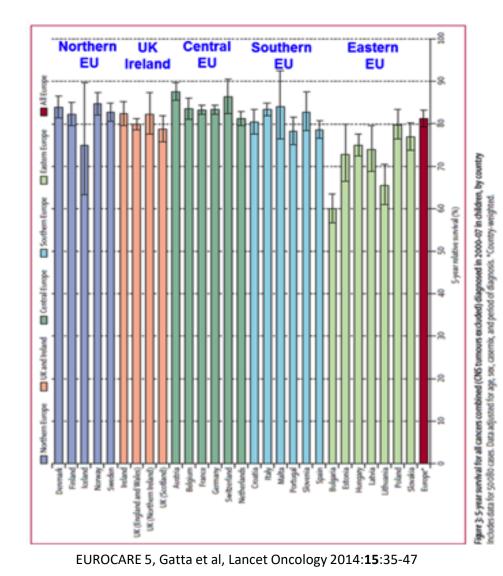


International benchmarking of childhood cancer survival by tumour stage

Project Leads: Kathy Pritchard-Jones, Prof Paediatric Oncology, University College London, UK


Gemma Gatta, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy

Index

BENCHISTA project introduction	3
General principles of Toronto Staging	8
Canstaging+ tool	12
Osteosarcoma	14
Ewing sarcoma	28
Toronto Staging: Osteosarcoma and Ewing sarcoma	48
Exercises: Osteosarcoma and Ewing sarcoma	50
Excel DB presentation: Osteosarcoma and Ewing sarcoma	62
Exercises overview: Osteosarcoma and Ewing sarcoma	76
Wilms tumour	84
Neuroblastoma	112
Toronto Staging: Wilms tumour	
Exercises: Wilms tumour	
Toronto Staging: Neuroblastoma	
Exercises: Neuroblastoma	
Excel DB presentation: Wilms tumour and Neuroblastoma	197
Medulloblastoma	203
Rhabdomyosarcoma	219
Toronto Staging:Medulloblastoma	256
Exercises: Medulloblastoma	261
Toronto Staging:Rhabdomyosarcoma	272
Exercises:Rhabdomyosarcoma	279
Excel DB presentation: Medulloblastoma and Rhabdomyosarcoma	

EUROCARE 5 (cases diagnosed 2000-2007)

Successive Population-based Cancer Registry (PBCR) studies have shown variation in overall survival rates for childhood cancer across Europe, more pronounced in brain tumours, and with no data for several countries

To understand basis for variation, we need to have more info on Patient & Tumour demographics:

- Stage at diagnosis
- Other Non-Stage Prognostic (NSP) factors
- Quality of diagnosis and risk stratification
- Treatment
- Follow up after treatment

ONCOLOGY: RESEARCH ARTICLE

Staging childhood cancers in Europe: Application of the Toronto stage principles for neuroblastoma and Wilms tumour. The JARC pilot study

Pediatric Blood &

Gemma Gatta¹ | Laura Botta¹ | Riccardo Capocaccia² | Adela Cañete³ | Kathy Pritchard-Jones⁴ | JARC Pilot Study Toronto Guidelines Working Group[#]

Under the EU JARC project (2016-19), 25 European PBCRs performed a pilot study to test the feasibility of applying the international consensus "Toronto" staging guidelines to two solid tumours. *Pediatr Blood Cancer. 2021 Sep;68(9):e29020.*

Findings:

- Toronto stage could be assigned in 95% of both tumours diagnosed in 2014 or similar time period.
- This collaborative group of PBCRs, clinicians and epidemiologists worked well together to collect, analyse and publish the data.
- Expanded collaboration has succeeded in obtaining funding to take this to a full study – "BENCHISTA".

JOINT ACTION ON RARE CANCERS

2016-2019

VILEY

Specific questions to be addressed:

- 1. Are childhood cancers diagnosed at a more advanced stage in some countries compared to others?
 - Implies later diagnosis (differences in public awareness, child health surveillance and acute care practices)
- 2. Do survival rates by tumour stage vary between countries/large geographic regions?
 - Implies differences in diagnostic and treatment practices or tumour biology

PBCRs are asked to submit **all cases of 6 index childhood solid tumours diagnosed in a consecutive three-year window (2014-2017)** and staged according to the international consensus "Toronto" guidelines (including non-staged cases)

- Osteosarcoma
- Ewing sarcoma
- Medulloblastoma
- Rhabdomyosarcoma
- Neuroblastoma
- Wilms tumour

BENCHISTA will include > 8.000 cases (compared to 1,115 in Pilot)

These six solid tumours chosen:

- Unambiguous coding for identification
- Pre-existing published evidence for international variation in tumour stage/size at diagnosis in multinational clinical trials
- Included in the International "Toronto" consensus guidelines for staging childhood cancers

Paediatric cancer stage in population-based cancer registries: 🖒 🖲 the Toronto consensus principles and guidelines

Sumit Gupta, Joanne F Aitken, Ute Bartels, James Brierley, Mae Dolendo, Paola Friedrich, Soad Fuentes-Alabi, Claudia P Garrido, Gemma Gatta, Mary Gospodarowicz, Thomas Gross, Scott C Howard, Elizabeth Molyneux, Florencia Moreno, Jason D Pole, Kathy Pritchard-Jones, Oscar Ramirez, Lynn A G Ries, Carlos Rodriguez-Galindo, Hee Young Shin, Eva Steliarova-Foucher, Lillian Sung, Eddy Supriyadi, Rajaraman Swaminathan, Julie Torode, Tushar Vora, Tezer Kutluk, A Lindsay Frazier

Gupta et al, Lancet Oncol 2016

Toronto Staging: Introduction (1)

- Adult cancers
 - International consensus: mainly TNM classification
- Paediatric cancers
 - Heterogeneous, many rare cancers
 - TNM not applicable for most paediatric cancers
 - Mostly staged by disease-specific staging systems
 - Different systems for the same disease
 - Differences between countries
- <u>Need for consistency</u> in paediatric cancer stage collection
 - Facilitate international comparisons and studies

Toronto Staging: Introduction (2)

- October 2014: international experts meeting in Toronto, Canada
- Development of a Tiered staging system for 18 major childhood malignancies: The "Toronto Staging System"
- Published in the Lancet Oncology (2016)
- Included in the UICC TNM 8th edition
- Clarified in an Australian guideline document (2017)
- Revised in a second expert meeting in Lyon (2019)

Paediatric cancer stage in population-based cancer registries: the Toronto consensus principles and guidelines

Sumit Gupta, Joanne F. Arlen, Utz-Bartels, James Brierley, Mac Dolendo, Poola Friedrich, Soad Fuences-Alaki, Clauda P. Ganida, Gemma Gatta, Mary Goopodarowicz, Thomas Gross, Scett C. Howard, Elizabeth Mohneux, Florencia Marena, Jacon D. Pole, Kathy Pritchand-Jones, Oscar Ramirez, Lym A. G. Ries, Carlos Radriguez-Galindo, Her Young Shin, Evo Stofarova-Favchar, Lillian Sung. Eddy Supriyodi, Rajanoman Swaminsthan, Julio Torodo, Tushar Vona, Tazer Kuthal, A. Lindiary Frazier

Toronto Staging: General principles (1)

- Consensus guidelines for collecting childhood cancer stage in population-based cancer registries
 - They are <u>not</u> intended to replace the staging systems of clinical trials
 - They are **<u>not</u>** intended to reflect or guide clinical decision making
 - They <u>are intended</u> to allow standardised comparisons of stage at diagnosis between populations.
- Tiered staging systems
 - Tier 1: limited resources and data access
 - Tier 2: more detailed criteria
 - Comprehensive and valid Tier 1 > Incomplete Tier 2
- Stage: the anatomical extent of the disease <u>at diagnosis</u>
 - Not after treatment

Toronto Staging: General principles (2)

- Tier 1 usually only indicates localised/limited or metastatic/advanced disease
 - Sometimes Tier 1 = Tier 2
- Tier 2 is more specific and more detailed
 > Register Tier 1 only when no info available to determine Tier 2
- For comparisons, Tier 2 categories may be collapsed to Tier 1 categories
- Missing info can lead to an unknown stage: Stage X

Toronto Staging:

CanStaging⁺ Tool

Developed by a collaboration between the Northern Ireland Cancer Registry (NICR), the International Agency for Research on Cancer (IARC), the Union for International Cancer Control (UICC)), and Cancer Council Queensland (CCQ).

Designed to help maximise the availability, standardisation and comparability of cancer staging internationally.

The tool provides:

- Automatic calculation of the international TNM staging classification versions 7 and 8 for a variety of tumour sites.
- Automatic calculation of stage for childhood cancers using the business rules developed for the Toronto Paediatric Cancer Stage Guidelines.

Toronto Guidelines

Acute lymphoblastic leukaemia	Hodgkin lymphoma	Non-Hodgkin lymphoma	Renal tumours (excluding renal cell carcinomas)
Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging
Guidelines	Guidelines	Guidelines	Guidelines
Astrocytoma	Malignant bone tumours	Non-rhabdomyosarcoma soft tissue sarcoma	Retinoblastoma
Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging
Guidelines	Guidelines	Guidelines	Guidelines
Ependymoma	Medulloblastoma and other CNS embryonal tumours	Ovarian germ cell tumours	Rhabdomyosarcoma
Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging
Guidelines	Guidelines	Guidelines	Guidelines
Hepatoblastoma	Neuroblastoma		Testicular germ cell tumours
Toronto Paediatric Cancer Staging	Toronto Paediatric Cancer Staging		Toronto Paediatric Cancer Staging
Guidelines	Guidelines		Guidelines

CanStaging⁺ Home Sites • Staging system •

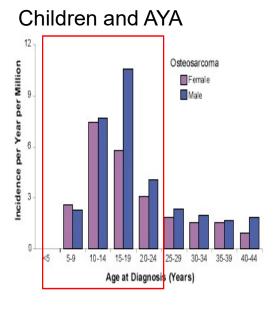
🔻 Log ir

Neuroblastoma 尾

Toronto Guidelines

Tumour ID:	0 ZAuto
Tier1	
Age (in months)	Please Choose
Distant metastatic disease at diagnosis 🖺	●Yes ●No ●Don't know
Metastasis confined to skin, liver and/or bone marrow	●Yes ●No ●Don't know
Locoregional tumour 🖺	●Yes ●No ●Don't know
Tier2	
Age (in months)	Please Choose V Reset
Distant metastatic disease at diagnosis 🖺	●Yes ●No ●Don't know
Metastasis confined to skin, liver and/or bone marrow 🖿	●Yes ●No ●Don't know
Tumour involves one or more Image Defined Risk Factors (IDRFs) 🖺	●Yes ●No ●Don't know
Tumour confined within one body compartment 🖺	●Yes ●No ●Don't know
	Reset form

https://canstaging.org/tool?tnm_version=Toronto

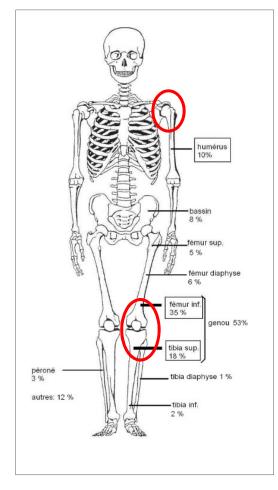

Osteosarcoma

Clinical expert: Dr Nathalie Gaspar

Osteosarcoma: Epidemiology

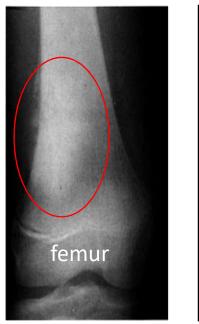
- Standardised Incidence in world population = 3 /million inhabitants/year
- 0,5% of cancers
- 5% of cancer in children and adolescents
- Pic incidence 14 years
- Male predominance

Favouring factors
Genetic


Li-Fraumeni
Rétinoblastome héréditaire
Rothmund-Thomson

Radiations
Pre-existing bone lesions

Osteosarcoma: Presentation

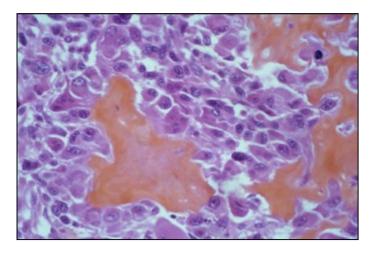

Long bones Close to the knee, far from elbow

Bone axial and STS osteosarcoma are rare: genetic predisposition ?

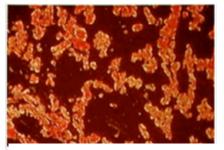
Pain +/- swelling

ostocondensant lesion of the metaphysis

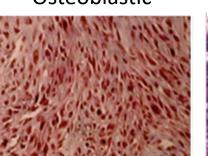
Pathological fracture

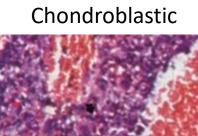

Standard radio

Osteosarcoma: Diagnostic



Biopsy in an expert center To be interpreted with the Imaging


- Malignant tumour of the bone, with tumour cells producing osteoid tissue
- No specific markers



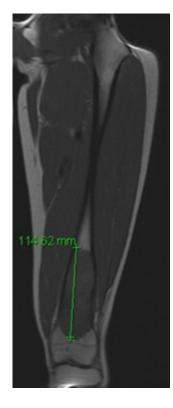
Several sub-types

Osteoblastic

Fibroblastic

Telangiectasis

Osteosarcoma: Extension


scan

Metastatic extension

25% of metastasis at diagnosis

Loco-regional extension

MRI of the whole bone with upper and lower articulation

Lung = 80% of metastasis Chest CT-scan

Bone metastasis Bone PET-**T99m** or

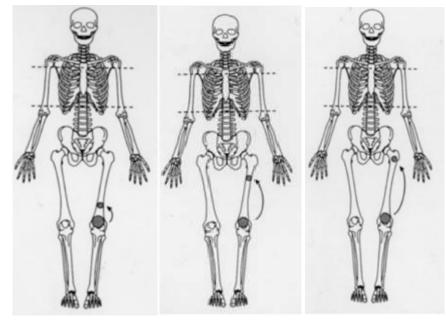
Skip metastasis Small lesion on the same bone than primary tumour

Other mets loc = rare

> Bone Formation

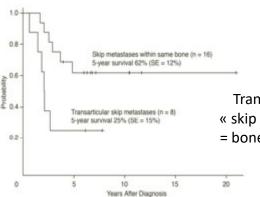
Pb of growth plate fixation

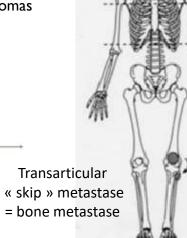
Osteosarcoma: Extension

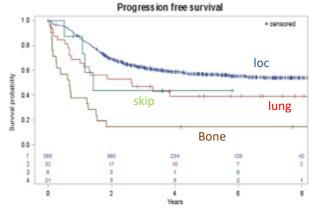


At diagnosis

IRM of the whole bone with upper and lower articulation + bone scinti And/or PET-scan


Skip metastasis are rare


Small bone metastasis in the same bone



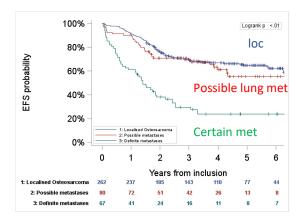
COSS experience

- 24 pts out of 1765 osteosarcomas
- 13 without othe mets
- 9 with associated lung mets

