Discovery: Algorithms are not enough

Mounia Lalmas
Yahoo

mounia@acm.org
Outline

We develop and deploy discovery algorithms to “engage” users.

• User engagement

• Engaging through diversity: serendipity

• Engaging through diversity: awareness
Outline

We develop and deploy discovery algorithms to “engage” users

- User engagement
- Engaging through diversity: serendipity
- Engaging through diversity: awareness
What is user engagement?

User engagement is a quality of the user experience that emphasizes the positive aspects of interaction – in particular the fact of being captivated by the technology (Attfield et al, 2011).

- **user feelings**: happy, sad, excited, …
- **user mental states**: flow, presence, immersion, …
- **user interactions**: click, read, comment, buy…

emotional, cognitive and behavioural connection that exists, at any point in time and over time, between a user and a technological resource

(O’Brien, Lalmas & Yom-Tov, 2013)
Characteristics of user engagement

Endurability
(Read, MacFarlane, & Casey, 2002; O'Brien, 2008)

Motivation, interests, incentives, and benefits
(Jacques et al., 1995; O'Brien & Toms, 2008)

Focused attention
(Webster & Ho, 1997; O'Brien, 2008)

Positive Affect
(O'Brien & Toms, 2008)

Aesthetics
(Jacques et al., 1995; O'Brien, 2008)

Novelty
(Webster & Ho, 1997; O'Brien, 2008)

Reputation, trust and expectation
(Attfield et al, 2011)

Richness and control
(Jacques et al., 1995; Webster & Ho, 1997)

(O'Brien, Lalmas & Yom-Tov, 2013)
Outline

We develop and deploy discovery algorithms to “engage” users

- User engagement
- Engaging through diversity: serendipity
- Engaging through diversity: awareness

(Bordini, Mejova & Lalmas, 2013)
Use case: Entity search

Yahoo! search for "Barcelona, Spain"
Engaging through serendipity

Yahoo! Answers
community-driven question & answer portal
- 67 336 144 questions & 261 770 047 answers
- January 1, 2010 – December 31, 2011
- English-language

Wikipedia
community-driven encyclopedia
- 3 795 865 articles
- as of end of December 2011
- English Wikipedia

Entity Search
build an entity-driven serendipitous search system based on entity networks extracted from Wikipedia and Yahoo! Answers

Serendipity
finding something good or useful while not specifically looking for it, serendipitous search systems provide relevant and interesting results
Engaging through serendipity

Yahoo! Answers
community-driven question & answer portal
- 67,336,365 questions
- 261,770,047 answers
- January 1, 2010 – December 31, 2011
- English-language

Wikipedia
community-driven encyclopedia
- 3,795,865 articles
- as of end of December 2011
- English

Entity Search
build an entity-driven serendipitous search system based on entity networks extracted from Wikipedia and Yahoo! Answers

Serendipity
finding something good or useful while not specifically looking for it, serendipitous search systems provide relevant and interesting results
retrieve entities most related to a query entity using random walk
Serendipity "making fortunate discoveries by accident"

Serendipity = unexpectedness + relevance

"Expected" result baselines from web search

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Data</th>
<th>Relevant & unexpected / Unexpected</th>
<th>Number of serendipitous results out of all of the unexpected results retrieved</th>
<th>Relevant & unexpected / Retrieved</th>
<th>Serendipitous out of all retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top: 5 entities that occur most frequently in top 5 search from Bing and Google</td>
<td>WP</td>
<td>0.63 (0.58)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YA</td>
<td>0.69 (0.63)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top – WP: same as above, but excluding Wikipedia page from results</td>
<td>WP</td>
<td>0.63 (0.58)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YA</td>
<td>0.70 (0.64)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel: top 5 entities in the related query suggestions provided by Bing and Google</td>
<td>WP</td>
<td>0.64 (0.61)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YA</td>
<td>0.70 (0.65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel + Top: union of Top and Rel</td>
<td>WP</td>
<td>0.61 (0.54)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YA</td>
<td>0.68 (0.57)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interestingness ≠ Relevance

