0 for all  ≥ Λ . We can solve for 


 as in the text.

C.3 Comparative Statics

Next, we consider equilibria where all markets above some floor  are active. These results correspond to

Propositions 8 and 9 in the text. The first result concerns how the equilibrium changes with .

Proof of Proposition 8: In the text, we show that  and  are increasing and decreasing in ,

respectively. Here, we show that 

is decreasing in . For any , either 


equals  or exceeds .

Since the expected return on loans 

is continuous in , it will suffice to show that 


is decreasing in 

when 

 .

When 

 , we have  = 1, and the equilibrium conditions for  and Λ are given by

(1− Λ)
=

h


(1−(1−)) − Λ
³
1+



1− − 1
´i

(57)

1 +


= (1−  (1− ))
£
1 +  − Φ

¤
+

2

Z 1

0

h
min

n


 1
o
− 

i £
1 + (max {})¤  (58)

If 

 , the floor  must be below the cutoff Λ For suppose  ≥ Λ. Then all markets where agents

might default will be shut down. But without default, the expected return on lending and the expected
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return on the asset must be equal to ensure both the credit market and asset market clear. Since   Λ,

we can expand the integral term in (58) to obtainZ 1

0

h
min

n


 1
o
− 

i £
1 + (max { })¤ = (1 + ())

µ
1


− 1
¶Z 

0

 +Z Λ


(1 + ()) (1− )  +
³
1 +


´Z 1

Λ
(1− ) 

We use the fact that 1+ () = 1
1−

∙
1 + 

(1−(1−)) −


1+






1−

¸
to express the three integrals above as

(1 + ())

µ
1


− 1
¶Z 

0

 =
h
1 + 

(1−(1−)) − 
³
1+



1− − 1
´i 
2

(59)Z Λ


(1 + ()) (1− )  =

Z Λ


∙
1 + 

(1−(1−)) −


1+






1−

¸
 (60)

³
1 +


´Z 1

Λ
(1− )  =

1

2

³
1 +


´ ¡
1− Λ¢2 (61)

We can write (57) and (58) more compactly as

1

³


Λ

´
= 0

2

³


Λ

´
= 0

Totally differentiating this system of equations gives us the comparative statics of the equilibrium 

and

Λ with respect to any variable  as"
1




1
Λ

2




2
Λ

#"





Λ

#
=

"
−1



−2


#
Differentiating (57) and (58) using expressions (59)-(61) yields

1


 = 1− Λ + Λ

1−
1
Λ

=
(1+


)

1−
2


 = 1 + 

h
1

1−
¡
Λ
¢2 − ¡1− Λ¢2i 2

Λ
= 0

When we evaluate comparative statics with respect to , we now have"







#
=

"
1




1
Λ

2




2
Λ

#−1 "
1


2


#

=




⎡⎣ 0 
1−

³
1 +


´

1 + 
(Λ)

2

1− − 
¡
1− Λ¢2 −

³
1− Λ + Λ

1−
´
⎤⎦⎡⎣ − 

(1−(1−))2

− 2(1+Λ)
(1−(1−))2 − (1 + Φ)

⎤⎦
where  =

(1+

)

1−

µ
1 + 

(Λ)
2

1− − 
¡
1− Λ¢2¶  0. It follows that





= −

µ
1 + 

∙
1

1− 

¡
Λ
¢2 − ¡1− Λ¢2¸¶−1 " 2

¡
1 + Λ

¢
(1− (1− ))

2

+ (1 + Φ)

#
 0
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Since 

is decreasing in  whether 


  or 


= , the claim follows. ¥

Proposition 9 concerns how changing  affects the expected costs of default Φ. Since we already

know  is increasing in , any changes in expected default costs occur entirely through . Our next

result argues that there exists cutoffs Λ0 and Λ1 such that 
 = 0 when   Λ0 or   Λ1. When

Λ0    Λ1, we only claim it must be decreasing for some  in this interval.

