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This project will explore the following key question: ‘Can we make machine learning models more interpretable by 
improving how they quantify uncertainty over their predictions?’ 
 
Machine learning (ML) algorithms are driving innovation across domains, Exoplanetary Science [1-4] and 
Biomedicine [5-8] among them. Two important yet often overlooked aspects of machine learning models are 
interpretability [9, 10] and uncertainty quantification [11, 12]. 
 
Most popular ML algorithms (e.g. deep neural networks, ensembles), are notorious for being 'black boxes', but 
several model interpretability methods -of various degrees of reliability [9, 10]- have been developed to allow us to 
understand their inner workings, to uncover hidden biases in the models (or the data), to increase trustworthiness 
and adoption, to inspect when and how they fail, or to uncover new domain knowledge. For instance, feature 
importance methods, attempt to identify the key features that drive model predictions. Some of the open 
challenges related to these techniques include handling the non-uniqueness of explanations of model behaviour 
(‘Rashomon effect’), reliably quantifying uncertainty over feature attribution and quantitatively evaluating them. 
 
Similarly, popular ML algorithms are also known to suffer from poor uncertainty estimation over their predictions 
[11, 12]. Correctly quantifying uncertainty is crucial in the presence of large amounts of data for prioritizing objects 
for further analysis (common in Exoplanetary Science) and in cost-sensitive applications for balancing costs and 
benefits for optimal decision making based on model predictions (common in Biomedicine). Regression models 
often fail to provide cohesive confidence intervals and classification models often ignore class membership 
probabilities -or obtain systematically unreliable estimates thereof [13, 14]. Techniques to detect and address 
these issues include conformal prediction [16, 17] and probabilistic calibration [13, 14, 17, 18]. 
 
In this project we will investigate if these two weaknesses are connected and whether by addressing one, we can 
improve upon the other.  
 
Proposed subtasks for the CDT PhD project (each to take ~1 year, but likely to be explored in parallel): 
1. Explore the effect of improving model uncertainty estimation on predictive performance & interpretability. 
2. Investigate the use of calibration measures (e.g. Brier Score) of feature importance scores to quantitatively 
evaluate model interpretability methods, ideally by establishing a single performance measure.  
3. Use the above performance measure/methodology to (i) design new model interpretability methods and/or 
to (ii) inform model training to produce more interpretable models. 
 
We will explore the interplay between uncertainty estimation and model interpretability in the context of ML 
models for select applications in exoplanetary science1 and medical imaging2. The supervising team has extensive 
experience in using interpretability methods in exoplanetary science [1, 2, 4] and biomedical [7, 8] applications. 
This is an ambitious project, the findings of which can inform & advance both ML and each of the application fields. 
 
Both supervisors have extensive experience in the intersection of ML & exoplanetary science (e.g. [1-4]). 
Dr. Nikolaou is a Lecturer at DISI and an expert in ML with an emphasis in model interpretability. He has worked on 
applications in exoplanetary science, biomedicine & imaging. He is currently supervising 2 CDT students & several MSc 
projects exploring ML model interpretability & uncertainty quantification in similar settings. His PhD thesis was on 
uncertainty quantification of gradient boosting classifier ensembles [13]. Prof. Waldmann is a Professor at UCL and an 
expert in exoplanetary science. He has led the ExoAI Team at UCL and has pioneered the use of ML methods in 
exoplanet detection & characterization. He is currently supervising several PhD students & postdocs in related projects. 

                                                
1 An example application is inferring atmospheric characteristics from exoplanetary spectra (exoplanet characterization). A dataset that can be used in this 
task is the one provided here for the Ariel Data Challenge: https://zenodo.org/record/6770103#.Y2PmuuzP1qs 
2 An example application is classification of histological whole slide images (WSIs). An appropriate dataset will become available by the start of the project. 
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