Prognostic close from lung metastatic patients

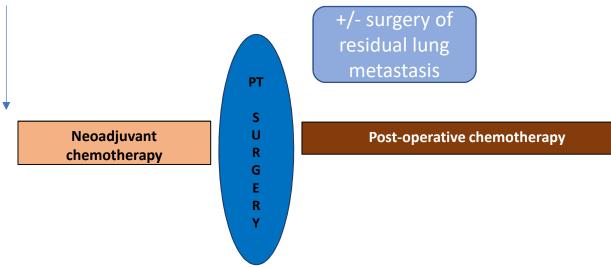
OS2006 experience

Skip metastasis


C Lervat SIOP 2019

Osteosarcoma: Extension

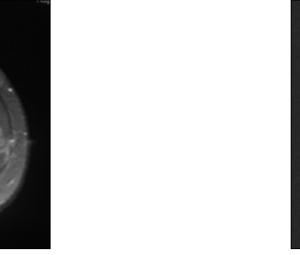
Definition of lung metastase

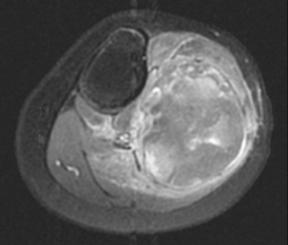

Lun mets	EURAMOS-1	OS2006
No	None	None
Possible	All other lesion	All other lesion
Certain	≥ 1 lesion ≥ 10mm ≥ 3 lesions ≥ 5mm	≥ 1 lesion ≥ 10mm ≥ 2 lesions, 5-9mm ≥ 5 lesion < 5mm, well limited

OS2006 MEI regimen GASPAR N et al. EJC 2018

Pathological report after lung surgery Performed if lung lesions persist under treatment

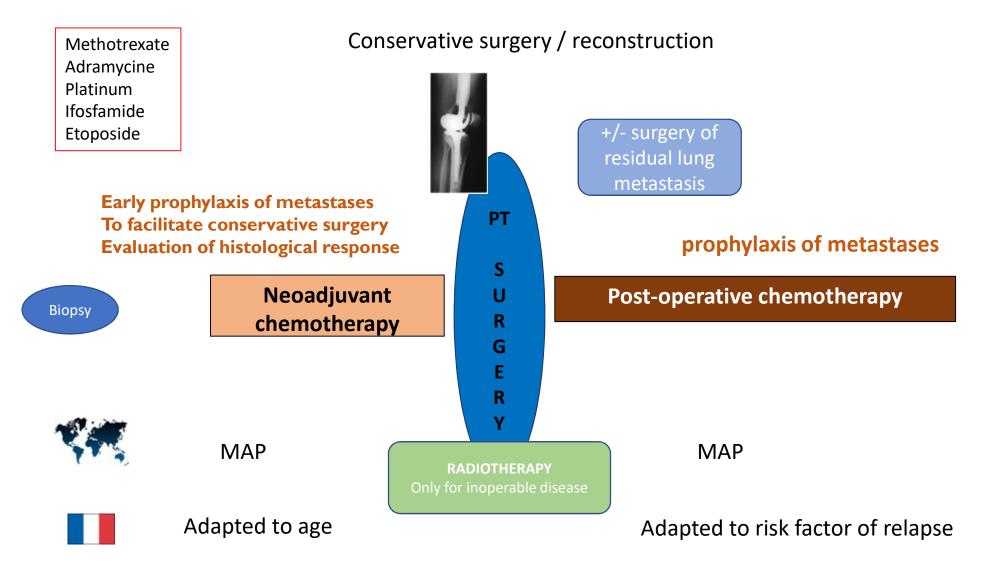
Osteosarcoma: An emergency



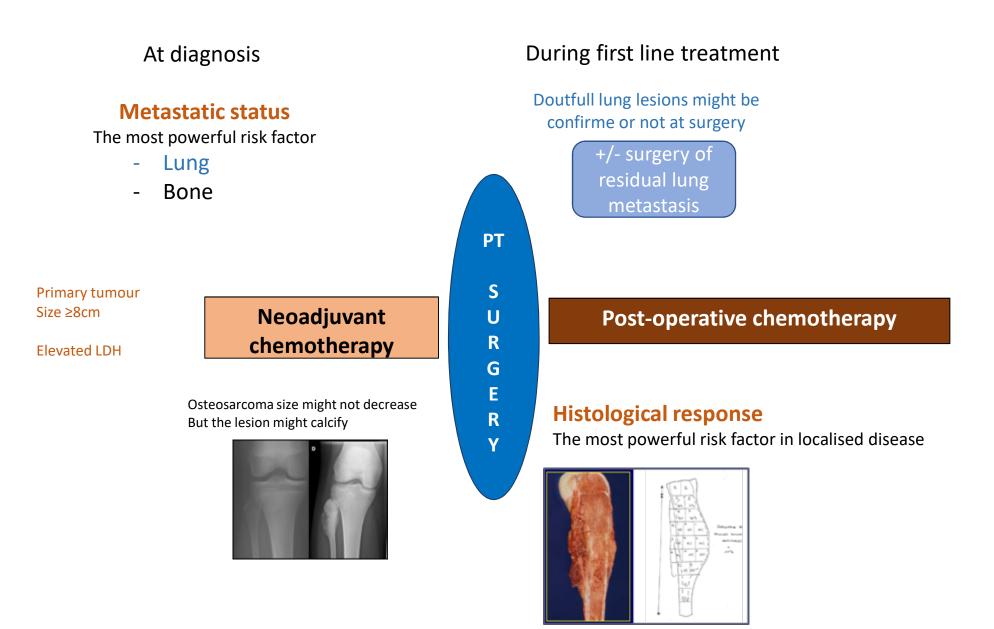


3 weeks later

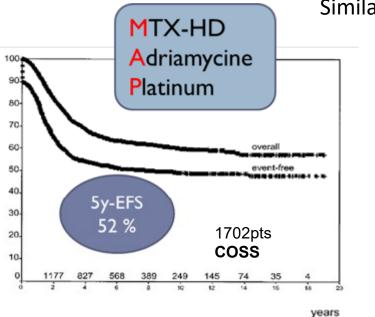
- Complicates surgery
- Increase sequeal risk
- Might complicate interpretation of tumour evolution under chemotherapy

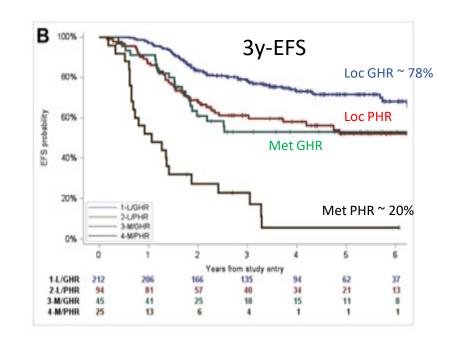


Osteosarcoma: Treatment



Adapted to PgP status


Osteosarcoma: Prognostic factors



Osteosarcoma: Survival

Similar to EURAMOS-1 data

OS2006 MEI regimen GASPAR N et al. EJC 2018

Osteosarcoma: Exceptions

High-grade osteosarcoma

- Inoperable : radiotherapy can be proposed instead of surgery
- initial surgery : chemotherapy done on adjuvent setting, duration ?

Low grade osteosarcoma : surgery

T – Primary Tumour

TX Primary tumour cannot be assessed To No evidence of primary tumour

Appendicular Skeleton, Trunk, Skull and Facial Bones

- T1 Tumour 8.cm or less in greatest dimension
- T2 Tumour more than 8.cm in greatest dimension
- T3 Discontinuous tumours in the primary bone site

N – Regional Lymph Nodes

- NX Regional lymph nodes cannot be assessed
- No No regional lymph node metastasis
- N1 Regional lymph node metastasis

M – Distant Metastasis

Mo No distant metastasis M1 Distant metastasis M1a Lung M1b Other distant sites

Stage – Appendicular Skeleton, Trunk, Skull and Facial Bones

Stage IA	T1	No Mo	G1, GX Low Grade
Stage IB	T2, T3	No Mo	G1, GX Low Grade
Stage IIA	T1	No Mo	G2, G3 High Grade
Stage IIB	T2	No Mo	G2, G3 High Grade
Stage III	T ₃	No Mo	G2, G3 High Grade
Stage IVA	Any T	No M1a	Any G
Stage IVB	Any T	N1 Any M	Any G
Stage IVB	Any T	No M1b	Any G

Osteosarcoma: Non-stage prognostic factors

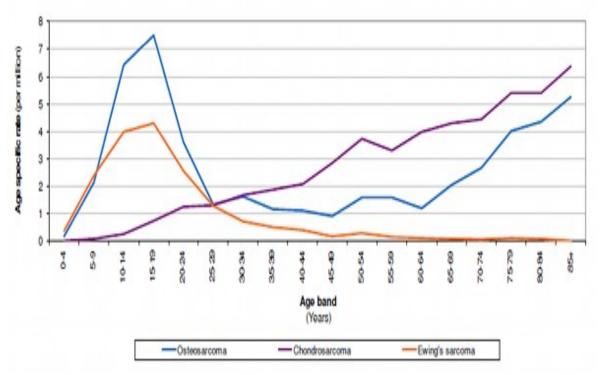
Solid Tumour	Essential	Additional	New and Promising	Comments
Osteosarcoma	None specified			Tumour response* not agreed as an NSP

*Response to therapy, either radiological or pathological, was excluded as an NSP to be collected by CRs given the wide variation at a population level in the treatment received, timepoint and modality of assessment, and definition of response.

Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. Lancet Oncol 2020; 21: e444–51

Ewing sarcoma

Clinical expert: Dr Sandra Strauss

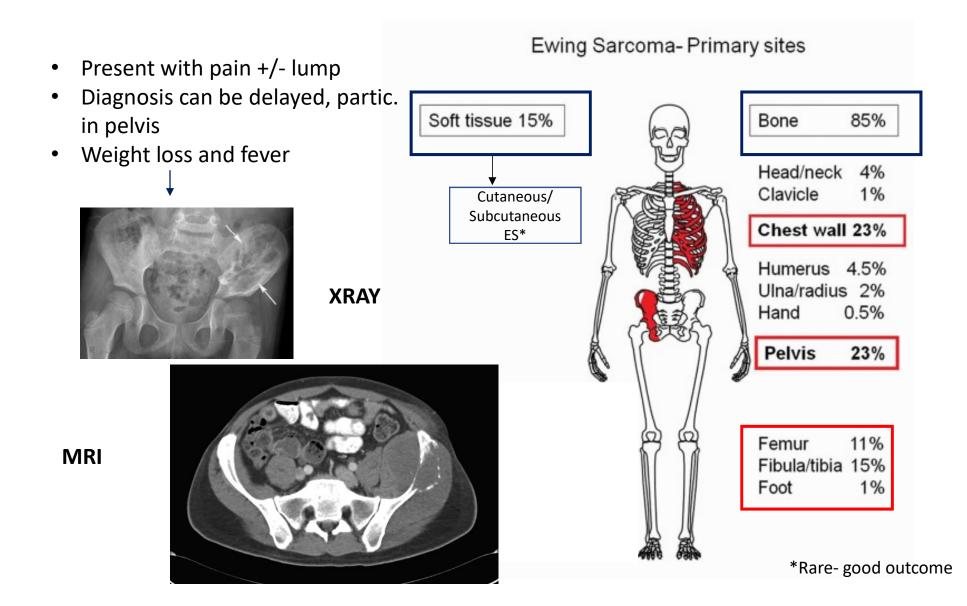


Ewing sarcoma: Epidemiology

Rare tumour, 2nd most common primary bone tumour in children and teenagers

Incidence: 1-2 per million

Peak incidence- 15-19 years. Very rare over 50 years



Male-to-female ratio 1.5:1 Highest in Caucasian pop

Whelan, et al , Int J Canc 2012

Ewing sarcoma: Presentation and primary sites

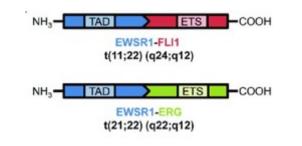
Ewing sarcoma: Making the diagnosis

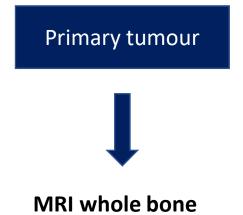
DIAGNOSIS ON A BIOPSY – USUALLY PERCUTANEOUS BUT ON OCCASION MAY BE A SURGICAL / OPEN BIOPSY

- Morphology: Small round blue cells
- IHC: CD99 positive

Molecular diagnosis

- Characterised by specific rearrangement
- EWSR1 with ETS family of genes: most common EWSR1-FLI1



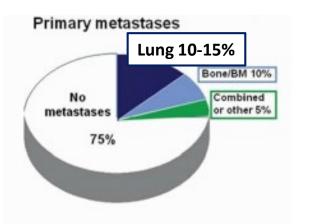

Table 2 Most common types of translocations found in Ewing sarcoma

Translocation	Fusion gene	% of tumors exhibiting EWS gene rearrangement
t(11;22)(q24;q12)	EWSR1-FLI1	85
t(21;22)(q22;q12)	EWSR1-ERG	10
t(7;22)(q22;q12)	EWSR1-ETV1	rare
t(17;22)(q21;q12)	EWSR1-ETV4	rare
t(2;22)(q35;q12)	EWSR1-FEV	rare

- \rightarrow Now is pre-requisite for diagnosis: FiSH or RT-PCR for translocation
- → May not be available on **registries so analyses may include Ewing's–like tumours**

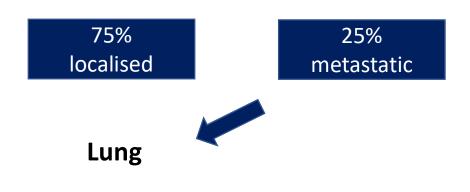
Ewing sarcoma: Imaging of primary tumour





skip metastases not commonly seen in ES but important to see full extent of disease to plan local therapy as it needs to include the full volume

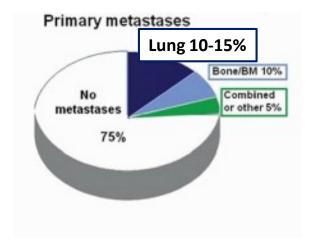
~ 3% lymph node mets (loco-regional disease)

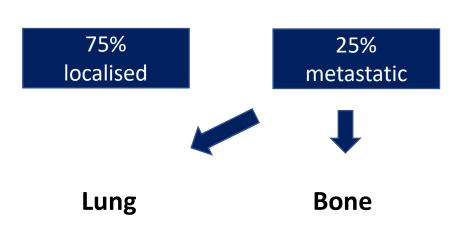

Diagnosed on MRI of whole bone

+/- PET scan

Incorporated into local control strategies

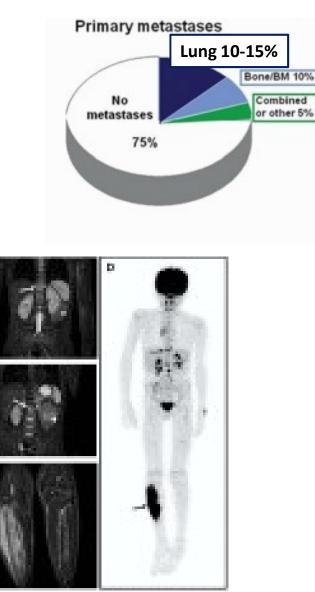
Impact on outcome not well-defined


CT chest (high res)

