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1 Introduction 
 
Unaccompanied vocal music plays a central role in western culture but it requires excellent 
skill on the part of singers to achieve proper intonation. Even among professionals, the intended 
intonation is rarely achieved (Dai et al. 2015), rather, singers tend to sing marginally lower 
(flat) or higher (sharp). This becomes especially important in the context of a cappella choir 
music, where poor intonation can cumulatively result in unintended frictions and the 
disintegration of harmonies. Besides individual skill, experience and frequency of practice 
affecting pitch accuracy, singers will rely on points of reference (Mauch et al. 2014), which in 
the absence of instrumental support consist of the singers surrounding them (Alldahl 2006). 
This means that on occasion it may be advantageous to the overall choir quality to deviate from 
the intended pitch and reduce pitch variance between singers, and thus, on occasion, we observe 
entire choirs going sharp and flat. Based on these observations, we aim to create a game theory 
based model that explains behaviourally, how it is that choirs go out of tune, using the facts of 
biological randomness in the formation of vocal sounds, imperfect memory, and that singers 
cross-reference. 

 

2 Theoretical Background 

2.1 Determinants of Pitch Accuracy 

It is widely accepted that perfect pitch is rarely achieved due to biological constraints in the 
formation of vocal sounds (Alldahl 2006). Further, skill and experience seem to improve choir 
quality, Dai et al. (2015) find a strong correlation between pitch accuracy and self-reported 
skill. Another area of inquiry regards the effects of imperfect memory of the practiced pitch on 
pitch production. When provided with a reference pitch, Mauch et al. (2014) find that singers 
will remedy their uncertainty by factoring in that reference pitch into their pitch production. 
This way, perturbances in the reference pitch affect intonation even after their initial 
occurrence.  

2.2 Link to Economics 

The approaches of game theory and statistical modelling used in this paper are the same 
underlying the modern theories of economics and repeated games in particular have vast 
applications, for instance in modelling the behaviour of financial markets. The fact that these 
seemingly specific approaches can be used effectively in the context of choir intonation, a field 
of inquiry perhaps as distant from economics as they come, goes to show the breadth of 
applications of economic tools. 

 
 
 
 
 



3 Modelling 
 
We will model choir intonation over time, by first establishing the singers as utility 
maximising, or rather loss minimising, entities in the face of imperfect pitch memory. We then 
introduce individual and biological randomness, add a time structure to memory itself, and 
finally construct a determined system based on backward-looking behaviour. 
 
3.1 Definitions 
In the following, a “choir” are 𝑁 homogenous singers 𝑖 = 1,2,3, … , 𝑁 that have to sing the 
same melody of 𝑇 notes 𝑛!∗ , 𝑛#∗ , … , 𝑛$∗ . In the context of deficiencies in memory and biological 
randomness, we will further define 𝑝%& as singer 𝑖’s targeted pitch at note 𝑡 and 𝑠%& as the 
realisation of the 𝑡th note. Lastly, by drift or pitch error we mean the deviation 𝑒%& = 𝑠%& − 𝑛&∗. 
 
3.1a Metrics 
In our analysis, we make use of the measure of “cent” used in the file type MIDI2. We relate 
the fundamental frequency 𝑓' to musical pitch 𝑝 in cents in the following way 

 
𝑝 = 6900 + 1200 log#

(!
))'

  
 

This way, a drift of +100 cents means going sharp by one semitone. In our analysis, we further 
use the mean of the squared pitch errors as a measure of dissonance in the choir 
  

𝑀𝑆𝑃𝐸& =
!
*
∑ 𝑒%&#*
%+!   

 
3.2 Pitch Production  
 
3.2a Pitch Memory and Preferences 
The main reason that choirs go out of tune is that individual singers have imperfect pitch 
memory. This way, the singers’ targeted pitch will be affected, when the singer is provided 
with a reference pitch (Mauch et al. 2014). And in the context of a cappella choir singing, the 
singers’ reference pitches are the impression they gain from the other singers. In particular, 
reference pitch 𝑟%& can be said to be singer 𝑖’s expectation of what the others’ average pitch 
realisation will be at note 𝑡, so 
 

𝑟%& =
!

