Explore Econ 2022

The Expectations-Augmented Philips Curve – Applications in Hong Kong

Name: Hin Lap Julian Tsang Word Count: 1497 Explore Econ 2022

1. Introduction

The nexus between inflation and unemployment is one of the most widely studied relationships in macroeconomics. Since the discovery of the original Philips curve (PC) by William Philips (1958), generations of macroeconomists have attempted to exploit the toolkit for the implementation of optimal monetary policies. Subsequent economic crises have brought the traditional curve under closer scrutiny. Phelps (1967) and Friedman (1968) criticised the PC by positing that the presented trade-off might occur only in the short-run. Moreover, it is the "natural rate" of unemployment at which inflation remains stable. If the government aggressively pushes down unemployment below equilibrium, individuals would adapt their expectations accordingly and the temporary trade-off would disappear. Incorporating expectations gives the PC its expectations-augmented form.

Since the adoption of inflation-targeting among central banks, many studies have observed a reduction in the backward-looking element in the PC. In contrast, expectations have become anchored, as was recorded by Bernanke (2010) and the IMF (2013) among others. An alternative narrative posited that the central bank's commitment to an inflation target has helped fixated the PC and hence prevented inflation from greatly deviating from the target.

This study aims to provide a full account of the PC relationship in Hong Kong, a small open economy with a pegged exchange rate system. The next section reviews the expectations-augmented Philips curve and its core assumptions, drawing links to its applicability in Hong Kong by invoking empirical evidence on the city's inflation persistence. It also introduces the model of anchored expectations. Section 3 examines our data and estimation methods. Section 4 discusses our empirical results. Section 5 concludes.

2. Theoretical discussion

The expectations-augmented PC has its roots from Friedman (1968), who posited in his presidential address to the American Economic Association that the current inflation depends on both expected inflation and the deviation of unemployment from its natural rate. His theory can be expressed as

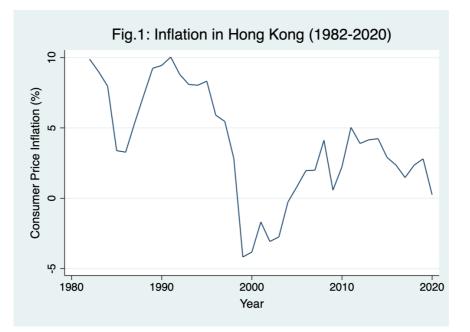
$$\pi_t = \pi_t^e + \alpha(\mu_t - \mu_t^*) + \epsilon_t, \quad \alpha < 0, \tag{1}$$

where π_t is inflation, π_t^e is expected inflation, μ_t is unemployment, μ_t^* is the non-accelerating inflation rate of unemployment (NAIRU), and ϵ_t is the error term.

This model, like its predecessor, assumes that prices were set by a constant markup above unit labour cost and hence adjust proportionally to wages. This assumption, formulated by Solow and Samuelson (1960), transformed the PC from a wage-change relationship to a price-change relationship that is more useful to policymakers.

Three innovations set this model apart from the original PC, as discussed by Humphrey (1985). First, excess demand in the labour and product markets upon which inflation depends was redefined as the gap between the actual and natural rates of unemployment, $(\mu_t - \mu_t^*)$, rather than just simply an inverse function of the unemployment rate, $x(\mu)$. Second, the introduction of the expectations variable, π_t^e , as the sole shift variable in the equation reflected the view prevalent in the early 70s that changing price expectations was the predominant cause of observed shifts in the PC. This implies the absence of money illusion as economic agents are chiefly concerned with the real purchasing power of wages and prices. Third, the incorporation of an expectations-generating mechanism into PC analysis led to models of adaptive expectations that were widely used. One version could be written as

$$\pi^e = \sum v_i \pi_{-i} \tag{2}$$


where Σ is the sum of past rates of inflation, v_i denotes the weights attached to them, and the subscript *i* denotes the corresponding time period. A special case was introduced by Friedman, with expected inflation equal to the inflation in the last period ($v_1 = 1$). Equation (1) thus becomes

$$\pi_t = \pi_{t-1} + \alpha(\mu_t - \mu_t^*) + \epsilon_t , \qquad (3)$$

This equation is the accelerationist PC that appears in many undergraduate textbooks. It was widely used by policymakers before Lucas (1976) popularised alternative models of rational expectations.

