XClose

Centre for Data Science

Home
Menu

Study Here

UCL is excited to offer a Master’s in Data Analytics for Government. Our course draws upon the deep technical and government-focused expertise of researchers and teaching fellows working across six UCL departments – a breadth which mirrors the multidisciplinary nature of data science, and its application to official statistics.

MSc Data Analytics for Government

MSc Data Analytics for Government

Aims of the Programme

  • To impart deep understanding of, and practical experience in using the current and emerging range of data science tools, techniques, technologies and methodologies that are impacting many sectors of public life, from retail to healthcare, and will come to shape the future of national statistics itself.
  • To supply a robust theoretical framework, covering the essential mathematics, statistics and computational science required to understand the populations from which data are drawn, and to develop and implement effective and efficient algorithms.
  • To instil the importance of good survey design, to ensure that data collected are appropriate for a particular issue of interest.
  • To develop an understanding of how to manage data that are unstructured, varying in format, collected over time and/or space, and to mine data of interest from wider collections.
  • To give students an understanding of the computational infrastructure (hardware and software) that supports data storage, processing and analysis.
  • To hone students’ ability to collect, process, analyse and produce interpretable outputs from data, drawing upon fundamental principles of data storytelling and selecting appropriate tools for visualisation.
  • To enable students to better understand and appreciate the connection between national statistics and government policy, and the new opportunities and the new opportunities data science presents at this interface.

Programme Structure

Students pursue modules to the value of 180 credits. The programme consists of a foundation course (non-credit bearing), eight taught modules; (four compulsory, up to four selected options – totalling 120 credits), and a research dissertation (60 credits) Module titles are given below. As modules on this course have been taken from a range of existing modules which are almost all in operation across UCL already, the UCL module names are given first, with the corresponding ONS module name given in brackets.

Core Modules 
Course Title CreditsTerm
(Statistics in Government) Analytic Methods for Policy 153
(Data Science Foundations) Introduction to Statistical Data Science 151
(Survey Fundamentals) Statistical Design of Investigations 151
(Statistical Programming) Programming for Business Analytics 151
Data Analytics for Government Dissertation60 
Optional Modules (students choose 60 credits from the below)
Course Title Credits Term
 (Introduction to Survey Research) Survey Design  15 
 (Regression Modelling) Statistical Models and Data Analysis  151
 Digital Visualisation 302
(Survey Data Collection) Introduction to Longitudinal Data and Analysis  15 
 (Further Survey Estimation Methods) Statistical Inference  151
(Advanced Statistical Modelling) Selected Topics in Statistics  152
(Time Series Analysis) Forecasting  152
(Spatial Analysis) GIS Mapping and Spatial Stats  151
(Bayesian probabilistic methods) Applied Bayesian Methods  152
Foundations of Machine Learning and Data Science 152
Statistical Computing 151 & 2

*due to capacity limitations, some optional courses may not run every year. Students are advised to choose their options as soon as possible after enrollment.

Modes of Study 

It is anticipated that students will generally pursue the course flexibly over 3-5 years, and will structure their time during their chosen period of study so as to complete all the necessary modules and research dissertation. Guidance on appropriate durations of study can be sought from the course directors, in conjunction with ONS supervisors.

Delivery Format, Teaching and Assessment 

The majority of taught content will be delivered face-to-face in Bloomsbury, London. Some courses will have web-based components (e.g. Moodle pages, links to online resources), but most teaching will be in London. Some teaching is dedicated to practical (computer lab-based) work. Most modules will be assessed by unseen written exams, but certain modules will be assessed significantly or entirely by coursework and/or oral presentations.

Entry requirements

All applications must be made with the approval of the applicant’s line manager (or appropriate supervisor), and a letter of support must be included in the application pack.

Prospective students must also have a minimum of an upper second-class Bachelor’s degree in a quantitative discipline from a UK University, or an overseas qualification of an equivalent standard. Knowledge of mathematical methods and linear algebra at university level and familiarity with introductory probability and statistics is required. Applicants must demonstrate an interest in quantitative scientific investigation and problem solving, and in their application, should highlight their ideas and ambitions for implementing data science methodologies and tools in their civil service work.

Some modules may have specific, advanced mathematical or programming language requirements, which candidates will need to meet. Further guidance is available from the course director Dr Kayvan Sadeghi (k.sadeghi@ucl.ac.uk)

Fees

Projected fees for 2020-2021: £10,455 (for up to five students)

Payment will be made by invoice: once enrolled, students must provide written confirmation of sponsorship from their ONS and their employer. Confirmation must specify the level of contribution in each case. Sponsors are to submit a purchase order to UCL student fees, which will issue invoices for each course taken in proportion to its share of the 180 credits that constitute the total for an MSC. (e.g. A course worth 15 credits will be charged 1/12 of the total fee for the course.) The cost per course charged to the ONS and to each student's employer will be in proportion to the level of their respective contributions.

Deadline for Applications - 28 August 2020
Please note that we will start making decisions on applications from 26th June 2020.

Application Process

Applications have to be submitted online via the UCL web-site  

UCL Online - Graduate Applications