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BIG PICTURE
• Why study exoplanets? To address questions of life, habitability, planet formation, and to advance knowledge in
climate science.

• Ariel Space Telescope: 3 year mission from 2029 to observe exoplanets
• Short mission: Need to turn observation into fitted planetary parameters, fast, so we know which planets are
interesting and should be re-observed

• Fitting parameters to observations: Use complicated forward models, which take of the order of months
to runà this is too slow and will limit what we can learn from Ariel

• Accelerating forward models: Can accelerate components of forward model by replacing physical model with
a machine-learned emulator (or surrogate model)

This work accelerates the radiative transfer component of a physical model, in the test-case of Venus
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ACCELERATING FORWARD MODELS USING MACHINE LEARNING 

1. Simulation—Based Inference 2. Forward Models of AtmospheresPlanetary atmospheres are
simulated using Global Circulation
Models (GCMs): these are
mathematical models of the
physical processes occurring in the
atmosphere, such as the dynamics,
radiative transfer, and chemical
processes.

• Components of GCMs
modelling different physical
processes run in parallel

• Each component will solve
physical equations across
individual elements of a grid,
over many timesteps until the
model converges

How can we use machine learning for our task?

• Machine learning emulators or surrogate models are
models trained under the supervised objective of mapping a
set of inputs to a (set of) specified target(s).

• Given a set of inputs, an emulator will retrieve roughly the
same output compared to the physically-based numerical
model, but from a less intensive route of computations

Why Machine Learning?

Choosing Model Architecture

• Spatial structure matters in our data: 
electromagnetic flux flows from the top of an 
atmospheric column to the bottom

• Certain algorithms incorporate this structure: 
Choosing architectures with relevant assumptions 
of the structure of the data can guide the learning 
process to utilise information contained within this 
structure Venus

• Numerically solving physical equations is slow: Global
circulation models are notoriously computationally expensive and
slow to run, with some taking of the order of months to run until
convergence.

• Faster GCMs are needed to enable scientific inference: code 
optimisation can only get us so far; we need to reduce the 
complexity of the computations, without compromising the 
accuracy of the output

3. Radiative Transfer Component of GCMs
• Radiative Transfer is the physical process of energy transport by

electromagnetic radiation

• Atmospheric models consider radiation incident from:
1. The host star
2. Geothermal emission from the planetary surface

and model the interaction of this radiation with atmospheric
constituents (absorption, emission, scattering)

Model Assumptions:
• Atmospheres are modelled as a collection of atmospheric columns which do

not interact with each other
• Flux is modelled to only move upwards or downwards (“The two-stream
approximation”)

• Cloud profiles are fixed across time

Model inputs and outputs:
• Inputs: density (ρ), pressure (p) and temperature (T)
• Outputs: Upward flux, downward flux
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Trajectory of this Work

• Yao et al (2023) tested a broad range of DL
architectures for creating surrogate models for the
radiative transfer component of NWP models of Earth

• Earth-based models are trained on observed data

• This work can inform our approach for developing
emulators of (exo)planet atmospheric models

Previous Work in this Field

The past couple of years have
seen the development of deep
learning (DL) surrogate
models for components of
numerical weather prediction
(NWP) models, specifically of
Earth’s climate.

• This work differs from previous work in that it uses
simulated data instead of real observations, and covers a
different area of parameter space (Venus).

• The future of this work would be to generalise these
models to (exo)planets covering a broader range of
parameter-space.
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