*,!
∑ 𝑠-&.-/%   

 
Here, we adopt the concept of pitch memory introduced by Mauch et al., using the measure 
𝜇 ∈ [0,1], where 𝜇 = 0 means no memory, or full reliance on the reference pitch, while 𝜇 = 1 
means absolute or perfect memory and so no reliance on a reference pitch whatsoever.  
 

 
2 See Vurma and Ross (2006), and White (1999) for more detail. 



Using this, singers can be said to target both the precise pitch, and the reference pitch 
simultaneously, weighted by their pitch memory and will therefore derive disutility from 
deviation from the actual pitch over their active memory, and from the reference pitch, where 
they are uncertain. As it is reasonable to assume that singers also care about the choir sounding 
good after spending months practicing a song, we add the disutility singers experience from 
the realised total dissonance among the other singers as a further quantification. Hence, we 
define the loss of singer 𝑖 at the 𝑡th note as 

 
𝐿%& = 𝜇(𝑝%& − 𝑛&∗)#+(1 − 𝜇)(𝑝%& − 𝑟%&)# + ∑ E𝑠-& − 𝑛&∗F

#
-/%   

 
Given the particular loss function above, singer i’s best response is then to target (see Appendix 
6.1) 

𝑝%& = 𝜇𝑛&∗ + (1 − 𝜇)𝑟%&, 
 
which directly replicates the model by Mauch et al. for our case. 
 
3.2b Realised Pitch 
Due to the biological nature of vocal singing, however, we have to make a distinction between 
the pitch, singers target and the pitch realisation that results. The realised pitch is to some extent 
inherently random. This is also, why experience and skill matter: among other things, training 
increases accuracy by reducing random errors. For the pitch realisation 𝑠%&, we therefore add to 
the targeted pitch a Gaussian pitch error 𝜖%&	~	𝑁(0, 𝜎%#), which captures these biological 
imperfections, as well as other individual characteristics, such as skill3, and will likely also 
increase with the complexity of the song itself. So, 
 

𝑠%& = 𝑝%& + 𝜖%& 
 

Due to the cross-referencing described above, individual perturbances will be picked up by the 
other singers thus are the reason that we observe a cappella choirs going out of tune in the real 
world. 
 
3.3 The Time Structure of Pitch Memory 
A cappella choirs are typically given an initial note or chord on an instrument, typically on a 
piano, organ or tuning fork. This essentially provides singers with an exact reference pitch, i.e.  
 

𝑟%! = 𝑛!∗, so 𝑝%! = 𝑛&∗. 
 
Over time, the memory of that perfect initial reference pitch will diminish and for their targeted 
pitch, singers have to increasingly rely on their individual sense of musical temperament, i.e. 
their individual pitch memory, which is improved mainly through practice but will also affected 
by other individual characteristics, such as skill and experience. 

 
3 Mauch et al. find mean absolute deviations of 0.6 semitones for self-declared amateur singers and 0.3 
semitones for self-declared professional singers. 



 
The initial chord or note essentially decreases reliance on a reference pitch, as the reference 
itself now contains an accurate sense of the actual note 𝑛&∗ that decreases over time. For this 
reason, we can say that it is pitch memory itself that has a time structure. In particular, 𝜇& = 1, 
i.e. perfect pitch memory, at 𝑡 = 1 and eventually 𝜇& = �̅�, the individual sense of musical 
temperament, when 𝑡 ≫ 1. We model this as exponential decay, with 1 as the intercept and �̅� 
as the asymptote, using 𝛼 > 0 as a measure of the rate of memory decline. 
 

𝜇& = (1 − �̅�)𝑒,0(&,!) + �̅� 
 

 
Figure 1: An example of the time path of pitch memory with �̅� = 0.8 and 𝛼 = 1. 

 
 
3.4 The Repeated Game 
The choir game will therefore have the following structure. At the first note, singers have 
perfect memory (𝜇! = 1), so their targeted pitch is 𝑝%! = 𝑛!∗ and we expect all drift to come 
from random disturbances due to individual and biological characteristics, i.e.  
 

𝑒%! = 𝜖%!	~	𝑁(0, 𝜎%#). 
 

