

ICL CDT DIS

Gravitational Waves as Cosmological Probes

Constantina Nicolaou 12th December 2019

> Supervisors: Prof Ofer Lahav Prof Simon Arridge

Detections of Gravitational Waves: O1 & O2

O3: Latest – as of 12 Dec 2019 08:23:02 UTC

What are Gravitational Waves?

http://phdcomics.com/tv

What are Gravitational Waves?

http://phdcomics.com/tv

Propagation through space

Plus Polarisation (+) Cross Polarisation (x)

Propagation through space

GW Standard Sirens

$$h_{+}(t) = \frac{4}{d_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{5/3} \left(\frac{\pi f(t)}{c}\right)^{2/3} \frac{1 + \cos^{2} \iota}{2} \cos \varphi$$
$$h_{\times}(t) = \frac{4}{d_{L}} \left(\frac{G\mathcal{M}}{c^{2}}\right)^{5/3} \left(\frac{\pi f(t)}{c}\right)^{2/3} \cos \iota \sin \varphi$$

Absolute distance indicators – self calibrating

Using Standard Sirens as Cosmological Probes

$$d_L(z) = (1+z) \int_0^z \frac{c \, dz'}{H_0 \, E(z')}$$

Local Universe: $H_0 d_L \approx cz$

$$z \gtrsim 0.1$$
:
 $E(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$

Motivation: The Hubble Constant Tension

- Systematics or new physics?
- In need of an independent measurement

GWs are ideal to clarify the H_0 tension:

- Independent of distance ladder
- Cosmological model independent

Planck Collaboration et al., 2018, arXiv preprint arXiv:1807.06209 Riess A. G., Casertano S., Yuan W., Macri L. M., Scolnic D., 2019, ApJ, 876, 85

GW170817: The First Multi-Messenger Detection 🛓 UCL

Inferring H_0 from GW170817

NGC 4993 (~40 Mpc)

LVC et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017

Inferring H_0 from GW170817

Limitations:

- Distance inclination degeneracy
- Peculiar velocity calculation

LVC et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017

For the GW170817 event the peculiar velocity of the host galaxy was not measured directly

- Hence its value has to be inferred from neighbours
- Gaussian Smoothing

Effect of smoothing scale

Nicolaou C., Lahav O., Lemos P., Hartley W., Braden J., 2019, arXiv e-prints, arXiv:1909.09609

Effect of smoothing scale on H₀

Two different smoothing scale choices lead to different H₀ values

A bias of 200 km s⁻¹ on the peculiar velocity imparts a bias on the Hubble constant of 4 km s⁻¹ Mpc⁻¹

Nicolaou C., Lahav O., Lemos P., Hartley W., Braden J., 2019, arXiv e-prints, arXiv:1909.09609

Proposed model

UCL

Nicolaou C., Lahav O., Lemos P., Hartley W., Braden J., 2019, arXiv e-prints, arXiv:1909.09609

- GWs great potential to act as cosmological probes
- Demonstrated a bias arising from the peculiar velocity estimate which if unaccounted for results in a bias on H_0
- A bias of 200 km s⁻¹ on the peculiar velocity imparts a bias on the Hubble constant of 4 km s⁻¹ Mpc⁻¹
- Proposed a way to eliminate the systematic by marginalizing over the choice of smoothing scale

Thank you for your attention!

Acknowledgments: Pablo Lemos, Will Hartely, Jonathan Braden

constantina.nicolaou.17@ucl.ac.uk

Additional Slides

Nearest Neighbour Statistic

Prior Independence

UCL

How can we detect them?

Future observatories

GW170817: The First Multi-Messenger Detection 🛓 UC

GW170817: The First Multi-Messenger Detection 🛓 UCL