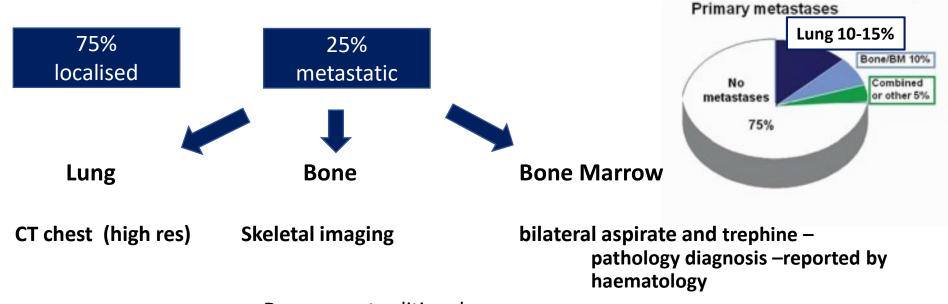

Indeterminate pulm nodules (IPN) seen – one study 8.7% pt*

Impact on survival not well defined

Tsoi, et al. J Clin Orth, 2021



CT chest (high res)



Skeletal imaging Bone scan: traditional *PET /CT or WB MRI - Increased sensitivity, PET also detects BM mets

If indeterminate abnormality – pt would have a dedicated MRI and possibly a biopsy, particularly if oligometastatic

Bone scan: traditional
*PET /CT or WB MRI
- Increased sensitivity,
PET also detects BM mets

If indeterminate abnormality – pt would have a dedicated MRI and rarely a biopsy, particularly if oligo-metastatic Recent reviews and new ESMO guidelines¹ – BM not mandated outside clinical trials if had PET/CT or WB MRI as unlikely to influence management, however practice differs

1. Strauss et al, Ann Onc, 2021

Risk groups and clinical prognostic factors

Patient risk stratification

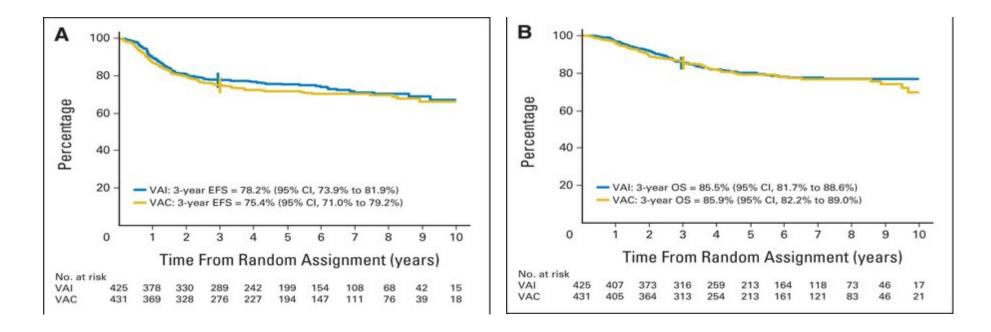
Localised disease

- Standard risk (SR)-small volume < 200ml
- High risk (HR)

Large volume primary tumour > 200ml Poor response to chemotherapy

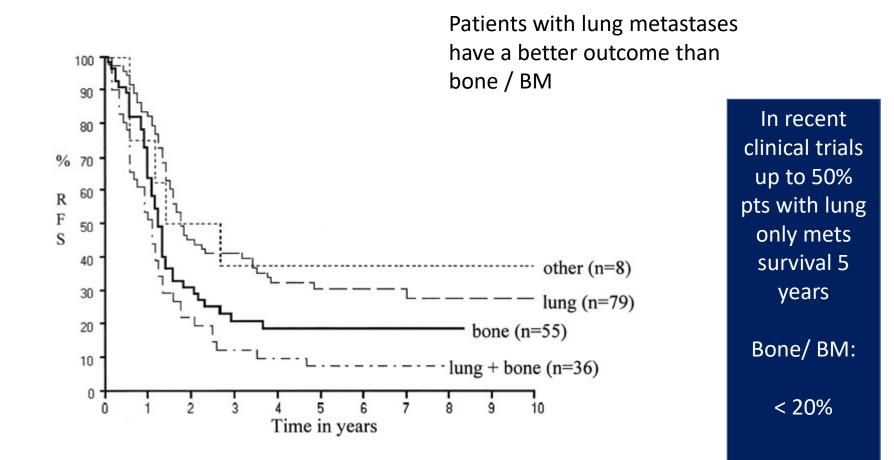
Metastatic

- Lung metastases (R2)
- Extra pulmonary metastases (R3)– Bone and bone marrow +-/ other


→ Treatment has evolved through international collaborative clinical trials

Survival: Localised Std Risk ES

EuroEwing 99- trial


3 yr EFS = 78%

3 yr OS = 85%

Le Deley, et al, JCO, 2014

Survival: Metastatic Ewing sarcoma

Ewing sarcoma: Treatment

LOCAL THERAPY

Surgery and / or Radiotherapy (RT)

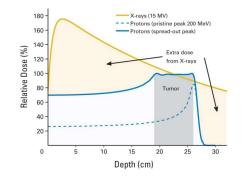
- through discussion at expert tumour board
 Depends on many factors:
- age, primary site, size and local extension

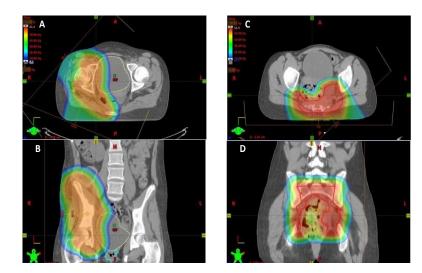
Overall surgery – has better outcomes – resect if possible

CONSOLIDATION TREATMENT:

 chemotherapy +/-whole lung radiotherapy +/- high dose chemotherapy (v selected patients)

Local therapy - Ewing sarcomasensitive to radiotherapy


SURGERY RECOMMENDED where possible but if not


DEFINITIVE RADIOTHERAPY – can cure patients with inoperable disease

- eg: sacrum or pelvic tumours where morbidity too great
- Also spinal- often have decompressive surgery, further surgery not shown to improve outcome

Proton Beam Therapy

increasingly used particularly for pelvic, spinal and chest wall disease

Ewing sarcoma: post-operative radiotherapy (port)

100%

RADIOTHERAPY

If tumour recurs at the primary site, outcome is poor, so need to optimise treatment at diagnosis

Statistical sig reduction in Local Recurrence if PORT (HR=0.43% (0.21-0.88, p=0.02)¹

Most marked - large tumours (> 200mL)

→ Recommended for all patients apart from small tumour with good response

→ If definitely having, then often given preoperatively

All and the set of the

Local recurrence

Radiotherapy—important in reducing local recurrence (halves)—only tumours that are not irradiated are small and good response (>90%). If definitely—pre-op. consider PBT

OTHER INDICATIONS

1. WHOLE LUNG RADIOTHERAPY – given at end of chemotherapy for patients with lung metastases, although no randomised evidence

2. high dose (definitive RT) to patients with oligo-metastatic disease (one or two mets)

Current Treatment Protocols

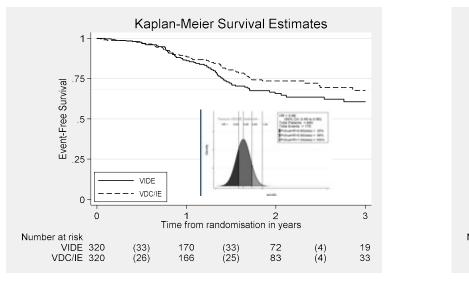
EuroEwing2012 - First line randomised trial

Compared two chemotherapy regimens: VIDE/VAI/VAC and VDC/IE (14 cycles)

LOCAL THERAPY INDUCTION CHEMOTHERAPY Randomisation 1 Randomisation 2 CONSOLIDATION CHEMOTHERAPY VIDE x 6 Localised Disease R2 VAC VAI/VAC x 8 Good Risk ARMA VIDE VIDE VIDE VIDE VIDE Localised Disease R2 BuMe VIDE strategy Poor Risk (Pulmon any Isleural mets, only) VAL VAL VAL VAL VAL VAL * Long radiotherapy Regional Lymph Node involvement R2 VAI Zoledronic acid andbr Metastatic Disease Zoledronic acid **R1** VDC/IE VC (Pulmonary/pleural mets only) VC Localised Disease IE Good Risk, Region al x 9 Lymph Node VC/IE x 5 R2 IEVC Involvement and/or Metastatic Disease VDC VDC ARM B VDC VDC VD IE Æ IE IE VDC/IE strategy VAI Bu-Mel radiotherapy Localised Disease + Zoledronic acid R2 BuMel Poor Risk Z olectronic a rid VIDE Vin cristin e, flos famide, Doxorubicin, Eloposide VDC Vin cristin e, Doxorubicin, Cyclophosph amide VAI Vinoristine, Actnomycin D. Ibstamide Vincristine, Actinomycin D, Cyclophosphamide Itosfamide, Ecooside IE Hosfamide, Boposide VC Bu Mel Vin orisitine, Cyclophosphamide Busultan Melphalan \$Title\$

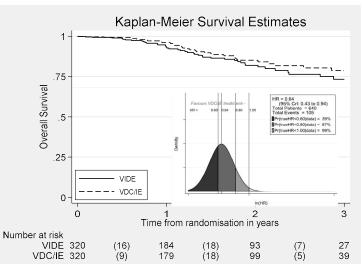
benchista

Randomisation 1 between the European standard of care and US


Randomisation 2 +/- zolendronic acid

EuroEwing2012- First line randomised trial

Recruited 640 patients across 14 countries in 5.5 years


Event-free survival

Overall survival

• VDC / IE superior EFS and OS

- Brennan et al, ASCO 2020
- VCD/IE standard of care for ES across all risk groups across Eu

Ewing Sarcoma: Non-stage prognostic factors

Solid Tumour	Essential	Additional	New and Promising	Comments
Ewing sarcoma	None specified			Tumour response not agreed as an NSP

Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. Lancet Oncol 2020; 21: e444–51

Ewing sarcoma Summary

- Rare cancer- can arise in bone or soft tissue
- Metastasises to lung, bone, bone marrow
- Staging
 - CT chest to look for lung mets
 - skeletal staging varies across centres and countries
 - look for follow up imaging and additional pathology

Treatment:

- Induction chemotherapy, Local therapy (surgery and / or radiotherapy, consolidation chemotherapy
- +/- Whole lung RT; +/- high dose chemotherapy

Toronto Staging

Méric Klein, Belgian Cancer Registry

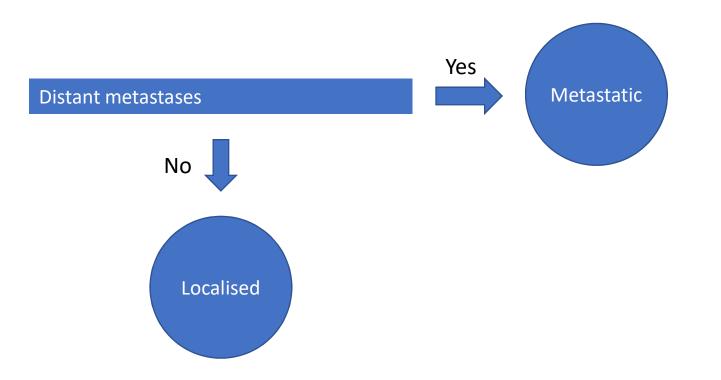
Dr Gemma Gatta, INT, Milan

Andrea Di Cataldo, University of Catania

Toronto Staging: Osteosarcoma and Ewing sarcoma

<u>Tier 1 = Tier 2</u>

- Only 2 stages
 - Localised or Metastatic
- Staging requires assessment of
 - Extent of disease


Localised	Metastatic
Tumour confined to the area of origin, including regional lymph nodes	Distant metastases present

Toronto Staging: Osteosarcoma and Ewing sarcoma

benchista

Osteosarcoma and Ewing Sarcoma:

Exercises and Q&A

A bulky tumour mass is found in the left ulna of a 8year old patient. Left axillary lymph nodes are also involved. Further examination shows that this lesion is a 8cm long chondroblastic osteosarcoma.

What is the correct stage for this patient?

- A. Localised
- B. Metastatic

A 10-year old girl comes in consultation because of pain of the right shin. Radiography and bone scintigraphy show a solitary focus of increased activity over the right tibial diaphysis.

- MR imaging of the right tibia confirmed a diaphysis lesion, but also revealed another 1cm focus in the proximal tibial metaphysis.
- Histological analysis is positive for an Ewing sarcoma of the right tibial diaphysis with a skip metastasis in the metaphysis.

CT scans of the chest were clear.

What is the correct stage for this patient?

- A. Localised
- B. Metastatic

- 8-year old patient
- MRI: 3cm lesion located on the head of the left humerus
- Biopsy: Ewing sarcoma
- CT scan of the chest: highly suspect lesion in the left lung

What is the correct stage for this patient ?

- A. Localised
- B. Metastatic

A 7-year old patient suffers from an osteosarcoma of the right femur that also invades the left inguinal lymph nodes.

What is the correct stage for this patient ?

- A. Localised
- B. Metastatic

A ten year old boy with two tumour masses: one in the femur (4 cm) (C40.2, long bone lower limb) and one in the ankle joint (1.5 cm) (C40.3, short bone of lower limb), both lesions at right limb and are distinct. Histological analysis is positive for a chondroblastic osteosarcoma of the right lower limb.

What is the correct stage for this patient?

- A. Localised
- B. Metastatic

From: Childhood cancer staging for population registries according to the Toronto Childhood Cancer Stage guidelines by Aitken at al.

Osteosarcoma
Only two stages are recommended (localized or metastatic) for both Tier 1 and Tier 2. ²

Definitions and notes

"Skip lesions", "skip metastases" or "seeding" in the same bone as the primary tumour are considered localized and not metastatic; if in a different bone to the primary tumour these are considered metastatic.

Staging criteria for osteosarcoma				
	TIER 1		TIER 2	
Localized	Tumour confined to the area of origin including regional lymph nodes	Localized	Tumour confined to the area of origin including regional lymph nodes	
Metastatic	Distant metastases present	Metastatic	Distant metastases present	

Exercise 6 (Osteosarcoma)

- 8-year old patient
- MRI: 5 cm lesion located on the head of the left humerus
- Biopsy: small cell osteosarcoma
- Thorax Xray: suspected lesion of left lung measuring 4 mm, no other investigation to understand the nature of the lesion
- Start of pre surgery chemotherapy
- During chemotherapy, parents ask a second opinion to another hospital, here the CT scan of chest reports a small lesion suggesting a metastasis of osteosarcoma

What is the correct stage for this patient ?

- A. Localised
- B. Metastatic

From: Childhood cancer staging for population registries according to the Toronto Childhood Cancer Stage guidelines by Aitken at al.

General rules of staging

 Stage is defined as extent of disease at diagnosis and is based on evidence <u>acquired before treatment</u> (with the exception of Wilms tumour, see page 34).

Exercise 7 (Ewing sarcoma of bone)

- 11-year old patient
- MRI: 5 cm lesion located on the pelvis
- Biopsy: Ewing sarcoma
- Before the start of treatment, all the investigations done, including bone marrow aspirate. All are negative, except the bone marrow aspirate the result of which arrives after the start of treatment and is positive.

What is the correct stage for this patient?

- A. Localised
- B. Metastatic

Exercise 8 (Ewing sarcoma of bone)

- 11-year old patient
- MRI: 5 cm lesion located on the pelvis
- Biopsy: Ewing sarcoma
- Lung CT and PET are negative
- The result of bone marrow aspirate and trephine is: negative for pathological morphology and immunocytology, positive for molecular biology (specific transcript)

What is the correct stage for this patient ?

- A. Localised
- B. Metastatic

Exercise 9 (Osteosarcoma)

- 17-year old girl
- MRI: 5 cm lesion located on left part of the pelvis with highly suspected left inguinal nodes
- All the other investigations for staging are negative
- During surgical treatment, not anticipated by chemotherapy, discovery of two metastatic inguinal lymph nodes at left

What is the correct stage for this patient ?