Despite its simplicity, the textbook model's feature of backward-looking expectations is of utmost relevance to Hong Kong. Numerous studies have reported remarkable levels of inflation persistence in the city. Gerlach and Petra-Kristen (2006) attributed Hong Kong's large inflation volatility to its monetary policy framework. The introduction of the currency board in 1983 which pegged the HKD to the USD constrained the Hong Kong Monetary Authority (HKMA)'s ability to adjust the nominal exchange rate in response to deviations from the desired inflation level, thus increasing the persistence of the city's inflation shocks. This argument was reinforced by Gerlach and Tillman (2011) who measured the greatest levels of persistence for Hong Kong among a group of 19 economies. The result is strongly in favour of using equation (3) for our study.

The growing literature on anchored expectations has caused us to incorporate a new element into the textbook model – inflation targets. While there are no explicit targets in Hong Kong, the HKMA is committed to ensuring a low and stable inflation. Active interventions by the government can also be said to have aligned expectations ¹.

¹ See Hawkins and Kee (1996)

Figure 1 shows the stabilisation of inflation rates in the post-crisis period, suggesting the use of an alternative model. We derive a simplified version of the model from Ball and Mazumder (2018), which is

$$\pi_t^e = \lambda \pi^T + (1 - \lambda)\pi_{t-1} + v_t \tag{4}$$

where expected inflation is a weighted average of the inflation target π^{T} and the past inflation.

Substituting (4) into (1), we have

$$\pi_t = \lambda \pi^T + (1 - \lambda) \pi_{t-1} + \alpha (\mu_t - \mu_t^*) + u_t, \quad \alpha < 0,$$
(5)

This equation nests two common versions of PC. If the parameter λ is zero, inflation depends on the past inflation with a weight of 1, and we have the accelerationist PC. If λ is one, the lagged inflation term disappears, and we have a version of the original PC with anchored expectations.

Explore Econ 2022

3. Data and Methodology

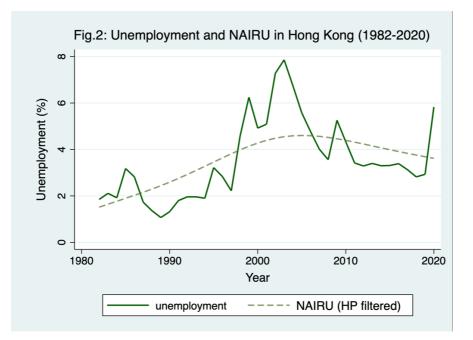
For our study of Hong Kong's inflation-unemployment relationship, we have the following two regression models derived from equation (3) and (5).

Model 1: the accelerationist PC

$$\Delta \pi_t = \beta_0 + \beta_1 (\mu_t - \mu_t^*) + \epsilon_t \tag{6}$$

where $\Delta \pi_t = \pi_t - \pi_{t-1}$ and $\beta_1 = \alpha$.

Model 2: PC with both adaptive and anchored expectations


$$\pi_t = \beta_0 + \beta_1 \pi_{t-1} + \beta_2 (\mu_t - \mu_t^*) + u_t \tag{7}$$

where $\beta_0 = \lambda \pi^T$, $\beta_1 = 1 - \lambda$ and $\beta_2 = \alpha$.

Data is obtained from the World Bank site from 1982-2020. Inflation is measured by the yearly percentage change in the Consumer Price Index (CPI). NAIRU is obtained from the unemployment rate using HF filtering methodology, following Sovbetov and Kaplan (2019). *Table 1* and *fig2* summarise the variables of our dataset.

Inflation Rate		Unemploy	mployment Rate NAIRU		IRU	Unemployment Ga	
Mean	Std Dev.	Mean	Std Dev.	Mean	Std Dev.	Mean	Std Dev.
3.788	0.040	3.496	1.724	3.496	1.015	0.000	1.218

Table 1: Overview of Mean and Standard Deviation of Variables

To check for stationarity, we conduct the Augmented Dicky Fuller (ADF) test on inflation π_t and the unemployment gap $\mu_t - \mu_t^*$. We are unable to reject the null that the series are non-stationary at all conventional levels of significance. Thus, we first difference the variables to achieve stationarity. The results are shown in *Table 2*.