For the notes following the first, 𝜇& < 1, so singers will in part rely on their impression of what 
the remaining singers’ realisations are. Since singers will certainly not be affected by future 
realisations, singers will only factor in present and previous realisations, and therefore are at 
least in part backward looking. Because the most recent and informative reference that singer 
𝑖 has, is the perception of the others’ drifts one note prior, 𝑒-,&,!, 𝑖’s estimation of 𝑗’s realisation 
𝑠-&. , can be said to factor in this exact deviation plus some bias 𝑏%-& that captures other factors 
influencing pitch estimation, such as interval size in the melody (e.g. if 𝑖 has a tendency to 
underestimate intervals), perceived relative skill (e.g. 𝑖 is an amateur and knows that 𝑗 is 
professional), distance between the singers, and ear training (ability to recognise pitch)4. 
 

𝑠-&. = 𝑛&∗ + 𝑒-,&,! + 𝑏%-&, 𝑗 ≠ 𝑖 
 
Or in terms of the reference pitch (see Appendix 6.2),  

 
4 According to Alldahl, singers are more likely to go flat than sharp. This tendency could be modelled by having 
a negative bias. 



 
𝑟%& = 𝑛&∗ + �̅�,%,&,! + 𝑏%&, 𝑏%& =

!
*,!

∑ 𝑏%-&-/%  
 
Where �̅�,%,&,! is the average drift of the others realised at the previous note. For our model, by 
assumption of homogeneity and for simplicity, we say 𝑏%-& = 0, without affecting the 
qualitative results, so ceteris paribus, singers are only influenced by the average drift of the 
others they perceived one note prior. From this, we get the full expression for singer 𝑖’s pitch 
realisation at note 𝑡 (see Appendix 6.2). 
 

𝑠%& = 𝑛&∗ + (1 − 𝜇&)�̅�,%,&,! + 𝜖%& 
 
And for the realised drift 𝑒%& = (1 − 𝜇&)�̅�,%,&,! + 𝜖%&. 
 
3.5 Results 
 
3.5a Qualitative Results 
Given the particular disturbances 𝜖%&, we can construct a determined system, which takes the 
form (see Appendix 6.3) 
 

𝒆𝒕 = ∑ 𝑨"𝝐𝒕$𝒋
(*,!)"

&,!
-+! ∏ (1 − 𝜇&,7)

-,!
7+' + 𝝐𝒕, 𝒆𝟏 = 𝝐𝟏  

 

With 𝒆𝒕 = V
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𝑒#&
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 and 𝝐𝒕 = V

𝜖!&
𝜖#&
⋮
𝜖𝑁𝑡

W. 

 
From this we can derive the variance of individual drift over time (see Appendix 6.3), which, 
in combination with the fact that 𝐸[𝑒%&] = 0, we can use to construct confidence intervals, 
which attach a probability to drift being contained in a certain interval about 0 (see Figure 2). 

 
𝑉𝑎𝑟(𝑒%&) = 𝜎#(1 + ∑ !

(*,!)"
&,!
-+! ∏ (1 − 𝜇&,7)#

-,!
7+' )  

 
We find that the drift confidence intervals get tighter with skill (through 𝜎%#), practice (through 
the sense of musical temperament �̅�), and with the number of singers (see Appendix 6.4). We 
also find that the confidence intervals for drift only increase a little initially and eventually 
stabilise. The first two results, we would intuitively expect. The fact that more singers improve 
the variance is a consequence of singers factoring in the average pitch drift of the others, which, 
as numbers increase, is more likely close to 0. This assumes that all singers equally affect 
individual drift, however. The last result, though not directly intuitive, is also representative of 
the real world. If the variance were to increase without bounds, this would mean that over time, 
choir singing becomes very volatile, something that we do not observe. Rather, individual 



singers will always in part have the tendency to be on pitch as this is what they practiced and 
so, through cross-referencing, choir quality will stabilise. 
 

 
Figure 2: The 68% (blue), 95% (orange) and 99% (green) confidence intervals of individual drift over time for different 
parameters (left: �̅� = 0.2, 𝑁 = 4; middle: �̅� = 0.8, 𝑁 = 4; right: �̅� = 0.2, 𝑁 = 20) 

 
3.5b Using the Model, an Example: Choir Goes Sharp at the 5th Note 
Here, we show how the model can be applied. We consider the case of 𝑁 = 4 amateur singers 
with 𝜎% = 735 that have to sing the melody 𝑛∗ = (𝑛!∗ , 𝑛#∗ , … , 𝑛$∗ ). Further, we say that we are 
modelling choir quality during a practice session before performance, where the individual 
sense of temperament is low, at �̅� = 0.5.  
 
