Connecting the Dots.

Machine Learning for Tracking

at the LHC Max Hart - Supervisor: Dr. Gabriel Facini Department of Physics and Astronomy, UCL

What is tracking?

- Reconstructing the tracks of charged particles from the hits they leave as they traverse the detector
- Tracks make up particles or jets of particles, and are fundamental \bullet to the all physics we do at ATLAS and the LHC

Challenges & Benefits

UCL

CDT D

In each event are around 100,000 hits and 1,000 tracks, increasing to 750,000 and 8,000 respectively after the hi-luminosity upgrade

Hits **Physics Objects** Tracks

Poor tracking \rightarrow can miss or hallucinate particles \rightarrow can miss interesting physics that actually happened

For example, a 2x improvement in b-tagging efficiency resulting from better tracking $\rightarrow 8x$ sensitivity in $HH \rightarrow 4b$ analyses

Tracking in ATLAS

- The conventional tracking approach is to use a Kalman filter which iteratively finds potential tracks
- Inevitably will end up with some spurious

Machine Learning & Tracking

Harder regions

handled with ML

- Already efforts to use graph neural networks for tracking
- Connect nearby hits/nodes with edges, classify these edges to exist or not - connected strings of nodes are then tracks
- Focus on the full event \rightarrow need preprocessing steps to keep

(b) Edge Classification (c) Track Construction

Our proposal

Easy tracks Traditional tracking is already pretty good, just done by KF suffers where tracks are very dense & close

Takeaway

Using ML in the ambiguity

- But these cases are important for interesting high momentum Higgs physics!
- Idea: use ML for just the ambiguity solver / dense regions of hits that are more difficult to resolve. With this we can:
 - Use a more powerful ML model (transformers) to connect every hit to every other hit, via attention

Incorporate lower-level information (i.e., pixels)

solver allows us to test the benefits of using more powerful transformer models and lower-level information. It is also more feasible to incorporate into the existing ATLAS pipeline and so can deliver 0 improvements in time for the next phase of the LHC.