Proof of Proposition 9: Define

 () =



(1− (1− ))

Using the fact that 



 0, we have

 ()


=



−  ()

1− (1− )
 0

Since



 = [(1− ) + ]  ()

it follows that the ratio 

 is decreasing in . Hence, there exists a value Λ0 ≥ 0 such that 

 

for   Λ0 and 

=  for  ≥ Λ0. Since 

  when   Λ0, then 
 = 1 for   Λ0. It follows that

expected default costs Φ = Φ are increasing in  in this region. A higher  for   Λ0 reduces

the amount entrepreneurs produce and increases the foregone output when dividends fall. Each cohort will

therefore be left with fewer goods to consume.

We next turn to the case where  ≥ Λ0. Here, we know 

= . Substituting this into (57) yields¡

1− Λ¢ ¡1 + 
¢
=
h
1 + 

(1−(1−)) − Λ

1−
¡
1 + 

¢i
which, upon rearranging,

Λ =
(1−)(−)

(1−(1−))+(1−)+

From this, we can conclude that Λ ≥  if

(1−)(−)
(1−(1−))+(1−)+ ≥ 

or, upon rearranging, if

(1− ) ( − ) ≥  [(1− (1− )) + (1− ) + ] (62)

The RHS of (62) is a quadratic in  with a positive coefficient on the quadratic term. The inequality is

satisfied when  = 0 and violated when  = 1. This implies there exists a cutoff Λ1 ∈ (0 1) such that
Λ   if  ∈ [0Λ1) and Λ   if  ∈ (Λ1 1). We can deduce that Λ1 ≥ Λ0 since by definition Λ0 is the
cutoff such that 


=  when  ≥ Λ0, yet at  = Λ1 we have



= 

¡
Λ
¢
=  () =  (Λ1)
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By construction, we know that  () when  = Λ1 is equal to 
. This implies Λ1 ≥ Λ0.

When   Λ1 no agent will borrow to buy the asset, so 
 = 0. Expected default costs are 0, and so the

only effect of increasing  is to reduce production. This will leave fewer goods for each cohort to consume.

Finally, we turn to the case where Λ0    Λ1. We do not analyze this case in general. However, when

Λ = , the interest rate in all active markets would equal 

, since the only active markets are those

with  ≥  = Λ. Since  ≥ Λ0, we know that 
=  and so the interest rate in all active markets is

. The equilibrium condition that determines  is given by

¡
1 + 

¢
= (1− (1− ))

£
1 +  − Φ

¤
+ 2

Z 1

0

h
min

n


 1
o
− 

i £
1 + (max { })¤ 

= (1− (1− ))
£
1 +  − Φ

¤
+ 2

¡
1 + 

¢ Z 1

0

h
min

n


 1
o
− 

i


= (1− (1− ))
£
1 +  − Φ

¤
+ 2

¡
1 + 

¢
[2 + (1− )− 12]

= 1 +  −  (1− (1− ))Φ

Hence, when  = Λ1, we have 
 = 0. For   Λ1, however, 

  0, sinceZ 1

0

£
1 + (max {})¤ hminn


 1
o
− 

i


will be strictly greater than 1
2

¡
1 + 

¢
(1− ). Hence, in the limit as  ↑ Λ1, we have   0 expected

default costs Φ must be decreasing in  since this expression goes from a positive value to 0.

Finally, to show that this can generate a Pareto improvement, observe that increasing  while dividends

are high will make the initial old at date 0 better off given 0 increases. Cohorts born after dividends

have fallen will be unaffected if  is only increased while dividends are high. Cohorts who are born while

dividends are high expect to consume the dividends from the asset net of default costs  [+1]−Φ
as well as the output produced by entrepreneurs. If Φ is sufficiently large and  is small, we can promise

these agents a higher expected consumption. ¥
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Figure 1: Determination of equilibrium price pd with deterministic dividends 
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Figure 2: Interest rates as a function of share λ of investment that borrowers pay 
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Figure 3: Effect of increasing floor λ with deterministic dividends 
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