Table 2: ADF U	Init Root Test	Without Trend PP
----------------	----------------	------------------

Variable	Level	1 st difference
π_t	-1.863	-5.075***
$\mu_t - \mu_t^*$	-2.383	-4.860***

Note: ***, **, * are significance levels of 1%, 5% and 10% respectively

at which the unit root test was evaluated.

4. Results and Discussion

Table 3 presents the results of OLS estimation for our two specifications.

Variable	(1)	(2)
π_{t-1}		0.261*
		(0.126)
$\mu_t - \mu_t^*$	-0.0167***	-0.0141***
	(0.00342)	(0.00249)
с	0.000338	-0.00120
	(0.00345)	(0.00248)
N	37	37
$\overline{R^2}$	0.0830	0.8339

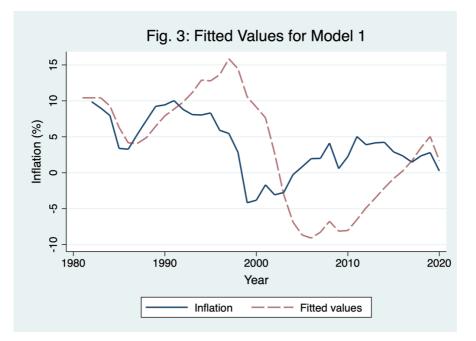
Table 3: Regression output

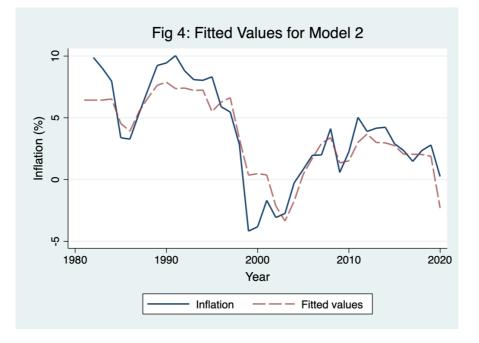
Standard errors in parentheses

Note: the 2 models were first differenced before estimated, but the adjusted R-squared reported here refers to the undifferenced model, so they should be treated with caution.

* p < 0.05, ** p < 0.01, *** p < 0.001

Both models capture an inverse relationship between inflation and unemployment. In model 1, a positive 1% deviation from NAIRU in a given period is associated with a 1.67% decrease in inflation. The figure is 1.41% in model 2. The high magnitude and significance of the coefficient is in striking contrast to the group of countries examined by Sovbetov and Kaplan (2019) and Solomon (2014). This can be explained by Hong Kong's steep aggregate supply curve due to its trade openness and land constraints. It is impossible to expand output beyond its trend without significantly increasing the cost of production. On the contrary, attempts to disinflate the economy would bring a high cost to output and employment.


Once anchored expectations enter the equation, the explanatory power of the variables increases significantly. This is shown by the large improvement in the fitted values of *fig4* compared to *fig3*. The high value of λ (= 1 - 0.261 = 0.739) demonstrates the importance of the anchor in the formation of expectations. However, past inflationary experience still partly accounts for current


expectations. The constancy of λ is a questionable assumption, so we test for a structural break in λ under the hypothesis that expectations shifted from backward-looking to anchored during our sample period.

Statistic 20.4756 8.0468	P-Value 0.0002 0.0001			
8.0468	0.0001			
7.8828	0.0001			
	Full sample: 1983-2020			
Trimmed sample: 1989-201				
	1996			
	0.6086			
	(0.2213)			
	0.7911			
(0.1599)				

Standard errors in parentheses

The Supremum Wald test identifies a structural break in 1996. This is perhaps unsurprising as the run-up to the Asian Financial Crisis saw inflation moderating from around 10% to 5.5% while unemployment was kept consistently low. An anchoring of expectations, with λ leaping from 0.6086 to 0.7911, helps to explain this unusual trajectory.

5. Conclusion

Our results yield two major implications. First, tighter-than-normal monetary policy is required to stabilise inflation due to the steep PC in Hong Kong. Second, more could be done to anchor expectations by demonstrating the central bank's commitment towards inflation control in lieu of its narrow focus on nominal exchange rate fixity.

