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What 1S trackmg" '

 Reconstructing the tracks of charged particles from the hits they
leave as they traverse the detector
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 Tracks make up particles or jets of particles, and are fundamental
to the all physics we do at ATLAS and the LHC

=

MachmeJl_earnmgierfl'rackmg

t th LHC Max Hart - Supervisor: Dr. Gabriel Facini, -
a e CDepartment of Physics and Astronomy UCL

Challenges & Benefits t |
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* |n each event are around 100,000
hits and 1,000 tracks, increasing to

/50,000 and 8,000 respectively
after the hi-luminosity upgrade

* Poortracking — can miss or _
hallucinate particles — can miss |~
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Tracking in ATLAS
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Machine Learning & Tracking

* The conventional tracking approach is to use « Already efforts to use graph neural networks for tracking \\
a Kalman filter which iteratively finds 1
potential tracks ~.|* Connect nearby hits/nodes with edges, classify these edges

* Inevitably will end up with some spurious

tracks that are not actually there '« Focus on the full event — need preprocessing steps to keep
the number of edges manageable

 Thentry and weed these tracks out using an

ambiguity solver » Information travels along the edges — distant hits can’t
input racks ) communicate well with each other
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« too few clusters
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= problematic pixel cluster(s)
Create ol
stripped-down N
track candidate * too many shared clusters
(Neural network usedto

identify merged clusters)

Tracker Data (a) Graph Construction

to exist or not - connected strings of nodes are then tracks ™S

(b) Edge Classification (c) Track Construction
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Our proposal
p p Easy tracks
« Traditional tracking is already pretty good, just  done by KF
suffers where tracks are very dense & close /\ =
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* Butthese cases are important for interesting high { o '..". n
momentum Higgs physics! :

e |dea: use ML for just the ambiguity solver / dense
regions of hits that are more difficult to resolve.
With this we can:

Use a more powerful ML model (transformers) to ard . +
connect every hit to every other hit, via attention B reg'onsl_@(/‘

handled with M

Incorporate lower-level information (i.e., pixels) fj

Ta keaway

Using ML in the ambiguity \
solver allows us to test the
o

benefits of using more

powerful transformer '
models and lower-level
iInformation. It s also more N

feasible to incorporate into | 4
the existing ATLAS pipeline ,\,’
and so can deliver .
Improvements in time for \
the next phase of the LHC.
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