- A. Localised
- B. Metastatic

Excel file Database Presentation: Osteosarcoma and Ewing Sarcoma

Fabio Didonè, Statistician, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano

The Database file is made up of 8 different excel sheets, the first is named "**Table 2**" and reflects the table 2 in the protocol, which contains six columns:

- The variable code
- The variable extended name
- The values that it can assume
- A brief description
- Explanatory notes (if necessary)
- The validation rules (if present)

The structure of the database (2)

- There are six excel sheets representing the six different types of tumours.
- The last excel page contains the average time to stage a patient with one of the six tumour type considered and the data quality checks (%DCO, %NOS, etc.)

The structure of the database (3)

The variables can be classified into the following 'macro areas':

- Basic variables
- Imaging/examination performed before any treatment
- Source used for staging
- TG staging and NSPs (specific for every Tumour type)
- Primary treatment
- Relapse/recurrence/progression
- Follow-up.

Common Variables

- Basic variables
- Source used for staging
- Primary treatment
- Relapse/recurrence/progression
- Follow-up.

Common Variables: Basic Variables

	Variable name	values	Variable Description
	Registry	alphabetic	Registry name, alphabetic
	Country	alphabetic	Country name, alphabetic
	Registry Patient Identification code	alphanumeric-10	Pseudo anonymized patient's ID code
	Year of birth	numeric-4	Year of birth
	Age at diagnosis	numeric- 3	Age at diagnosis
	Year of diagnosis	numeric-4	Year of diagnosis
	Sex	1,2,9	gender, boy/girl/unknown
Particular Internet	Base of diagnosis (as coded in the ENCR protocol)	0,1,2,4,5,6,7,9	DCO/Clinical/Clinical investigation/Specific tumo
Basic variables	ICDO3-Topography	numeric-3	only the numeric part of the ICD-O-3 topographic code
	ICDO3-Morphology	numeric-4	malignant only, (behaviour=3)
	First previous cancer	1,0,9	Y/N/unknown presence of a first previous cancer
	First previous cancer definition	la, lb, lc, ld, le, lla,	ICCC third edition code
	Year of diagnosis of the first previous cancer	numeric-4	Year of diagnosis of the first previous cancer
	Second previous cancer	1,0,9	Y/N/unknown presence of a second previous cancer
	Second previous cancer definition	la, lb, lc, ld, le, lla,	ICCC third edition code
	Year of diagnosis of the second previous cancer	numeric-4	Year of diagnosis of the second previous cancer

Common Variables: Source used for staging

	Variable name	values	Variable Description	Explanatory Notes
	Clinical report (hospital clinical records)	1,0,9	Y/N/unknown	was the data source a clinical report?
	Pathological report	1,0,9	Y/N/unknown	was the data source a pathological report?
Source used for staging	Administrative files (hospital discharge etc)	1,0,9	Y/N/unknown	was the data source an administrative file?
	Clinical study group	1,0,9	Y/N/unknown	was the data source a clinical study group?
	Others (string)	alphabetic-10	alphabetic	

Common Variables: Primary treatment

	Variable name	values	Variable Description
	*_Surgery	1,0,9	Y/N/unknown
	*_Chemotherapy	1,0,9	Y/N/unknown
Primary Treatment defined as given within 1 year from diagnosis	*_Chemotherapy type	1 <mark>,2,3,4,</mark> 9	Preoperative chemo/Postoperative chemo/ Both preoperative and postoperative chemo/ Chemotherapy only/Unknown
	*_Radiotherapy	1,0,9	Y/N/unknown

Note: *_ means the variable is optional

Common Variables: Relapse or recurrence

	Variable name	values	Variable Description
	*_Relapse/ recurrence/ progression	1,0,9	Y/N/unknown
Relapse/ recurrence/ progression	*_Time in days from diagnosis to relapse/recurrence/progression	numeric	Time in days from diagnosis to relapse/ recurrence/progression, numeric

Note: *_ means the variable is optional

Common Variables: Follow up

	Variable name	values	Variable Description	
	Status of life	1,2,9	alive/dead/unknown	
Follow-up	*_Causes of death (CoD)	1,2,3,4,9	Toxicity of treatment, Tumor, Comorbidity previously present in the child, Others, unknown	
	Time in days from diagnosis to death or last follow up	numeric	Time in days from diagnosis to death or last follow up, numeric	

Note: *_ means the variable is optional

Specific Variables

- Imaging/examination performed before any treatment and their own results:
 - Imaging performed: 1='Yes', 0='No', 9='Unknown'
 - Imaging result: 0='Negative', 1='Positive', 2='Suspicious', 9='Unknown'
- TG staging and NSPs

Specific Variables: Imaging/examination performed for Osteosarcoma

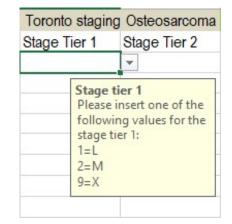
Imaging/examination necessary for investigation of the **extension** of the disease are:

- CT/MRI primary site
- CT thorax
- Bone scan
- X-ray thorax
- PET
- Tissue biopsy (of non-primary sites suspicious for metastasis)

Note: the result of each exam performed is requested except for 'CT/MRI primary site'

Specific Variables: Imaging/examination performed for Ewing Sarcoma

Imaging/examination necessary for investigation of the **extension** of the disease are:


- CT/MRI primary site
- CT thorax
- Bone scan
- X-ray thorax
- PET
- Bone Marrow (BM) aspirate or BM biopsy

Note: the result of each exam performed is requested except for 'CT/MRI primary site'

Specific Variables: TG staging and NSPs for Osteosarcoma and Ewing Sarcoma

Stage Tier 1 & Tier 2:

- L=Localized (Tumour confined to the area of origin including regional lymph nodes)
- M=Metastatic (Distant metastases present)
- X=Unknown

benchista

Note: "skip lesions", "skip metastasis" or "seeding" in the same bone as the primary tumour are considered localised and not metastatic; if in a different bone to the primary tumour these are considered metastatic.

	Essential	Additional	New and promising	Comments	
Solid tumours					
Osteosarcoma		-	n.	(mail)	
Ewing sarcoma				044	

Feedback of previous session focused on: Osteosarcoma and Ewing Sarcoma

Exercises overview

Important key points

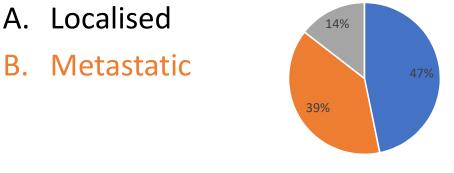
- Cancer registries should routinely collect cancer stage for childhood cancer cases
- The Toronto Staging Guidelines are consensus guidelines for collecting childhood cancer stage in population based registries
 - Internationally consistent and comparable
- Toronto Stage is not intended for clinical practice / clinical decision making

When will we consider a lung metastasis ?

- Unlike for some clinical trials, no prescriptive definitions in the Toronto staging
- All the lesions might be considered as a metastasis, regardless their size
 ➢ Histological confirmation → OK
 - > Mention of "imaging positive for meta" \rightarrow OK
 - > Mention of "highly suspected" or "highly suspicious" lesion on imaging \rightarrow OK
 - \blacktriangleright Mention of "suspect lesion" on imaging \rightarrow Follow the opinion of the doctor
 - > Mention of "possibly", "maybe", ... \rightarrow Do not record as metastatic

Be careful with the skip metastases located in the same bone than the primary tumour:

• Poorer prognosis than the tumours without skip metastasis.


But this is an evolving adverse prognostic factor for risk stratification rather than staging at this point in time

- Still has to be classified as a Localised tumour
 - Stage as Metastatic only if located into another bone

A 7-year old patient suffers from an osteosarcoma of the right femur that also invades the left inguinal lymph nodes.

What is the correct stage for this patient?

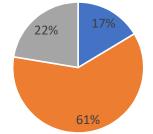
Localised Metastatic Not answered

The regional lymph nodes for the lower limb are the ipsilateral popliteal and inguinal lymph nodes. Contralateral lymph nodes are thus distant metastases.

A ten year old boy with two tumour masses: one in the femur (4 cm) (C40.2, long bone lower limb) and one in the ankle joint (1.5 cm) (C40.3, short bone of lower limb), both lesions at right limb and are distinct. Histological analysis is positive for a chondroblastic osteosarcoma of the right lower limb.

What is the correct stage for this patient?

Localised Metastatic Not answered

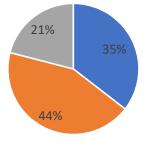

Two histologically identical tumour masses in the bone. The smallest lesion is then considered as a distant metastasis of the biggest one. And since they are both located into a different bone, the lesion has to be classified as metastatic.

- 8-year old patient
- MRI: 5 cm lesion located on the head of the left humerus
- Biopsy: small cell osteosarcoma
- Thorax Xray: suspected lesion of left lung measuring 4 mm, no other investigation to understand the nature of the lesion
- Start of pre surgery chemotherapy
- During chemotherapy, parents ask a second opinion to another hospital, here the CT scan of chest reports a small lesion suggesting a metastasis of osteosarcoma

What is the correct stage for this patient ?

- A. Localised
- B. Metastatic

Localised Metastatic Not answered


Ambiguous case, discussion is needed with the pediatric hemato-oncologist for the correct staging

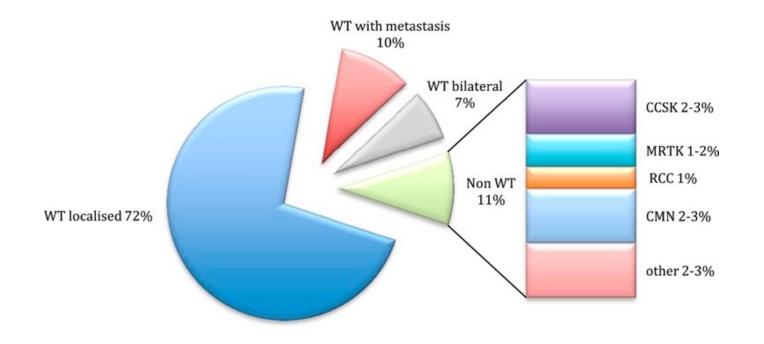
- 11-year old patient
- MRI: 5 cm lesion located on the pelvis
- Biopsy: Ewing sarcoma
- Lung CT and PET are negative
- The result of bone marrow aspirate and trephine is: negative for pathological morphology and immunocytology, positive for molecular biology (specific transcript)

What is the correct stage for this patient?

- A. Localised
- B. Metastatic

Localised Metastatic Not answered

The implication of a positive result for the specific transcript in the bone marrow is not clear (as well clinically than for the prognosis), and this information should thus not be used.


Wilms Tumour

Clinical expert: Dr Filippo Spreafico

Renal tumours: Epidemiology

 Malignant renal tumours comprise 5% of all cancers in children <15 years of age; WT (also known as nephroblastoma) is the most common of these tumours

Brok J, et al. Biology and treatment of renal tumours in childhood. Eur J Cancer. 2016

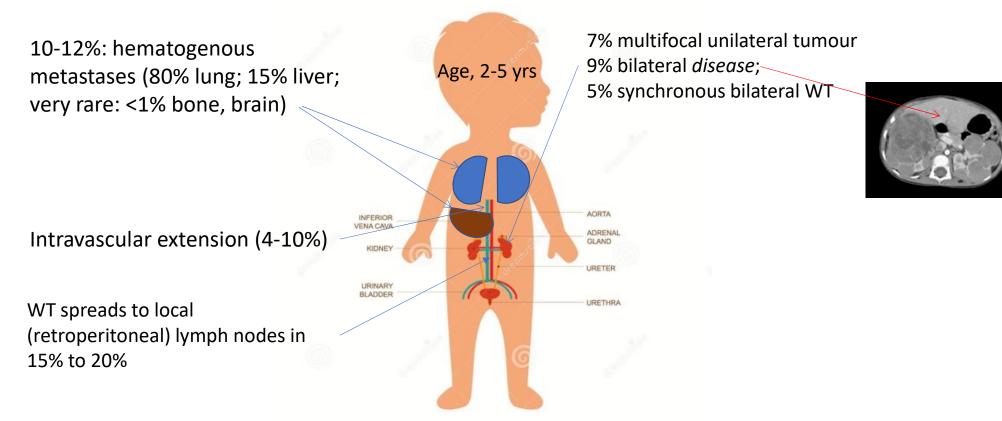
Wilms tumours: Epidemiology

- WT incidence varies between regions and ethnicities: the annual incidence in East Asia (4.3 per million) is lower than in North America or Europe (8–9 per million)
- WT is ~10% more common in girls than in boys
- WT presents between ages 2-5 yrs, and its incidence in children >10 yrs is rare
- Overall survival rate >90% in high-income countries, yet survival disparities within and between countries exist

Wilms tumours: Clinical presentation

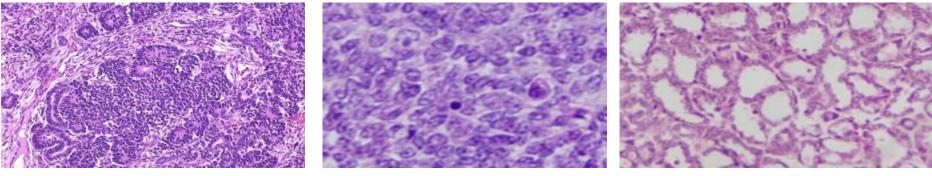


- Most children are asymptomatic at presentation and predominantly have a distended abdomen with a palpable mass
- Only <u>one in five children have</u> <u>signs/symptoms</u>; pain (40%), haematuria (25%), fever, hypertension (30%), constipation and weight loss are among the most common
- Presence of symptoms do not influence stage assignment


Wilms tumours: Unusual clinical presentation

- a. Rarely, a patient can present with an acute abdomen in the setting of tumour rupture and bleeding into surrounding tissue
- b. Symptoms related to metastases, such as dyspnoea (lung), abdominal pain (liver) or tumour thrombus in the renal vein or vena cava, or varicocele rarely occur
- c. Non-pulmonary and non-hepatic metastases are very rare at primary diagnosis of non-anaplastic WT

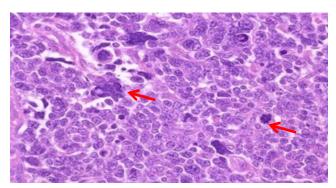
Wilms tumours: Clinical presentation, summary

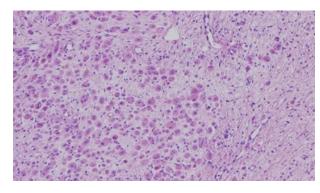


Few rare extrarenal locations have been reported (retroperitoneum, sacrococcygeal region, testis, uterus, inguinal canal, mediastinum) ~10% of WT occur as part of predisposition syndromes; screening, using renal ultrasound, is offered to children with predisposition syndromes & WT risk >5%

benchista

Wilms tumours: Introduction to WT subtypes




Classic triphasic

Blastemal

Epithelial

Anaplasia = cells with hyperchromatic, pleomorphic nuclei that are three times larger than adjacent cells and have abnormal mitotic figures (morphological criteria for definition)

Stromal, including heterologous differentiation

- \sim 7–8% of WTs demonstrate anaplasia
- The definition of anaplasia further specifies whether it is *diffuse* or *focal* based on the anatomical distribution of anaplastic cells
- Anaplastic tumour frequently harbour oncogenic *TP53* mutations
- 65%: advanced stage at diagnosis
- Patient median age: 56.5 months
- Anaplasia is a most important factor regardless of the treatment protocol adopted