The above modelling framework could be extended to other small open economies with considerable inflation persistence. The expectations formation process should be studied, and the inflation-unemployment relationship ought to be quantified and exploited for the optimisation of monetary policies.

A possible direction for further study is to develop a model of rational expectations. In the absence of a reliable forecast, one can proxy expected inflation as a function of variables such as exchange rate, money growth and fiscal budget, following empirical work by Solomon (2014). Investigating more sources of expectations allows us to obtain better estimates for the expectations-augmented PC.

References

- Ball, L. and Mazumder, S., 2015. A Phillips Curve with Anchored Expectations and Short-Term Unemployment. 1st ed. Washington: International Monetary Fund.
- Data.worldbank.org. 2022. *World Bank Open Data | Data*. [online] Available at: https://data.worldbank.org/ [Accessed 14 April 2022].

Friedman, M., 1968. The Role of monetary Policy, American Economic Review. 58, pp.1-17.

- Gerlach, S. and Gerlack-Kristen, P., 2006. *Monetary policy regimes and macroeconomic outcomes: Hong Kong and Singapore*. No. 204. BIS, pp.10-12, 23-24.
- Hong Kong Institute for Monetary Research, 2011. *Inflation Targeting and Persistence in Asia-Pacific*. Hong Kong: Hong Kong Institute for Monetary Research, pp.5-6, 10-11.
- Hong Kong Monetary Authority, 1996. *Analysis of Inflation in Hong Kong*. Hong Kong: Hong Kong Monetary Authority, pp.12-13.
- Humphrey, M., 1985. The Evolution and Policy Implications of the Philips Curve Analysis. *Bank of Richmond Economic Review*, 6, 4-6.
- Lucas, E., 1972. Expectations and the neutrality of money. Journal of Economic theory, 4, pp.103-124.
- Phelps, E.,1967. Philips Curve, Expectation on Inflation and Optimal Inflation over Time. Economica, 34(135), pp.254 -281.
- Philips, W.,1958. The Relation Between Unemployment and the Rate of Change of Money wage rate in the United Kingdom, Economica 25(100), pp.283-299.
- Samuelson, P. and Solow, R.,1960. Analytical Aspects of Anti-Inflation Policy. American Economic Review Papers and Proceedings. 50(2), pp.177-91.
- Solomon, S., 2014. The Expectations Augmented Philips Curve Evidence From Ghana. *International Journal of Economics, Commerce and Management*, 2(11), pp.1-21.
- Sovbetov, Y. and Kaplan, M., 2019. Empirical examination of the stability of expectations -Augmented Phillips Curve for developing and developed countries. *Theoretical and Applied Economics*, 26(2), pp.63-78.

Appendix

Names of the variables stored in STATA

Name	Variable
inflation	π_t
change_inflation	$\Delta \pi_t$
change_inflation_1	$\Delta \pi_{t-1}$
diff_inflation	$\Delta \pi_t - \Delta \pi_{t-1}$
unemployment	μ_t
nairu	μ_t^*
gap	$\mu_t - \mu_t^*$
change_gap	$\Delta(\mu_t - \mu_t^*)$

Unit root test:

. dfuller inflation			
Dickey—Fuller test fo Variable: inflation	r unit root	Number of Number of	
H0: Random walk with	ut drift, d = 0		
Tı statis		Dickey—Fuller - critical value 5%	10%
Z(t) -1.8	63 –3.662	-2.964	-2.614

MacKinnon approximate p-value for Z(t) = 0.3495.

. dfuller o	change_inflation							
Dickey-Fuller test for unit root Number of obs = 37 Variable: change_inflation Number of lags = 0								
H0: Random walk without drift, d = 0								
			Dickey-Fuller					
	Test		critical value					
	statistic	1%	5%	10%				
Z(t)	-5.075	-3.668	-2.966	-2.616				