Say that, at note 𝑡 = 5, two singers go sharp by 70 cents each (0.7 semitones). With 𝜎% = 73, 
the probability of a singer drifting by more than 70 cents per singer is ~17%, so approximately 
once every five notes. 
 
𝑡 = 5  𝑒!,9 = 0 𝑒#,9 = +70 𝑒:,9 = +70 𝑒),9 = 0 𝑀𝑆𝑃𝐸

= 2450 
 
Then, using 𝐸%&[𝑒%&] = 𝐸f𝑒%&|�̅�,%,&,!h = (1 − 𝜇&)�̅�,%,&,!, i.e. assuming no further disturbances, 
and assuming 𝛼 = 1, we get 
 
Note (𝑡) 𝐸!&[𝑒!&] 𝐸#&[𝑒#&] 𝐸:&[𝑒:&] 𝐸)&[𝑒)&] 𝑀𝑆𝑃𝐸 
6 23.1761146 11.5880573 11.5880573 23.1761146 337.15031 
7 7.74314954 9.67273127 9.67273127 7.74314954 76.6550475 
8 4.50911842 4.18762935 4.18762935 4.50911842 18.9432993 
9 2.14782038 2.20139528 2.20139528 2.14782038 4.72889055 
10 1.09160406 1.08267532 1.08267532 1.09160406 1.18195516 
… … … … … … 

 
5 Based on the finding by Mauch et al. that for amateur singers the mean absolute deviation 𝑑 is 60 cents, and 
for normal distributions, 𝑑 = #2𝜎&/𝜋. 
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Since deviations of as low as one cent can be perceived by humans6, ceteris paribus the initial 
disturbance results in the choir going audibly sharp for the following periods. In the real world, 
we indeed observe choirs going sharp like this and our model now provides a way of 
behaviourally explaining, how this might come about. 
 
 
4 Conclusion 
 
We have created a simple model of a cappella choir singing for the case of backward-looking 
homogenous singers with the same melody. For this, we have made use of methods usually 
applied in an economic context to analyse, why choirs go out of tune. We think, this goes to 
show that these methods, because they were initially constructed to describe basic human 
behaviour quantitively, are indeed descriptive outside of the economic context and perhaps 
fundamental in some way. For future work, a more compelling model of choir singing will 
relax our assumptions and factor in heterogeneities, most notably the effects of different 
registers (Soprano, Alt, Tenor, Bass) on pitch production. Further areas of research include the 
effect of just-noticable frequency differences, harmonic tension, and continuous time. 
 

Word count: 2097 
 
6 Appendix 
 
6.1 Best Response 
 
The loss function is 
 
𝐿%& = 𝜇(𝑝%& − 𝑛&∗)#+(1 − 𝜇)(𝑝%& − 𝑟%&)# + ∑ E𝑠-& − 𝑛&∗F

#
-/%   

 
This is minimised, where 
 
;<'(
;='(

= 0. 

 
So, where 
 
;<'(
;='(

= 2𝜇(𝑝%& − 𝑛&∗) + 2(1 − 𝜇)(𝑝%& − 𝑟%&) = 0. 

 
Rearranging gives the best response 
 

 
6 See Pierce (1983) for a breakdown of just-noticable differences given different signal strengths and frequency 
ranges. 



𝑝%& = 𝜇𝑛&∗ + (1 − 𝜇)𝑟%&. 
 
6.2 Reference Pitch and Pitch Realisation under Backward Looking Behaviour 
 
Using 𝑠-&. = 𝑛&∗ + 𝑒-,&,! + 𝑏%-& and 𝑟%& =

!
*,!

∑ 𝑠-&.-/% ,  
 
𝑟%& =

!
*,!

∑ 𝑛&∗ + 𝑒-,&,! + 𝑏%-&-/% = 𝑛&∗ +
!

*,!
∑ 𝑒-,&,!-/% + 𝑏%&  

= 𝑛&∗ + �̅�,%,&,! + 𝑏%&, with 𝑏%& =
!