Wilms tumours: (current) Diagnostic workup

Abdominal ultrasound (+colour-Doppler)	YES	Clarifies the organ of origin, extension into the renal and inferior cava veins, contralateral kidney, associated urogenital abnormalities, liver or lymph node metastases
Chest X-Ray	Optional	To association podulos
Chest CT scan (unenhanced)	YES	To assess lung nodules
Abdominal CT scan + i.v. iodinated contrast	YES	CT can be used interchangeably with MRI for diagnostic purposes
Abdominal MRI (± gadolinium)	YES	Preferably, for better assessment of potential nephrogenic rests and their distinction from true WT
FDG-PET	No	Not routinely used for WT
Bone scan	Clinical need	Reserved for patients with signs/symptoms suspicious for
Cross-sectional imaging of other sites	Clinical need	distant extra-pulmonary metastases

The usual labs are not specific for WT but need to be ordered to look for other pathologies and to start chemotherapy

Wilms tumours: Clinical presentation & diagnosis

• The diagnosis of WT can be suspected with reasonable certainty based on patient's age, history, physical examination and abdominal imaging (centrally reviewed), without tumour biopsy

Wilms tumours: Staging

Main differences in the staging workup between COG and SIOP are not in the type of imaging used, but rather in their interpretation in the light of pre-nephrectomy chemotherapy

	SIOP	COG	
	Localised vs metastatic; Bilateral vs unilateral	Localised vs metastatic; Bilateral vs unilateral	
AT DIAGNOSIS	Stage III if open surgical biopsy	Stage III if biopsy (any type); Stage III if inoperable tumour <u>and</u> preoperative chemotherapy done	
AT NEPHRECTOMY	(Delayed) Define 'local' stage	(Upfront) Define 'local' stage	

Wilms tumour: Definition of lung metastases

- Possible stage shift across subsequent protocols due to pulmonary metastases detected only by CT scan (<1 cm) but not by chest x-rays (as in older protocols)
- Different CT studies found lung nodules in 15% to 33% of patients with normal chest x-rays¹
- Up to 1/3 of nodules <1 cm in diameter may be benign nodules²

CHEST CT SCAN FOR STAGING (i.e. for detecting lung metastases) ACCROSS PROTOCOLS				
1986-2002 2005-onwards			nwards	
Optional in NWTS-4 & 5		Mandatory (COG AREN03B2 - AREN0533 protocol)		
2001-2016		2001-2016	2018-onwards	
Optional (SIOP 2001 Trial & Study)		Mandatory (Umbrella protocol)		

¹Owens et al. *J Clin Oncol*. 2002;20:2768; Grundy et al. *Ped Blood Cancer* 2012 ²Meisel et al. *Int J Radiat Oncol Biol Phys* 1999

Wilms tumour: Definition of lung metastases

<u>Current</u> research protocols include central review of **CT scan** to homogeneously classify lung nodules

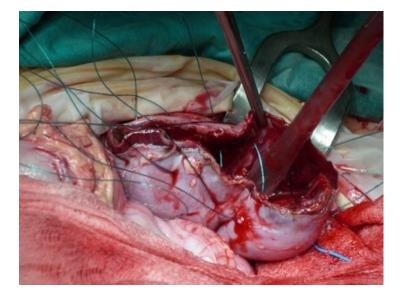
Lung nodules classified as metastases:

- <u>COG</u>: round, noncalcified lung nodules not in a fissure visible on chest CT scan, regardless of size
- <u>SIOP</u>: round, with sharp margins, with a transverse diameter ≥3 mm (on CT scan) and centrally-reviewed imaging appearance suspicious for metastatic origin

Wilms tumours: Common protocols in use

Child with imaging typical for Wilms tumour				
SIOP AP	PROACH	COG APPROACH		
Preoperative chemotherapy (Diagnostic biopsy evaluated in <u>select cases)</u> Primary nephrectomy for age < 6 months		Primary nephrectomy (Neo-adjuvant chemotherapy in unresectable or select cases)		
4-week in localised tumour; 8-week in metastatic tumour		Histologic, molecular and staging assessment		
Response assessment of tumour and metastases		Response assessment of metastases		
Delayed ne	phrectomy	Postoperativ	ve treatment	
Histologic risk and stage assessment		_	ge, anaplasia, molecular 10-naïve tumour)	
Postoperativ	Postoperative treatment			
According to tumour stage	and histological risk group			

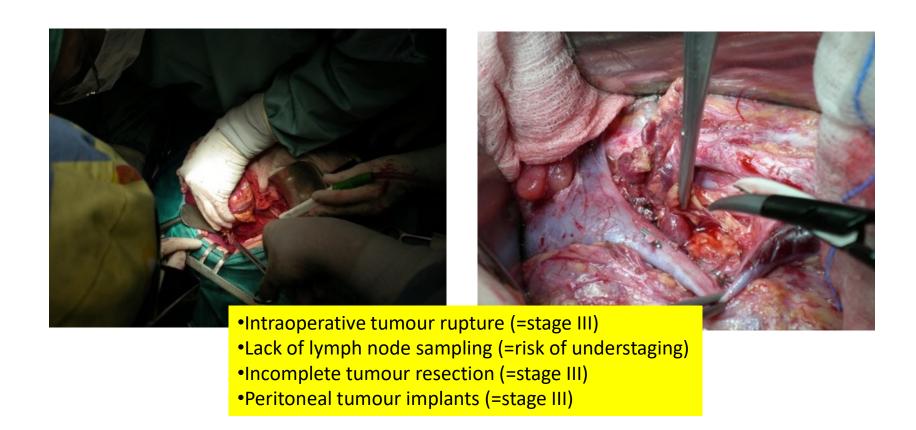
Wilms tumours: Standard surgical approach


Conventional surgical approach:

• Nephrectomy (laparotomy) with adequate lymph node sampling

Godzinsky et al. Eur J Pediatr Surg 2014; Lopyan et al. Surg Oncol Clin N Am 2021

Wilms tumours: Nephron sparing surgery


NSS is a standard surgical approach in:

- Bilateral WT
- WT in genetic predisposition syndrome
- WT & underlaying renal function impairment
- Sometime stage assignment is challenging

Godzinsky et al. Eur J Pediatr Surg 2014; Lopyan et al. Surg Oncol Clin N Am 2021

211 benchista

'Abdominal' staging in WT done at the time of surgery

Wilms tumours: Staging

	COG	SIOP
Stage I	 Tumour limited to kidney, completely resected. The renal capsule is intact. The tumour was not ruptured or biopsied prior to removal. The vessels of the renal sinus are not involved. There is no evidence of tumour at or beyond the margins of resection. 	 Tumour is limited to the kidney. Tumour is present in the perirenal fat but is surrounded by a fibrous (pseudo)capsule. The (pseudo)capsule might be infiltrated by viable tumour, which does not reach the outer surface. Tumour might show protruding (botryoid) growth into the renal pelvis or the ureter but does not infiltrate their walls. The vessels or the soft tissues of the renal sinus are not involved by tumour. Intrarenal vessel involvement might be present.
Stage II	 The tumour is completely resected and there is no evidence of tumour at or beyond the margins of resection. The tumour extends beyond kidney, as is evidenced by any one of the following criteria: a. there is regional extension of the tumour (i.e. penetration of the renal capsule, or extensive invasion of the soft tissue of the renal sinus); b. blood vessels within the nephrectomy specimen outside the renal parenchyma, including those of the renal sinus, contain tumour 	 Viable tumour is present in the perirenal fat and is not covered by a (pseudo)capsule, but is completely resected (resection margins are clear). Viable tumour infiltrates the soft tissues of the renal sinus. Viable tumour infiltrates blood and/or lymphatic vessels of the renal sinus or of the perirenal tissue, but it is completely resected. Viable tumour infiltrates the wall of the renal pelvis or of the ureter. Viable tumour infiltrates the vena cava or adjacent organs (except the adrenal gland) but is completely resected.

Wilms tumours: Staging

COG	SIOP
 Residual nonhaematogenous tumour present following surgery, and confined to abdomen. Anyone of the following may occur: a. lymph nodes within the abdomen or pelvis are involved by tumour (note: lymph node involvement in the thorax, or other extra-abdominal sites is a criterion for stage IV); b. the tumour has penetrated through the peritoneal surface; c. tumour implants are found on the peritoneal surface; d. gross or microscopic tumour remains postoperatively (e.g., tumour cells are found at the margin of surgical resection on microscopic examination); e. the tumour is not completely resectable because of local infiltration into vital structures; f. tumour spillage occurring either before or during surgery; g. the tumour is treated with preoperative chemotherapy (with or without a biopsy regardless of type- tru-cut, open or fine needle aspiration) before removal; h. tumour is removed in greater than one piece (e.g. tumour cells are found in a separately excised adrenal gland; a tumour thrombus within the renal vein is removed separately from the nephrectomy specimen). Extension of the primary tumour within vena cava into thoracic vena cava and heart is considered stage III, rather than stage IV even though outside the abdomen. 	 Viable tumour is present at a resection margin. Nonviable tumour or chemotherapy induced changes present at a resection margin are not regarded as stage III. Abdominal lymph node involvement is present by either viable or nonviable tumour. Preoperative or intraoperative tumour rupture, if confirmed by microscopic examination (viable tumour at the surface of the specimen at the area of the rupture). Viable or nonviable tumour thrombus is present at resection margins of ureter, renal vein, or vena cava inferior (always discuss resection margins with the surgeon). Viable or nonviable tumour thrombus, which is attached to the inferior vena cava wall, is removed piecemeal by a surgeon. Wedge or open tumour biopsy before preoperative chemotherapy or surgery. Tumour implants (viable or nonviable) are found anywhere in the abdomen. Tumour (viable or nonviable) has penetrated through the peritoneal surface.

Few staging factors have raised as much controversy over the years as that of tumour "spillage"

- Current **COG** criteria indicate that a tumour that "spills" or ruptures <u>preoperatively or intraoperatively</u> should be designated as <u>stage III</u>, regardless of the degree or localization of the spillage
- Any preoperative biopsy is considered as a spill (whether, tru-cut, open or fine needle aspiration)
- If pre-nephrectomy therapy is given, with or without a needle biopsy, the local tumour should be considered to be stage III

Some of previous stage III criteria have undergone important changes in SIOP UMBRELLA protocol in comparison with the SIOP–2001 trial criteria

- The presence of nonviable tumour or chemotherapy-induced changes only at a resection margin is no longer regarded as stage III
- The UMBRELLA protocol now states that the presence of tumour rupture at diagnosis on imaging studies (i.e., prechemotherapy) is only considered as pathological stage III if viable tumour is seen microscopically at the rupture site of the nephrectomy specimen
- Abdominal lymph node involvement is present by either viable or nonviable tumour

Vujanic et al. Nat Rev Urol. 2018 Nov;15(11):693-701

Wilms tumours: Staging

	COG	SIOP
Stage IV	 Haematogenous metastases (lung, liver, bone, brain, etc.), or lymph node metastases outside the abdominopelvic region are present. (The presence of tumour within the adrenal gland is not interpreted as metastasis and staging depends on all other staging parameters present). 	 Haematogenous metastases (for example, lung, liver, bone and brain) or lymph node metastases outside the abdominopelvic region.
Stage V*	 Bilateral tumours at diagnosis; each side should be substaged according to the above criteria. 	 Bilateral renal tumours at diagnosis; each side should be substaged according to the above criteria.

*In the BENCHISTA project, the higher tumour stage of the two sides (or stage IV if overall metastatic) should be documented. The presence of bilateral disease can be documented as a separate data field.

SIOP vs COG, prognostic factors in clinical use

Factors	SIOP	COG	notes
Stage	Υ	Y	But differences
Initial biopsy	does not matter (only open biopsy)	stage III (any type of biopsy)	
Anaplasia	Y (diffuse)	Y (focal & diffuse)	
Histologic response (blastemal type; completely necrotic type)	Y	Only in bilateral tumors	
LOH 1p/16q	Ν	Y	
Patient age/tumour weight <550g	Ν	Y	
Tumour volume after pre-op CT	Y (in some histologies)	Ν	
Completeness of lung nodule response	Y	Y	

Wilms tumour, Survival (NWTS-5)

Stage	Favorable Histology		Diffuse an	aplastic
	EFS (%)	OS (%)	EFS (%)	OS (%)
I	94.2	98.4	68.4	78.9
П	84.4	97.2	82.6	81.5
III	86.5	94.4	64.7	66.7
IV	75.1	85.2	33.3	33.3

Wilms tumour, Survival (SIOP 2001)

Histologic risk	Stage I	Stage II	Stage III	Stage IV
Low-Risk				
2-year EFS	97%	100%	100%	91%
5-year OS	99%	100%	100%	94%
Intermediate-Risk				
EFS	92%	89%	88%	81%
OS	98%	97%	94%	89%
High-Risk				
EFS	91%	84%	68%	31%
OS	97%	82%	70%	35%

Brok J, et al. Biology and treatment of renal tumours in childhood. Eur J Cancer. 2016

Wilms Tumour: Non-stage prognostic factors, SIOP

Solid Tumour	Essential	Additional	New and Promising	Comments
Wilms Tumour	Histology (low-risk; intermediate-risk, high-risk – but only anaplasia is included in current Toronto NSPs)	Tumour volume after pre-operative chemotherapy; rapidity of lung metastases response after chemotherapy	Gain on chromosome 1q; residual blastemal volume	Histological sub- classification assessed after adjuvant chemotherapy

Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. **Lancet Oncol 2020; 21: e444–51**

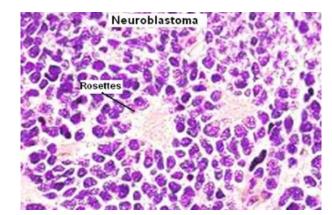
Wilms Tumour: Non-stage prognostic factors, COG

Solid Tumour	Essential	Additional	New and Promising	Comments
Wilms Tumour	Histology (anaplasia, focal or diffuse)	Patient age <2 yrs + stage I + tumour weighting <550g*; rapidity of lung metastases response after chemotherapy; loss of heterozygosity on both chromosome 1p and 16q	Gain on chromosome 1q; *loss of heterozigosity (LOH)/loss of imprinting (LOI) at chromosome 11p15	*to define select Very Low-Risk patients

Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. Lancet Oncol 2020; 21: e444–51

Wilms tumours: Summary

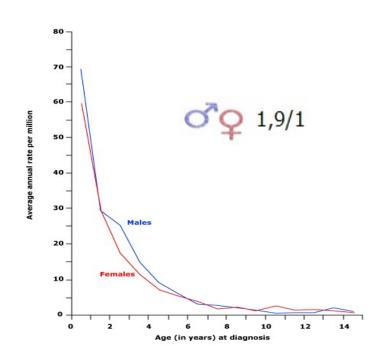
- Minimal staging workup at diagnosis (imaging of chest and abdomen)
- A prognostic factor can only be evaluated in the context of the treatment given: this principle is relevant to WT as COG studies advocate for immediate nephrectomy whereas SIOP studies advocate for preoperative chemotherapy
- Tumour stage and histology important across different protocols
- Tumour biology currently adopted as risk factor only in COG protocols