acKinnon approximate <i>p</i> -value for Z(t) = 0.1465. dfuller change_gap ickey-Fuller test for unit root Number of obs = 38 ariable: change_gap Number of lags = 0 0: Random walk without drift, d = 0 Cickey-Fuller Test critical value statistic 1% 5% 10%					
ariable: gap Number of lags = 0 0: Random walk without drift, d = 0 $\begin{array}{c} & Dickey-Fuller \\ Test \\ statistic \\ 1\% \\ 5\% \\ 10\% \\ \hline \\ Z(t) \\ -2.383 \\ -3.655 \\ -2.961 \\ -2.613 \\ \hline \\ acKinnon approximate p-value for Z(t) = 0.1465. \\ \hline \\ dfuller change_gap \\ \hline \\ ickey-Fuller test for unit root \\ ariable: change_gap \\ \hline \\ \\ 0: Random walk without drift, d = 0 \\ \hline \\ \\ Test \\ statistic \\ 1\% \\ 5\% \\ 10\% \\ \hline \\ Z(t) \\ -4.860 \\ -3.662 \\ -2.964 \\ -2.614 \\ \hline \end{array}$. dfuller	gap			
ariable: gap Number of lags = 0 0: Random walk without drift, d = 0 $\begin{array}{c} & Dickey-Fuller \\ Test \\ statistic \\ 1\% \\ 5\% \\ 10\% \\ \hline \\ Z(t) \\ -2.383 \\ -3.655 \\ -2.961 \\ -2.613 \\ \hline \\ acKinnon approximate p-value for Z(t) = 0.1465. \\ \hline \\ dfuller change_gap \\ \hline \\ ickey-Fuller test for unit root \\ ariable: change_gap \\ \hline \\ \\ 0: Random walk without drift, d = 0 \\ \hline \\ \\ Test \\ statistic \\ 1\% \\ 5\% \\ 10\% \\ \hline \\ Z(t) \\ -4.860 \\ -3.662 \\ -2.964 \\ -2.614 \\ \hline \end{array}$	Dickev-Fu	ller test for unit	root	Number of	obs = 39
0: Random walk without drift, d = 0 Dickey-Fuller Test critical value statistic 1% 5% 10% Z(t) -2.383 -3.655 -2.961 -2.613 acKinnon approximate <i>p</i> -value for $Z(t)$ = 0.1465. dfuller change_gap ickey-Fuller test for unit root Number of obs = 38 ariable: change_gap Number of lags = 0 0: Random walk without drift, d = 0 Mumber of lags = 0 Mumber of lags Mumber of lags = 0 Mumber o				Number of	lags = 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					J
Testcritical valuestatistic1%5%10% $Z(t)$ -2.383-3.655-2.961-2.613acKinnon approximate p -value for $Z(t)$ = 0.1465.dfuller change_gapdfuller change_gapickey-Fuller test for unit root ariable: change_gapNumber of obs = 38 Number of lags = 00: Random walk without drift, d = 0Dickey-Fuller critical valueTest $ Test$ $ statistic$ 1% $2(t)$ -4.860 -3.662 -2.964 -2.614	10: Randoi	n walk without dri	.ft, d = 0		
statistic1%5%10% $Z(t)$ -2.383 -3.655 -2.961 -2.613 acKinnon approximate p -value for $Z(t)$ $= 0.1465$.dfuller change_gapdfuller change_gapickey-Fuller test for unit rootNumber of obsariable: change_gapNumber of lags0: Random walk without drift, d = 0Dickey-FullerTeststatistic1%5%10% $Z(t)$ -4.860 -3.662 -2.964 -2.614					
Z(t)-2.383-3.655-2.961-2.613acKinnon approximate p-value for Z(t) = 0.1465.dfuller change_gapickey-Fuller test for unit root ariable: change_gapNumber of obs = 38 Number of lags = 00: Random walk without drift, d = 0Dickey-Fuller critical value 5%Test statistic 1% 5%10%Z(t)-4.860-3.662-2.964-2.614		Test		critical value	
acKinnon approximate p -value for Z(t) = 0.1465.dfuller change_gapickey-Fuller test for unit rootNumber of obs = 38ariable: change_gapNumber of lags = 00: Random walk without drift, d = 0Dickey-FullerTestcritical value10%Z(t)-4.860-3.662-2.964-2.614		statistic	1%	5%	10%
dfuller change_gap ickey-Fuller test for unit root Number of obs = 38 ariable: change_gap Number of lags = 0 0: Random walk without drift, d = 0 Critical value Test Test Test The critical value 10% statistic 1% 5% 10% Z(t) -4.860 -3.662 -2.964 -2.614	Z(t)	-2.383	-3.655	-2.961	-2.613
ickey-Fuller test for unit root ariable: change_gap 0: Random walk without drift, d = 0 Test critical value statistic 1% 5% 10% Z(t)4.8603.6622.9642.614	1acKinnon	approximate <i>p</i> -val	ue for Z(t)) = 0.1465.	
ariable: change_gap Number of lags = 0 0: Random walk without drift, d = 0 Test Critical value statistic 1% 5% 10% Z(t) -4.860 -3.662 -2.964 -2.614	. dfuller	change_gap			
0: Random walk without drift, d = 0 Dickey-Fuller Test critical value statistic 1% 5% 10% Z(t) -4.860 -3.662 -2.964 -2.614	Dickey-Fu	ller test for unit	root	Number of	obs = 38
Dickey-Fuller Test ————————————————————————————————————	/ariable:	change_gap		Number of	lags = 0
Test critical value statistic 1% 5% 10% Z(t) -4.860 -3.662 -2.964 -2.614	10: Rando	n walk without dri	.ft, d = 0		
statistic 1% 5% 10% Z(t) -4.860 -3.662 -2.964 -2.614				Dickey-Fuller	
Z(t) -4.860 -3.662 -2.964 -2.614		Test		critical value	
		statistic	1%	5%	10%
acKinnon approximate <i>p</i> -value for Z(t) = 0.0000.	Z(t)	-4.860	-3.662	-2.964	-2.614
	lacKinnon	approximate <i>p</i> -val	ue for Z(t)) = 0.0000.	