*,!
∑ 𝑏%-&-/%  

 
Since, 𝑠%& = 𝜇𝑛&∗ + (1 − 𝜇)𝑟%& + 𝜖%&, we get 𝑠%& = 𝑛&∗ + (1 − 𝜇)�̅�,%,&,! + 𝜖%& and 
𝑒%& = 𝑠%& − 𝑛&∗ = (1 − 𝜇)�̅�,%,&,! + 𝜖%&  
 
6.3 Dynamic System 
 
By assumption, 𝑠%& = 𝜇𝑛∗ + (!,>()

*,!
∑ (𝑛&∗ + 𝑒-,&,!)-/% + 𝜖%&, so  

 

𝑒%& = 𝑠%& − 𝑛&∗ =
(1 − 𝜇&)
𝑁 − 1 i𝑒-,&,!

-/%

+ 𝜖%& 

 
With 𝜇& = (1 − �̅�)𝑒,0(&,!) + �̅�. 
 
The system therefore takes the form 
 

𝒆𝒕 =
1 − 𝜇&
𝑁 − 1 𝑨𝒆𝒕,𝟏 + 𝝐𝒕 

 

With 𝒆𝒕 = V
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 and 𝝐𝒕 = V

𝜖!&
𝜖#&
⋮
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Given 𝒆𝟏 = 𝝐𝟏, as 𝜇! = 1, for 𝑡 > 1, we get 
 

𝒆𝒕 =i
𝑨-𝝐𝒕,𝒋
(𝑁 − 1)-

&,!

-+!

j(1− 𝜇&,7)
-,!

7+'

+ 𝝐𝒕 

 
Then, given 𝜖%&	~	𝑁(0, 𝜎%#),  
 

𝐸[𝒆𝒕] = 0 



 
The Gaussian pitch errors are independent, so for 𝑡 > 1 
 

𝑉𝑎𝑟(𝒆𝒕) =i
1

(𝑁 − 1)#-

&,!

-+!

j(1− 𝜇&,7)#
-,!

7+'

𝑉𝑎𝑟E𝑨-𝝐𝒕,𝒋F + 𝑉𝑎𝑟(𝝐𝒕) 

 
Lastly by assumption of homogeneity, 𝑉𝑎𝑟(𝜖%&) = 𝜎%# = 𝜎#, so we get 
 
𝑉𝑎𝑟(𝒆𝟏) = 𝝈𝟐 

𝑉𝑎𝑟(𝒆𝒕) = 𝝈𝟐 l1 + ∑ !
(*,!)"

&,!
-+! ∏ (1 − 𝜇&,7)#

-,!
7+' m , 𝑡 > 1, where 𝝈𝟐 = V

𝜎#
𝜎#
⋮
𝜎#
W 

 
Or, 𝑉𝑎𝑟(𝑒%&) = 𝜎#(1 + ∑ !

(*,!)"
&,!
-+! ∏ (1 − 𝜇&,7)#

-,!
7+' ) 

 
6.4 Effect of Changes in Parameters on Variance 
 
Variance decreases with increases in the number of singers in periods following the first: 
 
;ABC(D'()

;*
= 0, 𝑡 = 1  

;ABC(D'()
;*

= −𝜎#∑ !
(*,!)"$)

&,!
-+! ∏ (1 − 𝜇&,7)#

-,!
7+' < 0, 𝑡 > 1   

 
Variance decreases with an increased sense of musical temperament (practice) in periods 
following the first: 
 
 
;ABC(D'()

;>E
= 0, 𝑡 = 1  

 
Using (1 − 𝜇&) = (1 − �̅�)(1 − 𝑒,0(&,!)), 
 
;ABC(D'()

;>E
= −𝜎#∑ #-(!,>E)*"$)

(*,!)"
&,!
-+! ∏ E1 − 𝑒,0(&,7,!)F#-,!

7+' < 0, 𝑡 > 1, as 1 − �̅� ≥ 0   

 
Variance decreases with increased skill (𝜎 ↓) in all periods: 
 
;ABC(D'()
,;F*

= −1, 𝑡 = 1  
 
;ABC(D'()
,;F*

= −l1 + ∑ !
(*,!)"

&,!
-+! ∏ (1 − 𝜇&,7)#

-,!
7+' m < 0, 𝑡 > 1  
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