Neuroblastoma

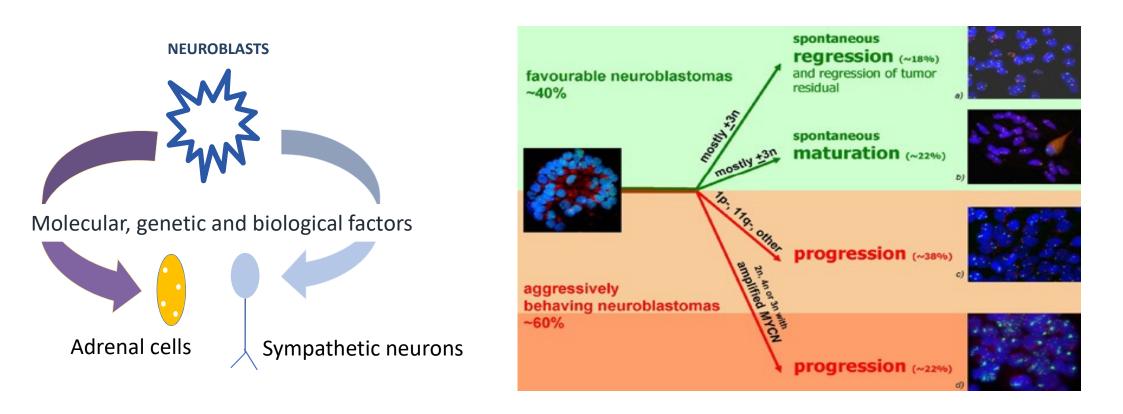
Clinical expert: Dr Adela Cañete

Neuroblastoma: Introduction and general aspects

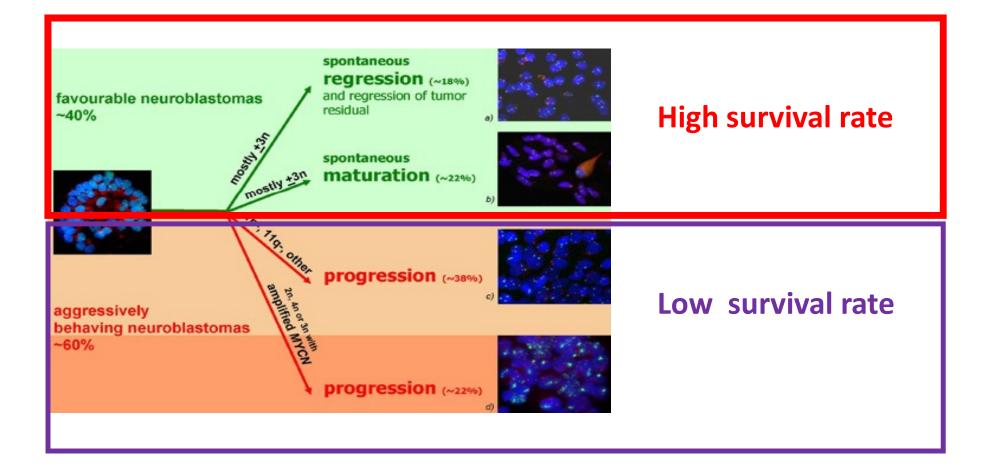

Tumour cells are usually described as small, rounded, bluish-blue, rosettepatterned cells (Homer-Wright pseudorosettes).

Most common extracranial solid tumour in children.Mean age: 17.3 months.

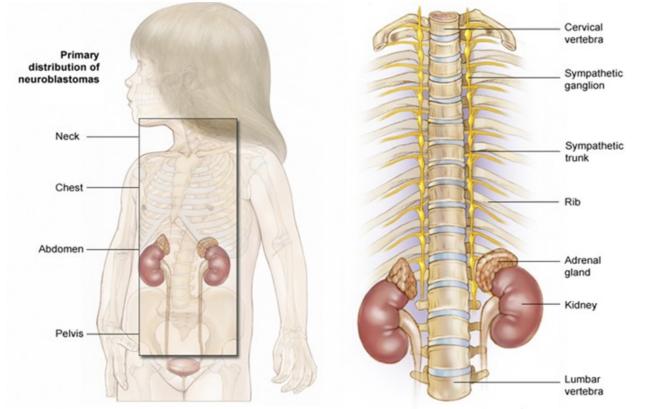
•Incidence: 9,9 x 10*6.


•It originates from adrenal medulla cells or paraspinal ganglia of the sympathetic nervous system..

• Biomarker: Increase of catecholamin metabolits in urine (VM and HVA).



Biological and clinical heterogeneity


Neuroblastoma: Introduction and general aspects

Clinical heterogeneity: Location and dissemination

METASTASES

✓ LYMPHATIC NODES

- ✓ BONE MARROW
- ✓ CORTICAL BONE
- ✓ ORBIT
- ✓ LIVER
- ✓ SKIN

2005 American Society of Clinical Oncology

- Child, 4 years old
- Tiredness, fever,
- "Abdominal swelling", pain
- Bruising around the eyes.
- Moaning and with pain in the lower extremities.
- BP 120/90
- Tumour in right hemiabdomen, mistaken for liver.

9-month-old infant

- 3 months: oculogyric movements and hypotonia.
- Hepatomegaly study
- Elevated catecholamines.
- Central retroperitoneal mass

Newborn.

Prenatal ultrasound detected an adrenal mass.

No other clinical findings.

Infant, 9 month

Right Leg monoparesy

Neurogenic bladder in ultrasound examination

5 year old boy

Fever and cough. X-ray: mass in posterior mediastinum present one year ago in another X-ray. .

Raccon eyes

Blueberry muffin skin nodules

Hepatomegaly

Heterochromia iris

Claudio Bernard Horner Sdr.

Neuroblastoma: Introduction and general aspects

We, as clinicians, need to predict tumour behaviour in order to...

Adapt the therapeutic strategy to the risk of relapse (Risk groups) using different factors...

INRG: International Neuroblastoma Risk Group.

NRG Stage	Age	Diagnostic Category Tumor Grade	MYCN	Unb 11q aberration	Ploidy	Pre-treatment Risk Group
L1		GN maturing GNB intermixed	NA			A Low
		Any, except GN maturing or	NA			B Low
		GNB intermixed	Amp			H High
L2		GN maturing GNB intermixed				A Low
	<18m	Any, except GN maturing or GNB intermixed	NA	No		D Intermediat
				Yes		I High
	<u>≥</u> 18m	GNB nodular, differentiating NB, differentiating	NA	No		E Intermediate
		GNB nodular, poorly differentiated or undifferentiated	NA	Yes		J High
		NB, poorly differentiated or undifferentiated	NA	(Any)		J High
	(Any)		Amp			N Ultra-High
М	<18m		NA		Hyperdiploid	F Intermediat
					Diploid	G Intermediat
			Amp			O Ultra-High
	<u>></u> 18m					P Ultra-High
MS	<18m		NA	No		C Low
				Yes		K High
			Amp			Q Ultra-High

Cohn S et a.J Clin Oncol 2008, 27:289-297.

SURVIVAL according to risk factors:

Pre-treatment Group	5-year EFS	Proportion of Patients (%)
Low	<u>></u> 85%	28.2
Intermediate	75-<85%	26.8
High	50-<75%	9.0
Ultra-High	<50%	36.1

Cohn S et a.J Clin Oncol 2008, 27:289-297

Neuroblastoma: Introduction and general aspects

International Classification of Childhood Cancer, Third Edition: Main Classification Table

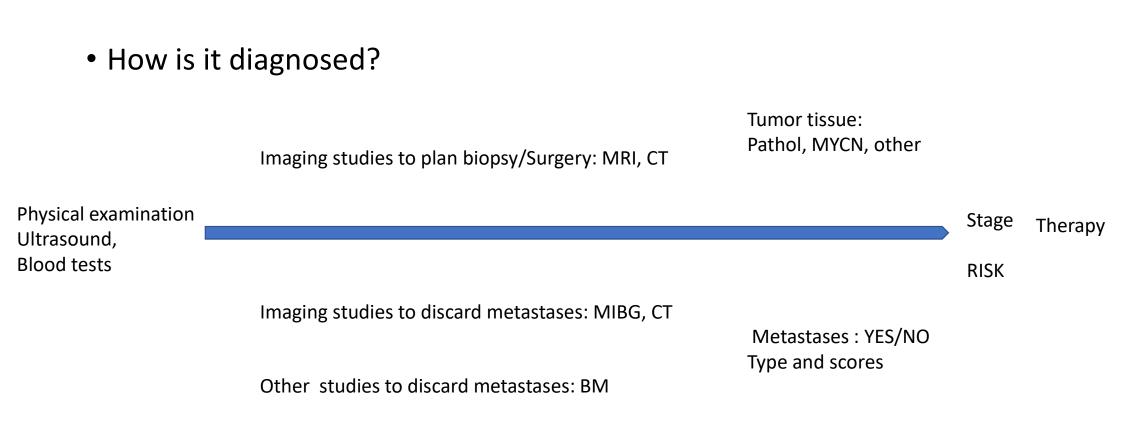
	ICD-0-3 code	(s) ¹⁰
Diagnostic group	Morphology	Topography
V. Neuroblastoma and other peripheral nervous cell tumors	9490, 9500	
 a. Neuroblastoma and ganglioneuroblastoma b. Other peripheral nervous cell tumors 	8680-8683, 8690-8693, 8700, 9520-9523	
r	9501-9504	C00.0-C69.9, C73.9-C76.8, C80.9

International Classification of Childhood Cancer, Third Edition

Eva Stellarova-Foucher, Ph.D.¹ Charles Stiller, M.Sc.² Brigitte Lacour, M.D.³ Peter Kaatsch, Ph.D.⁴

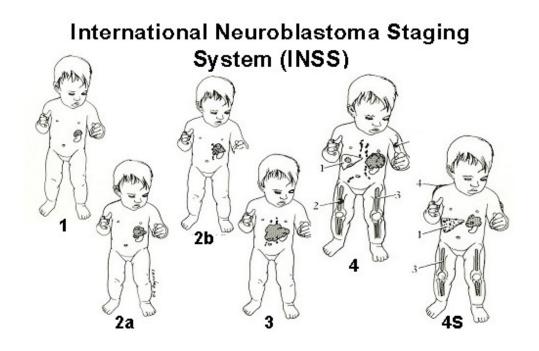
¹ International Agency for Research on Cancer,

BACKGROUND. The third edition of the International Classification of Diseases for Oncology (ICD-O-3), which was published in 2000, introduced major changes in coding and classification of neoplasms, notably for leukemias and lymphomas, which are important groups of cancer types that occur in childhood. This necessitated a third revision of the 1996 International Classification of Childhood Cancer (ICCC-3).


TABLE 1

Neuroblastoma: Introduction and general aspects

Tips


- Biological heterogeneity.
- Clinical heterogeneity, from "mild disease" to "severe, life-threatening or functional threatening" disease.
- Very young children: the younger, the better...
- Risk factors that remains over years:
 - ✓ Age✓ Stage
 - ✓N-myc amplification

benchista

- In 1988, International staging criteria were agreed: INSS.
- However, the application of these criteria (especially with regard to the primary tumour) was uneven among the co-operative groups.

Brodeur GM et al. J Clin Oncol 6:1874-1881, 1988

INRGSS: International Neuroblastoma Risk Group Staging System

A major review and new consensus emerged in 2009, based on the work by European surgeons who published the results of LNESG1 and defined:

Surgical risk factors determined by imaging: IDRF

- Universal
- Inclusive: includes all neuroblastomas
- No surgery-dependent
- No pathology-dependent
- Comparable

Monclair T, J Clin Oncol 2009, 27:298-303.

INRGSS: International Neuroblastoma Risk Group Staging System

Universal

Inclusive

Independent

Table 2

• Comparable

Tumor Stage	Description
LI	Localized tumor not involving vital structures, as defined by the list of IDRFs, and confined to one body compartment
L2	Local-regional tumor with presence of one or more IDRFs
M	Distant metastatic disease (except stage MS tumor)
MS	Metastatic disease in children younger than 18 months, with metastases confined to skin liver, and/or bone marrow

Source.--Reference 8. Complete definitions of these stages are cited in the text. IDRFs = image-defined risk factors.

Radiology

Guidelines for Imaging and Staging of Neuroblastic

Tumors: Consensus Report from the International Neuroblastoma Risk

Group Project¹

¹ From the Imaging Department, Institut Curie, 26 rue d'Ulm, 75005 Paris, France (H.J.B.). The complete list of the author affiliations is at the end of this article. Received August 27, 2010; revision requested October 21; revision received January 28, 2011; accepted March 1; final version accepted March 21. Supported in part by the William Guy Forbeck Research Foundation and Little Heroes Cancer Research Foundation. **Address correspondence to** H.J.B. (e-mail: herve.brisse@curie.net).

RSNA, 2011

Primary tumor

L1 or L2?

Are there IDRF?

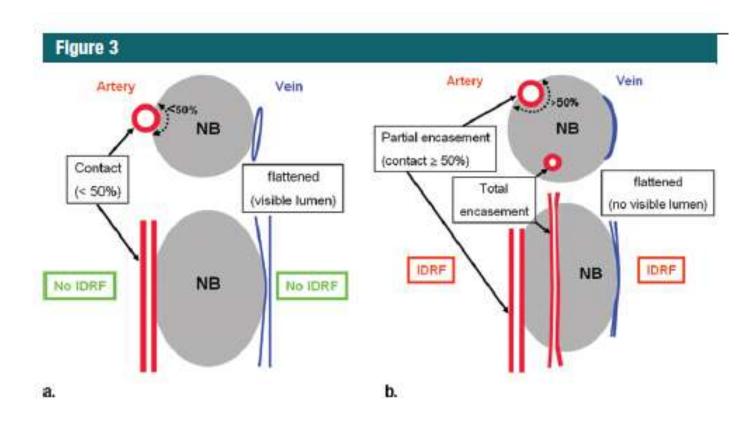
=

Table 3

Descriptions of IDRFs

Anatomic Region	Description
Multiple body compartments	Ipsilateral tumor extension within two body compartments (ie, neck and chest, chest and abdomen, or abdomen and pelvis)
Neck	Tumor encasing carotid artery, vertebral artery, and/or internal jugular vein Tumor extending to skull base Tumor compressing trachea
Cervicothoracic junction	Tumor encasing brachial plexus roots Tumor encasing subclavian vessels, vertebral artery, and/or carotid artery Tumor compressing trachea
Thorax	Tumor encasing aorta and/or major branches Tumor compressing trachea and/or principal bronchi Lower mediastinal tumor infiltrating costovertebral junction between T9 and T12 vertebral levels
Thoracoabdominal junction	Tumor encasing aorta and/or vena cava
Abdomen and pelvis	Tumor infiltrating porta hepatis and/or hepatoduodenal ligament Tumor encasing branches of superior mesenteric artery at mesenteric root Tumor encasing origin of celiac axis and/or origin of superior mesenteric artery Tumor invading one or both renal pedicles Tumor encasing aorta and/or vena cava Tumor encasing iliac vessels Pelvic tumor crossing sciatic notch
Intraspinal tumor extension	Intraspinal tumor extension (whatever the location) provided that more than one-third of spinal canal in axial plane is invaded, the perimedullary leptomeningeal spaces are not visible, or the spinal cord signal intensity is abnormal
Infiltration of adjacent organs and structures	Pericardium, diaphragm, kidney, liver, duodenopancreatic block, and mesentery

Source.—Reference 8. Conditions that should be recorded but are not considered IDRFs are multifocal primary tumors, pleural effusion with or without malignant cells, and ascites with or without malignant cells.


1/ Important definitions

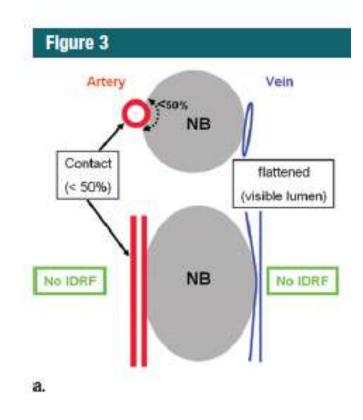
2/ Anatomical sites.

- Carried out by radiologists
- Written in the radiological reports and tumor board reports.