Regression: model 1 (undifferenced)

. regress char	nge_inflation	gap					
Source	ss	df	MS	Numb	er of obs	=	38
				- F(1,	36)	=	4.35
Model	.001633822	1	.001633822	Prob	> F	=	0.0442
Residual	.013531228	36	.000375867	/ R-sq	uared	=	0.1077
				- Adj	R-squared	=	0.0830
Total	.01516505	37	.000409866	Root	MSE	=	.01939
change_inf~n	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
gap	0053189	.0025511	-2.08	0.044	0104928	8	0001449
_cons	0026017	.0031452	-0.83	0.414	008980	5	.003777

Regression: model 1	(first differenced)
---------------------	---------------------

			1				
. regress dif	f_inflation ch	ange_gap					
Source	SS	df	MS		r of obs	=	37
				- F(1,	35)	=	23.75
Model	.010424439	1	.010424439	Prob	> F	=	0.0000
Residual	.015360448	35	.00043887	/ R-squ	ared	=	0.4043
				- AdjR	-squared	=	0.3873
Total	.025784887	36	.000716247	' Root	MSE	=	.02095
diff_infla~n	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
change_gap	016685	.0034235	-4.87	0.000	023635	1	009735
_cons	.0003376	.0034478	0.10	0.923	006661	8	.007337

Regression: model 2 (undifferenced)

. regress inflation inflation_1 gap									
Source	ss	df	df MS		fobs =	38			
				• F(2, 35)	=	93.90			
Model	.047343111	2	.023671555	1555 Prob > F		0.000			
Residual	.008822937	35	.000252084	R-squared	= k	0.8429			
				- AdjR-squ	uared =	0.8339			
Total	.056166048	37	.001518001	Root MSE	=	.01588			
inflation	Coefficient	Std. err.	t	P> t [9	95% conf.	interval]			
inflation_1	.665301	.0774453	8.59	0.000 .5	5080786	.8225234			
gap	0110051	.002469	-4.46	0.000(0160174	0059927			
_cons	.010317	.0039459	2.61	0.013 .0	0023065	.0183276			

Regression: model 2 (first differenced)

Source SS df MS Number	of obs = 37
F(2, 3	4) = 16.74
Model .007503286 2 .003751643 Prob >	F = 0.0000
Residual .007620244 34 .000224125 R-squa	red = 0.4961
Adj R_	squared = 0.4665
Total .015123531 36 .000420098 Root M	SE = .01497
change_inflation Coefficient Std. err. t P>	t [95% conf. interval]
change_inflation_1 .2609541 .1257593 2.08 0.0	46 .0053803 .5165278
change_gap0141197 .0024851 -5.68 0.0	0001917020090693
_cons0011983 .0024777 -0.48 0.6	320062336 .003837

