Utilizing Modern Machine Learning Techniques to Understand the Origin of Mass

N. Pond, T. Scanlon, S. Van Stroud, J. Barr, G. Facini, S. Rettie

1. Understanding the Origin of Mass

Particles get mass from the Higgs field The Higgs boson, was discovered at CERN by the ATLAS and CMS experiments in 2012 [1,2]

Many questions remain

Is the Higgs linked to dark matter? Accurate measurements required to answer

2. Anatomy of a b-jet

b-quarks produce more particles as they travel in the detector Hadronization, matter interactions, decays Particles grouped together into cone, called a *jet* Jets contain details of particles tracks

such questions

Higgs, and other interesting particles, often decay to particles called *b-quarks* Detection of *b-quarks* is vitally important Must discriminate against main backgrounds, *c-quarks*, and *light-quarks*

Higgs decays at m_H=125GeV

3. Classical b-tagging at ATLAS

Particles originate from the *primary* vertex

Further decays at secondary and tertiary vertices b-jets have more vertices further from the primary vertex

Secondary

Vertex

.

Task of tagging b-jets, *b-tagging*, has always relied heavily on statistical techniques

Really Old

Log likelihood analysis of track features

Somewhat Old

Hand craft algorithms that find the secondary and further vertices: *high-level features* Likelihood ratio test on these

A Little Bit Old

Deep learning on track and high-level features

Recent

Treat jets as graphs, use Graph Neural *Network* to perform vertex-finding and b-tagging in unison [3] : GN1/GN2

Large volumes of particle decays are simulated at ATLAS Allows for complex metrics associated with each jet to be utilised at *truth* level

Study of particle physics allows us to understand the universe at its most fundamental level

Output is model probability of jet origin → Readily extendible to more classes → Better able to discern other backgrounds → Allows GN2 to be *generic* jet-tagger

Early adoption at ATLAS suggests $4 - 15 \times \text{improvement!}$

Requires correctly measuring particles produced at the ATLAS detector Recent improvements to b-tagging of up to 4 times per b-jet Up to **16 times** improvement for most common Higgs decay

Machine learning paving the way for advancements in physics understanding at ATLAS

References

- [1] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at
- the LHC The ATLAS Collaboration (2012)
- [2] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC The CMS Collaboration (2012)
- [3] Graph Neural Network Jet Flavour Tagging with the ATLAS Detector The ATLAS Collaboration (2022)

Contacts

nikita.pond.18@ucl.ac.uk