Interesting > Relevant
- Oil Spill → Penguins in Sweaters WP
- Robert Pattinson → Water for Elephants WP
- Egypt → Ptolemaic Kingdom WP & YA

Relevant > Interesting
- Lady Gaga → Britney Spears WP
- Egypt → Cairo Conference WP
- Netflix → Blu-ray Disc YA

Novelty
Engaging through serendipity

- Engagement in search is to view search activities as part of the current overall task of a user, including task of a leisurely or explorative nature

- We never know what we get if we are ready to explore

(slides based on Bordini presentation @ CIKM 2016)
Outline

We develop and deploy discovery algorithms to “engage” users

- User engagement
- Engaging through diversity: serendipity
- Engaging through diversity: awareness

(Graells-Garrido, Lalmas & Baeza-Yates, 2016)
Twitter is global.

- But we also know that there are **cognitive** and **systemic** biases that shape the behavior of users.
- **What is the effect of those biases and what can we do about it?**

Leetaru et al., 2013.
Context: Chile, a centralized country

- Economic/political/media powers are concentrated in Santiago (the capital).

 Región Metropolitana (RM) is the capital region.

- Twitter activity is centralized – RM receives more tweets from other locations than expected due to population distribution.
Context: Chile, a centralized country

- Chart: flow of tweets activities between administrative regions.

- Does centralization affect how people perceive information, and how people behave when browsing informational content in micro-blogging platforms?

- If so, how can we encourage non-centralized exploration?
To find if centralization affects how people perceive timelines, create a geographically diverse timeline.

- **Proposed Method “PM”**: Information Entropy + Sidelines (enforces location).
- **Baseline “DIV”**: Information Entropy only.
- **Baseline “POP”**: Most popular tweets (mostly tweets from Santiago/RM).

After reading timelines side-by-side, which one is more:

- diverse?
- interesting?
- informative?

Participants answered using a Likert scale from -3 to 3.
Main Result

Statistical interaction between location and condition POP/PM.

RM participants find PM more diverse than POP.

NOT-RM do not.

Being from a central or peripheral location *makes a difference.*

For *peripheral/NOT-RM* users, there was no perception of the diversity present by design on the algorithm!
Algorithms are not enough

• Users do not see the diversity in the timelines because they cannot identify themselves (in the location sense), even though they are present.

• There is a diversity and representation awareness problem.

• How to make users aware of their representation in the timeline, as well as the diversity inherent in it?
• Previous work indicates that clustered representations help users to become aware of the diversity in news aggregators.

• We follow that approach. But in previous work the number of clusters has been small - 2 or 3. In our case, we have **15 clusters**!

• How to depict 15 clusters without introducing positional bias on the screen?
• Inspired by newsmap.jp, we use treemaps to depict differences in a tweet’s geographical origin, as well as giving every location a balanced amount of exposure.

• We also allow users to filter locations by selecting a specific region. Doing so will show only tweets about the specified location.
“In the wild” study

Purpose - to evaluate user involvement with the application as proxy of diversity and representation awareness.

- **Diversity** - do users click on content related to different locations?

- **Representation** - do users choose to see only their location using the filters?

- **Interestingness** - how many interactions with content do users make?

We used a social bot (@todocl) to generate timelines every hour and broadcast them, mentioning featured users, and retweeting their tweets. This allowed us to get users and spread the word.
Experimental Setup

Between-subjects design.
N = 321 (RM = 193, NOT-RM = 128)

Main Results

treemap increases:
- # of interaction events
- # of locations interacted with
- filter likelihood

Users interacted with more content, from more locations, and filtered locations also! (diversity)

Being from RM:
- increases locations interacted with
- decreases filter likelihood

* NOT-RM increases representation awareness - they find themselves!
Engaging through awareness

• Centralization has effects on information perception and user behavior.

• Algorithms are not enough! We need to find **new ways of showing information** to users (not necessarily new techniques – but **new contexts**).

• Clustered representations work to enhance diversity awareness - but how to display clusters depends on cultural and individual differences.

(slides based on Graells-Garrido presentation @ IUI 2016)
Final message

Not every culture has the same notion of relevance and importance in content. Even within a country there are differences. We need algorithms and presentation paradigms.