Fracture Toughness and Brittleness of the Mancos Shale, Utah.

M. Chandler1,*, P. Meredith1, B. Crawford2

1 UCL Earth Sciences, Gower Street, London, WC1E 6BT
2 ExxonMobil URC, 3120 Buffalo Speedway, Houston, TX 77098
*(mike.chandler.10@ucl.ac.uk)

Fracture toughness is a measure of a material’s resistance to dynamic crack propagation. For linear elastic materials it is defined by the critical stress intensity factor, K_{Ic}, beyond which catastrophic crack growth occurs. For materials which deviate from linear elasticity, cyclic loading of the specimen can be used to calculate the brittleness corrected Fracture toughness, K_{Ic}^ν.

Fracture Toughness is an important control in the hydraulic fracturing of Gas-Shales, which have become a topic of interest since the US Shale Gas "Revolution". The mechanical properties of Shales remain poorly constrained, with a wide range of reported property values. There is an extreme paucity of published data on the fracture toughness of soft sediments such as shales.

K_{Ic}^ν values and a variety of supporting measurements have been made for the Mancos Shale in the three principle Mode-I crack orientations using a modified Short-Rod sample geometry. A very substantial anisotropy is observed in the loading curves and K_{Ic}^ν values for the three crack orientations (Arrester, Divider and Short-Transverse). The measured brittleness correction factor for Mancos Shales are higher than for any other rocks we have found in the literature, implying that the material is extremely non-linear.