Structural break test

. eststo: estat sbs 1 	single, breakva	ars(inflation_:
		1
• • • • • • • • • • • • <u>• • • • • • • </u>		4
	•••••	
	- 1 karala Uala	
Test for a structur		lown break date
Full sample: 198		
Trimmed sample: 198		
Estimated break dat	te: 1996	
H0: No structural b	reak	
ne. No structurat t	JIEak	
	Number o	of obs = 38
Test	Statistic	p-value
Supremum Wald	20.4756	0.0002
Coefficients incluc (est2 stored)	ied in test: ir	IT LATION_I
(est2 stored) . estat sbsingle, s	wald awald alr	breakvars(inf)
(est2 stored)	wald awald alr	breakvars(inf)
(est2 stored) . estat sbsingle, s	wald awald alr 2 — 3 —	breakvars(inf] 4
(est2 stored) . estat sbsingle, s 1	wald awald alr 2 — 3 — al break: Unkno	breakvars(inf] 4
(est2 stored) . estat sbsingle, s 1 Test for a structur	wald awald alr 2 — 3 — al break: Unkno 3 thru 2020	breakvars(inf] 4
(est2 stored) . estat sbsingle, s 1 Test for a structur Full sample: 198	wald awald alr 2 — 3 — al break: Unkno 3 thru 2020	breakvars(inf] 4
(est2 stored) . estat sbsingle, s 1 Test for a structur Full sample: 198	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015	breakvars(inf] 4
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak	breakvars(inf] ॑॓ 4 ── ॑
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak	breakvars(inf] 4
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of	breakvars(inf] 4 own break date f obs = 38
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of	breakvars(inf] ॑॓ 4 ── ॑
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of	breakvars(inf] 4 own break date f obs = 38
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of Statistic	breakvars(infl
(est2 stored) • estat sbsingle, s • • • • 1 • • • • • • • • • • • • • • •	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak	breakvars(inf] ॑॓ 4 ── ॑
(est2 stored) estat sbsingle, s 1	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of	breakvars(inf] 4 own break date f obs = 38
(est2 stored) • estat sbsingle, s 	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of Statistic	breakvars(infl
(est2 stored) • estat sbsingle, s 	wald awald alr 2 — — 3 — al break: Unkno 3 thru 2020 9 thru 2015 reak Number of Statistic 20.4756	breakvars(infl

_1)

Regression after accounting for structural break

. regress change_inflation change_inflation_1 change_gap if year<=1995									
Source		SS	df M	S	Number of obs	s =	12		
					F(2, 9)		5.58		
Model	.00	2015519	2 .00100	7759	Prob > F		0.0265		
Residual	.00	1623993	9 .00018	0444	R-squared	=	0.5538		
					Adj R-squared	= t	0.4546		
Total	.003	3639512	11 .00033	0865	Root MSE		.01343		
change_infla	ation	Coefficient	Std. err.	t	P> t	[95% co	onf. interval]		
change_inflat:	ion_1	.3914429	.2212656	1.77	0.111 -	109094	6 .8919805		
change	e_gap	0170403	.0059979	-2.84	0.019 -	030608	6003472		
-	_cons	0009589	.0039085	-0.25	0.812 -	009800	.0078828		

. regress change_inflation change_inflation_1 change_gap if year>=1996									
Source		SS	df	M	5	Number of c	bs	=	25
						F(2, 22)		= 1	0.47
Model	.00	5571273	2	.00278	5636	Prob > F		= 0.	0006
Residual	.00	5855095	22	.00026	5141	R-squared		= 0.	4876
						Adj R-squar	ed	= 0.	4410
Total	.01	1426368	24	.00047	5099	Root MSE		= .0	1631
change_infla	ation	Coefficient	Std	. err.	t	P> t	[95	% conf.	interval]
change_inflat:	ion_1	.2089118	.15	99092	1.3	1 0.205	12	27196	.5405432
change	e_gap	0134444	.00	29453	-4.5	6 0.000	01	95527	0073361
-	_cons	001474	.0	03299	-0.4	5 0.659	00	83157	.0053677