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Recent advancements in machine learning (ML) have enabled the efficient training of powerful statistical models from large 
amounts of high-dimensional data in various application domains, Astrophysics included [1 -8]. Yet current learning systems 
are still almost exclusively operating on the level of statistical associations/correlations among the observed variables. 
 
The next big step in the field should involve causal modelling [9, 10]; moving beyond simply capturing statistical associations to 
modelling cause-and-effect relationships among the underlying variables.  The latest advancements in causal modelling are 
already finding practice in diverse fields such as healthcare & epidemiology, bioinformatics & pharmaceutical research, 
policymaking in social sciences, energy & climate, economics & finance -and more recently- in the physical sciences. 
 
Causal discovery [11-13] aims to identify causal structure from data ('Which variables have a causal influence on variable A?') 
and causal inference to predict the results of intervening on variables ('What if I do X?') or -going a step further- of asking 
counterfactual questions ('What if I had done Y instead?') [14-16]. This project will be among the first to explore applications 
of causal ML algorithms in Astrophysics, particularly in the study of (i) galaxies and (ii) exoplanets. 
 

(i) In the exoplanetary literature, causal ML methods (in particular half-sibling regression) have so far been applied 
for decoupling observations from instrument systematics only in the context of exoplanet detection from transit 
light curves [17-19]. The project will apply and extend these methods to exoplanet characterization, i.e. inferring 
exoplanet atmospheric parameters from observed spectra [2-4]. 

 
(ii) In extragalactic astronomy, causal ML methods have previously been applied by members of the project team 

Mucesh, Hartley, Lahav, in collaboration with Gilligan-Lee (Spotify) [20] to simulations (IllustrisTNG) for 
understanding the effect of environment on star formation in galaxies (‘nature vs. nurture’). Key findings include 
that local density is found to be suppressing star formation at redshift 𝑧	 < 	1, while the situation is reversed at 
higher redshift and that the mass of the halo is found to be a confounder. This project will explore application of 
these methodologies to real data from DES & DESI, Euclid & Rubin-LSST. We have access to all these data sets 
through Lahav’s membership in these projects. 

 
We propose to apply and extend the following subtasks for the CDT PhD project on causal inference (each to take ~1 year, but 
likely to be partially explored in parallel): 

1. Further to [17-19], to decouple observations for instrument systematics in exoplanet characterization1. 
2. Further to [1], to explore and develop for real exoplanet data from JWST. 
3. Further to [20], to apply to real galaxy data from DES & DESI2. 
4. Further to [20], to apply to future galaxy data from Euclid & Rubin-LSST3. 

 
There is synergy between the two areas (exoplanets, galaxies). For example, when exploring subtasks (3 & 4), the methods 
developed in subtask (1) can be used to disentangle systematics from observations. This is an ambitious project with the 
potential to advance both the field of causal ML and the two subareas of Astrophysics. 
 
Both supervisors have extensive experience in the intersection of ML & Astrophysics (e.g. [1-8]). 
Prof. Lahav is Perren Professor of Astronomy and his research is in observational cosmology, using large galaxy surveys. He 
also co-directs CDT/DISI.  He is currently supervising 4 CDT students on related projects (another student is about to submit his 
thesis; 2 others already defended their theses). 
Dr. Nikolaou is a Lecturer at DISI and an expert in ML. He has worked on applications of ML in biomedicine & astronomy and 
his theoretical research interests include causal ML modelling [13]. He is currently supervising 2 CDT students (co-supervising 
another 2) & several MSc projects exploring ML applications in these and related areas. 
 
 

 
1 A good practice would be to first use a simulated dataset, in which the ground truth for both observations & systematics is known. This will allow us to 
validate the methods, before applying them to real data. A suggested initial dataset (already available) is the simulated one used for the Ariel Data Challenge: 
https://zenodo.org/record/6770103#.Y2PmuuzP1qs 
2 Data are already available and accessible to any student who joins. 
3 Data expected by the time the student reaches this stage. 
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