Important definitions for IDRF in MRI/CT

No IDFR criteria:

Separation:

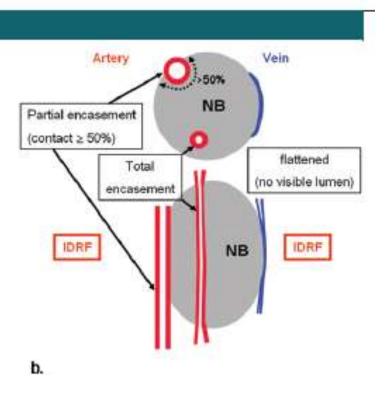

there is a visible layer, usually fat between the tumour and neighbouring structures..

Contact:

There is no visible layer between tumour and neighbouring structures.

If in contact with a vessel, it is < al 50% of circumference Vessels can be disminished and collapsed but lumen visible.

• EXCEPTION: RENAL VESSELS: ANY CONTACT = IDRF.



IDFR criteria:

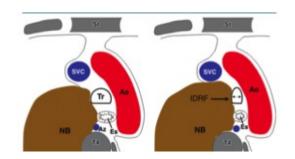
Encasement: Structures surrounded by tumour. Vessels: more than 50% circumference in contact with tumour. A vessel where lumen cannot be distinguished= encased.

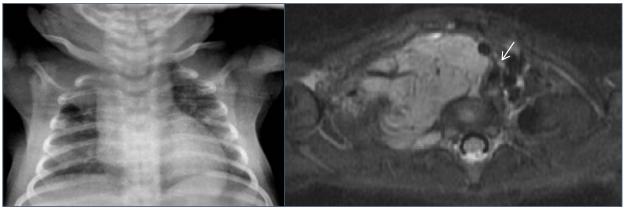
<u>Compression</u>: it refers to trachea being compressed by tumour: ; change in the diameter of trachea's lumen = IDRF.

<u>Infiltration</u>: extension of the tumor to neighbouring organs. It is considered IDRF.

Separation

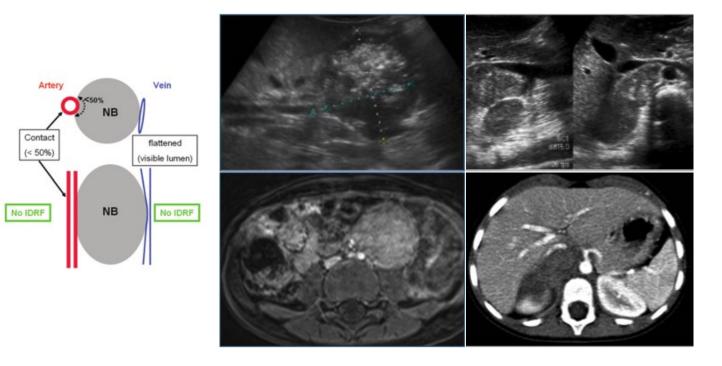
Good layer, no IDRF



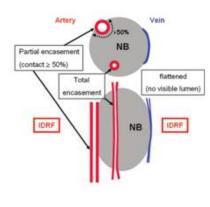


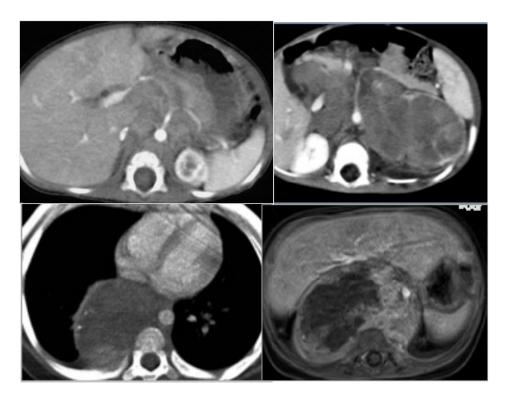
Compression

Airway

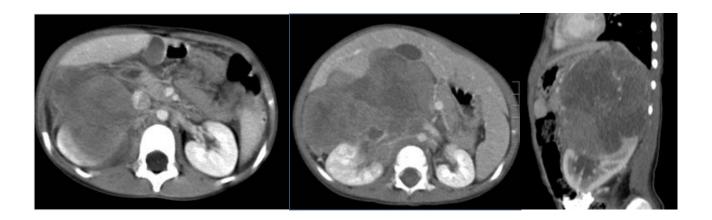

■IDRF

Contact




• Exception: Renal vessels = Contact = IDRF

Encasement



Infiltration

Extension to a neighbouring organ without layer of separation = IDRF

IDRF by anatomical compartiments:

- <u>Cervical neuroblastoma</u>: arises from the cervical sympathetic chain behind the internal carotid artery. IDRFs are present if it engulfs the cervical vessels, compresses the trachea or extends to the base of the skull. It rarely becomes intraspinal at this level.
- Cervicothoracic neuroblastoma: arises from the area of the stellate ganglion. It is an area of high surgical difficulty. IDRFs exist if the tumour involves the roots of the brachial plexus, subclavian and cervical vessels and compresses the trachea.
- <u>Thoracic neuroblastoma</u>: arises from the posterior mediastinal paraspinal sympathetic chain. <u>Intraspinal invasion is frequent in this location</u>, if it is greater than 1/3 of the spinal canal, if there is CSF obliteration in the leptomeningeal space or alteration in the medulla, it indicates IDRFs present.

IDRF by anatomical compartiments:

- Inferior mediastinal neuroblastoma: infiltration of the costovertebral junction between levels T9 to T12 indicates IDRF due to the presence of the anterior spinal artery (Adamkievicz artery). Also at this level, the relationship of the tumour with the descending aorta, pulmonary pedicles, compression of the bronchi, and infiltration of the pleura, pericardium and diaphragm are assessed.
- <u>Abdominal neuroblastoma</u>: originates in the adrenal gland of the abdominal sympathetic chain, Zuckerkandl's organ. The close relationship of the tumour with the abdominal vessels (celiac trunk, mesenteric, renal and iliac vessels) makes it <u>highly</u> complex surgery. In addition, the structures adjacent to the tumour must be assessed: porta hepatis, diaphragm, kidneys, mesentery.
- <u>Pelvic neuroblastoma</u>: arises from the hypogastric sympathetic plexus or presacral sympathetic ganglia. They extend towards the lumbosacral foramina and iliac vessels. Extension below L2 towards the foraminal foramina results in radicular involvement rather than spinal cord compression. Extension through the sciatic notch is important when considering IDRF.

How is it diagnosed? Imaging studies to plan biopsy/Surgery: MRI, CT Physical examination Ultrasound, Blood tests Imaging studies to discard metastases: MIBG, CT Imaging studies to discard metastases: BM Other, studies to discard metastases: BM

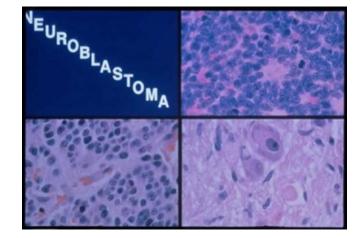
Neuroblastoma: Diagnosis & Staging

benchista

Consensus report for pathology:

IHC: NB-84, Tirosin-hidroxilasa (TH), CD-56 (N-CAM), Synaptofisin, y Protein S-100 .

Mitosis – Kariorrexis index.

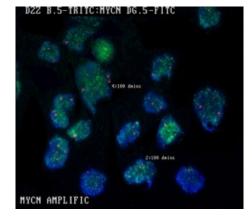

Presence/abscence calcification.

Surgical margins.

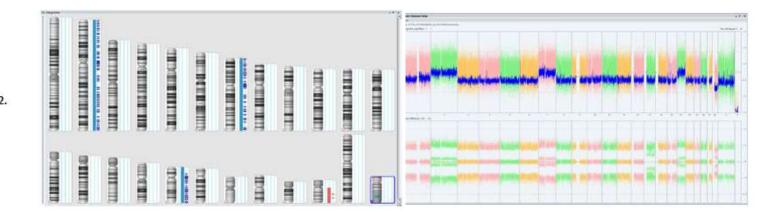
Node invasión

% Neuroblasts / Schwanian cells

Shimada H, Ambros IM, Dehner LP, et al. The International neuroblastoma pathology classification (the Shimada system). Cancer 1999; 86:364-72.



b) MYCN, TERT and ALT-FISH, SNParray/CGH/IcWGS, NGSpanel; Research projects on i.e. cell free DNA (cfDNA) will be carried out

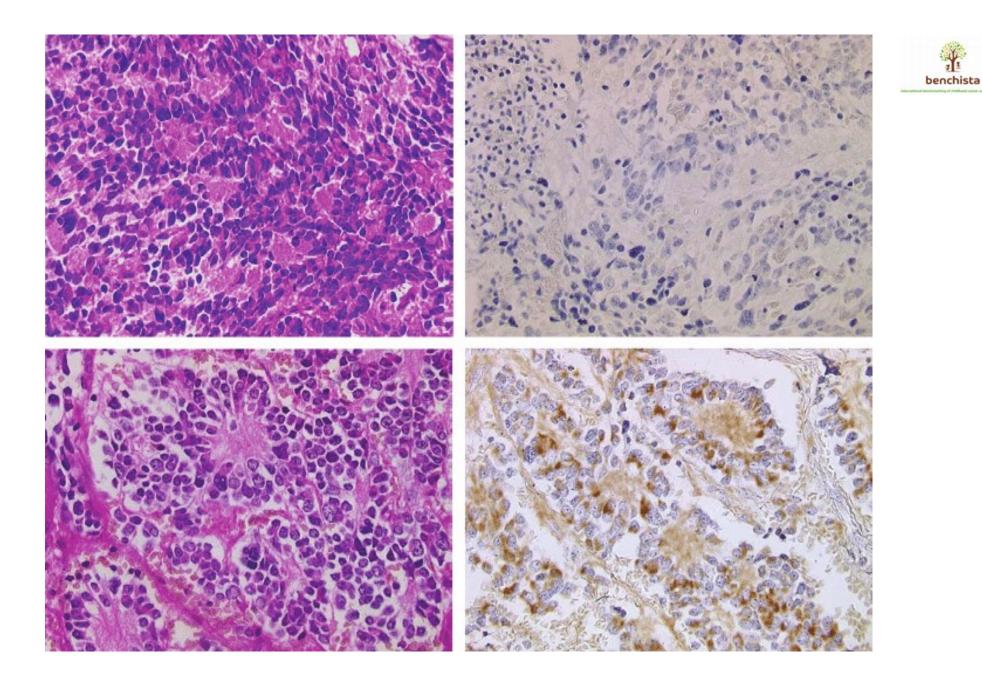


Genetic studies: MYC-N amplification !:

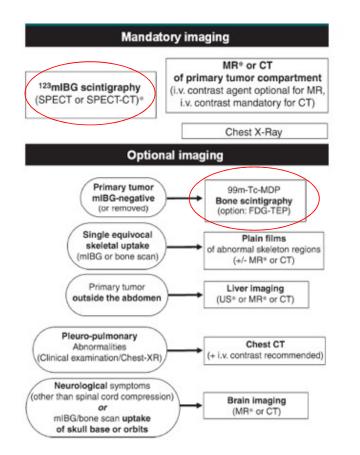
- Oncogen N-myc: cromosoma 2.
- Over 10 copies = bad prognosis always!.
- FISH: Gold standard in most clinical laboratorios.

- Other studies:
 - Copy number variations by different techniques (SNP array(CGH,IcWGS

- Alteraciones numéricas (NCA): SÍ. +2, +7, LOH 14, +17, -22.


- Alteraciones cromosómicas segmentarias (SCA): NO.

Neuroblastoma: Staging


Bone marrow staging: INSS 1988

- From two different sites: 2 bone marrow aspirations and 2 bone marrow biopsies.
- Bone cylinders must be evaluable: 1 cm.
- Complex in infants and very Young children (more BMA can be carried out).
- Pathological criteria.

GUIDELINES FOR IMAGING AND STAGING OF NEUROBLASTIC TUMORS: CONSENSUS REPORT FROM THE INTERNATIONAL NEUROBLASTOMA RISK GROUP PROJECT 2011

123MIBG SCINTIGRAPHY (OSTEOMEDULLARY)

Physiological uptake: salivary glands, miocardium, thyroid, liver, bladder.

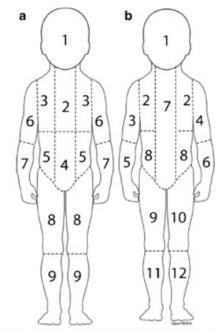
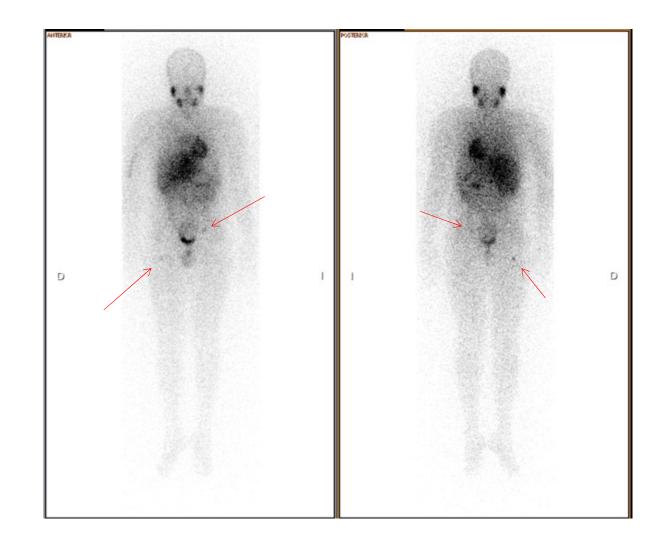
Distant metastases : Bone marow and bone

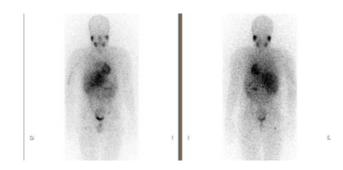
MIBG is not uptaken physiologically in BM It detects osteo-medullary targets

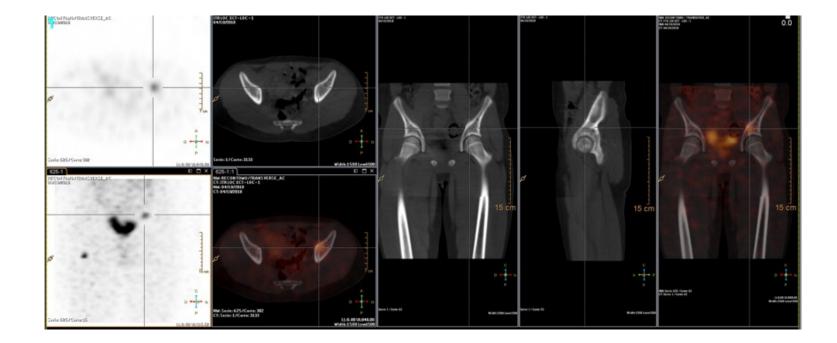
Sensitivity 90% and Specificity 100%

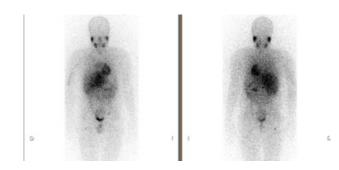
To assess extent and response: "Semi-quantitative scale".

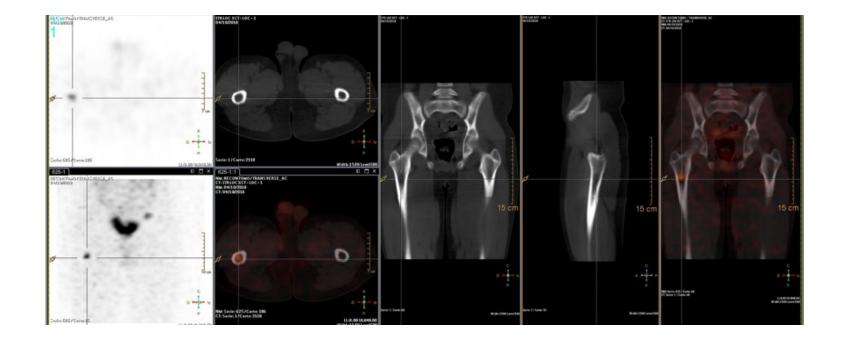
Neuroblastoma: Diagnosis & Staging


Fig. 1 Semiquantitative mIBG scoring systems. a The Curie scoring system divides the skeleton into nine segments as shown, with a tenth segment designated for soft tissue disease. b The SIOP-EN scoring system divides the skeleton into 12 segments; there is no segment for soft tissue involvement (from Sharp et al. [35])


1/ Good thyroid block.


2/ Whole body, including full hands and feet.


3/ SPECT

- Child, 4 years old
- Tiredness, fever,
- "abdominal swelling", pain
- bruising around the eyes.
- Moaning and with pain in the lower extremities.
- BP 120/90
- Tumour in right hemiabdomen, mistaken for liver.

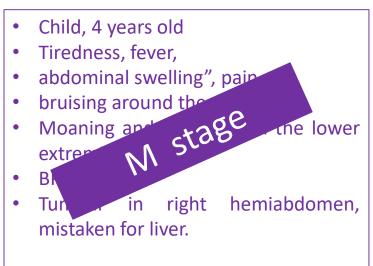
9-month-old infant

- 3 months: oculogyric movements and hypotonia.
- Hepatomegaly study
- Elevated catecholamines.
- Central retroperitoneal mass

Newborn.

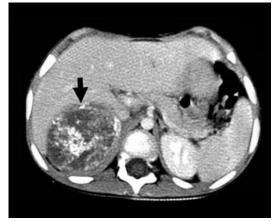
Prenatal ultrasound detected an adrenal mass.

No other clinical findings.


Infant, 9 month

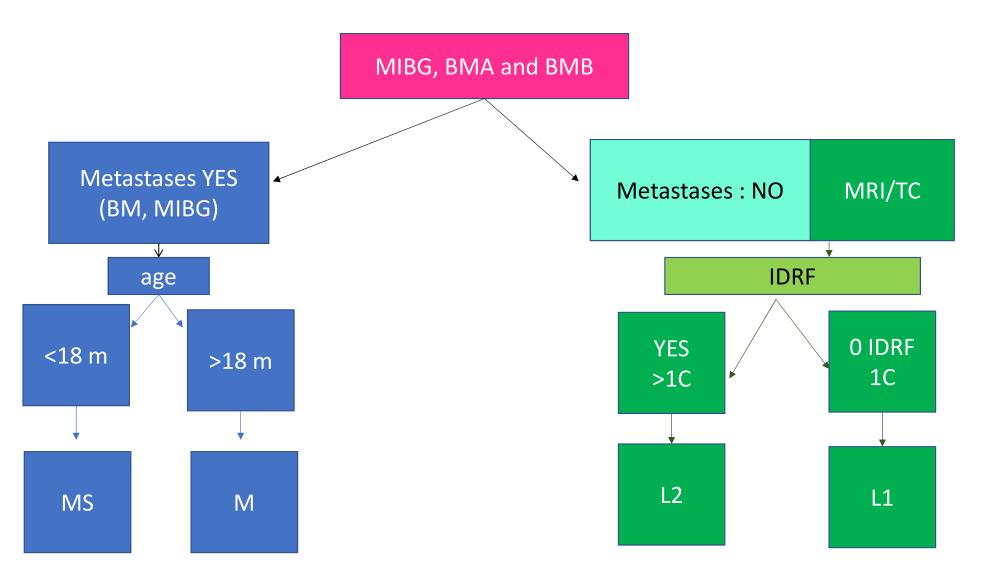

Right Leg monoparesy

Neurogenic bladder in ultrasound examination


5 year old boy

Fever and cough. X-ray: mass in posterior mediastinum present one year ago in another X-ray. .





Road map for staging in neuroblastoma:

- How is it diagnosed? : Main/usual diagnostic procedures used?
 - 1. Aim: Biopsy of primary tumor by surgery or tru-cut.
 - 2. If not feasible, Bone marrow infiltrated is diagnostic.
 - 3. If not feasible neither both of them: MIBG+ and increased of catecholamins.

Enough material to secure not only diagnosis, but pathological classification (INPC) and biological studies (MycN amplification).

Other genetic / biological studies in research.

- What investigations are used for tumour staging and how are they interpreted?
 - Primary tumor: MRI is the gold-standard. If not feasible: CT. Ultrasound only for daily clinics.
 - Metastases: ¹²³I-MIBG (thyroide blockade) and Bone marrow studies (biopsy, BMA). Infants: bone marrow aspirations.
 - INRGSS: Define IDRF and presence/abscence of metastases.

T. S second tier for Neuroblastoma: INRGSS.

Level 2 follows the International Neuroblastoma Risk Group Staging System (INRGSS).

Level 1 criteria are simplified equivalents of Level 2, which do not require assessment of image-guided risk criteria in situations where cross-sectional imaging is not available or does not exist.

L1: Localized without IDRF. One compartiment
L2: Localized, at least one IDRF. Two contigous compartiments
M: Metastases, except MS
MS: < 18 months with metastases: skin, liver, BM (>10%). L1 or L2 locally.

Neuroblastoma: Therapy and non-stage prognostic factors

Pre-treatment Group	5-year EFS	Proportion of Patients (%)	
Low	<u>></u> 85%	28.2	Decrease treatment to avoid sequelae
Intermediate	75-<85%	26.8	Different approaches: no consensus
High	50-<75%	9.0	Multimodal intensive treatment
Ultra-High	<50%	36.1	Experimental and new approaches

Multimodal intensive treatment:

Induction chemotherapy- Surgery- Consolidation (BMT)- Radiotherapy- MRD treatment

Neuroblastoma: Non-stage prognostic factors

Solid Tumour	Essential	Additional	New and Promising	Comments
Neuroblastoma	Age Stage	N-myc	CNV 11q ALK mutation TERT	MYCN copy number is essential for clinical risk stratification but is not uniformly available to cancer registries

Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. Lancet Oncol 2020; 21: e444–51

Neuroblastoma: Summary

- Clinical heterogeneity.
- INRGSS for staging = T2 Toronto staging.
- Follow in-house road map for staging
- IDRF important to define local staging and initial biopsy (L1/L2).
- Metastases: Bone marrow (biopsy, aspiration) and MIBG (Bone and other).
- Age is an important factor : The younger ... the better. 18 months!
- Nmyc amplification.
- Therapy according to risk stratification:
 - low : decrease therapy safely in those that can be decreased (Biology /LTS).
 - Intermediate: ?
 - High: multimodal everywhere!.

Toronto Staging

Méric Klein, Belgian Cancer Registry

Gemma Gatta (Fondazione IRCCS, INT, Milan) Andrea Di Cataldo (University of Catania)

Leisa O'Neill - Australian Childhood Cancer Registry

Wilms tumours: Toronto Staging

Tier 1

Localised	Metastatic
Tumour confined to the area of origin	Distant metastases present at diagnosis

Tier 2 = COG/SIOP

- 2 different staging systems
 - Children's Oncology Group 'COG'
 When NO chemotherapy is given prior to surgery
 - International Society of Paediatric Oncology 'SIOP'
 - > When chemotherapy is given prior to surgery
 - Identified by the prefix "y"
 - Both are based on findings at surgery (except for stage IV)
- Staging requires assessment of
 - Diagnostic imaging (regardless of upfront chemo/surgery)
 - Results of surgical excision

Tier 2 = COG/SIOP

COG - When **NO** chemotherapy is given prior to surgery

Stage I	Stage II	Stage III	Stage IV
Tumour limited to kidney and completely excised	Tumour extends beyond kidney but is completely resected	Residual tumour or non- haematogenous metastases confined to abdomen	Haematogenous metastases or spread beyond abdomen at diagnosis

Tier 2 = COG/SIOP

COG - When **NO** chemotherapy is given prior to surgery

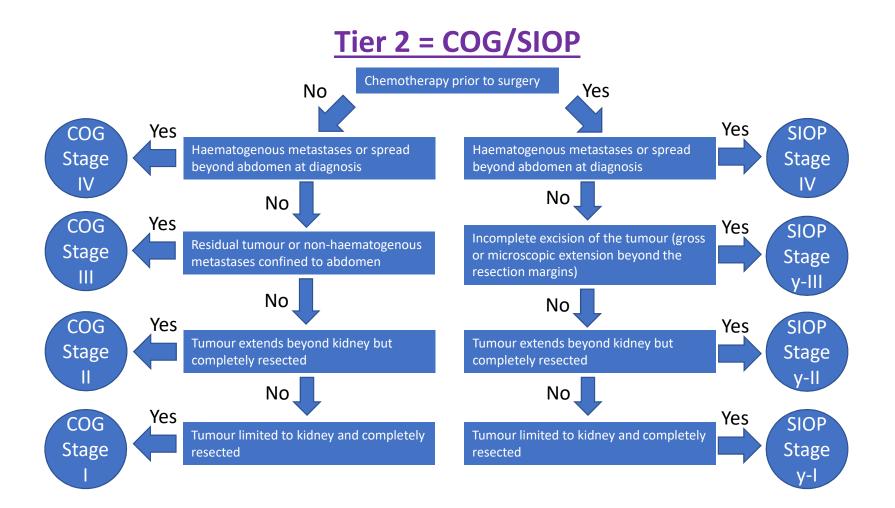
Some conditions to interpret the stages

Stage I	Stage II	Stage III	Stage IV
Renal capsule intact,	Tumour penetrates	Involved abdominal nodes.	
not penetrated by	renal capsule.	Peritoneal contamination	
tumour.	Tumour in lymphatics	or tumour implant.	
No tumour invasion of	or veins of renal sinus.	Tumour spillage of any	
veins or lymphatics of	Tumour in renal vein	degree occurring before or	
renal sinus.	with margin not	during surgery.	
No nodal or	involved.	Gross residual tumour in	
haematogenous	No nodal or	abdomen.	
metastases.	haematogenous	Biopsy of tumour (including	
No prior biopsy.	metastases.	fine-needle aspiration)	
Negative margins.	Negative margins.	prior to removal of kidney.	
		Resection margins involved	
		by tumour.	

Tier 2 = COG/SIOP

SIOP - When chemotherapy is given prior to surgery

Stage y-I	Stage y-II	Stage y-III	Stage IV
Tumour limited to kidney and completely resected	Tumour extends beyond kidney but is completely resected	Incomplete excision of the tumour (gross or microscopic extension beyond resection margins)	Haematogenous metastases or spread beyond abdomen at diagnosis


Tier 2 = COG/SIOP

SIOP - When chemotherapy is given prior to surgery

Some conditions to interpret the stages

Stage y-I	Stage y-II	Stage y-III	Stage IV
Renal capsule may be	Tumour penetrates	Involved abdominal lymph	
infiltrated by tumour,	renal capsule into	nodes, including necrotic	
but tumour does not	perirenal fat.	tumour or chemotherapy	
reach the outer	Tumour infiltrates the	induced changes.	
surface.	renal sinus and/or	Tumour rupture before or	
Tumour may protrude	invades blood and	intraoperatively.	
or bulge into the pelvic	lymphatic vessels	Tumour has penetrated the	
system or ureter, but	outside renal	peritoneal surface.	
does not infiltrate.	parenchyma but is	Tumour thrombi present at	
Vessels of renal sinus	completely resected.	resection margins.	
not involved.	Tumour infiltrates	Surgical biopsy prior to	
	adjacent organs or	resection (does not include	
	vena cava but is	needle biopsy).	
	completely resected.		

NSP: Wilms tumours

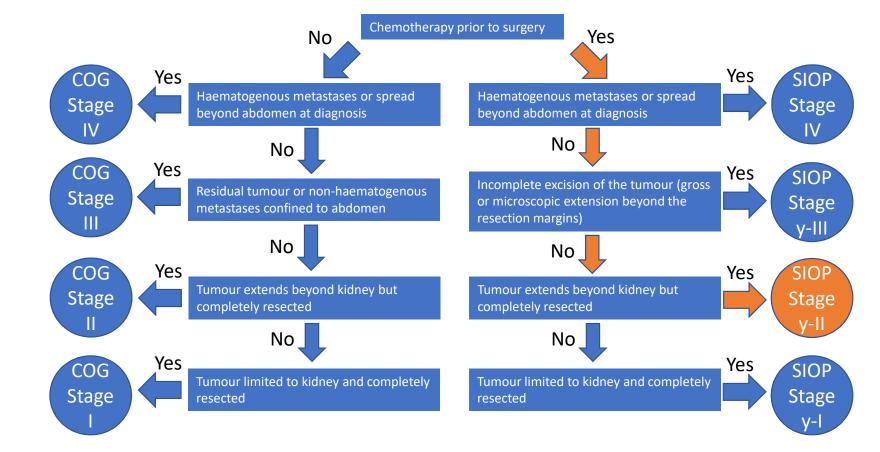
- Registration of Non-Stage Prognostic Factors NSP
 Presence or absence of diffuse or focal anaplasia
- The laterality is also important!
 - ✓ Right
 - ✓ Left
 - ✓ Bilateral

Wilms tumours: Exercises

Available in the Kahoot application until November 10, 2021 at the following link:

https://kahoot.it/challenge/04834060?challenge-id=7382f979-7345-44c6-9f85-9268fb87bef4_1634207300136

Exercise 1


A 1-year old patient is diagnosed with a nephroblastoma on the left kidney. A left nephrectomy is realised after neo-adjuvant chemotherapy and shows a well-defined encapsulated nephroblastoma (epithelial subtype). The tumour is 6.5cm in greatest dimension with a focal involvement of the vena cava. Resection margins are negative.

What is the correct stage for this patient?

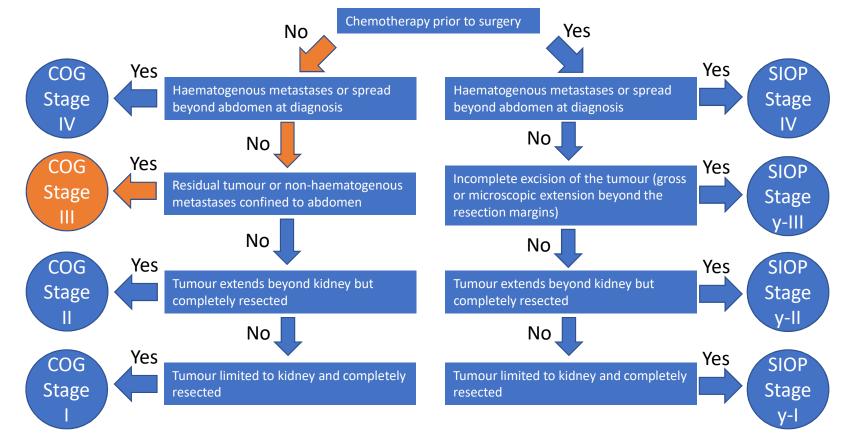
- A. Stage I
- B. Stage II
- C. Stage y-l
- D. Stage y-II

Exercise 1 - Answer

Infiltration of the vena cava is considered as an extension beyond kidney.

Exercise 2

A Wilms tumour is found in the right kidney of a 5-year old patient. Whether or not the tumour is confined to the kidney is unclear on diagnostic imaging, but there is no evidence of tumour spill.


A complete resection is performed and confirms that the primary tumour extends beyond the kidney. 6 abdominal lymph nodes have also been removed, 1 of them is found positive.

What is the correct stage for this patient ?

- A. Stage II
- B. Stage III
- C. Stage y-II
- D. Stage y-III

Exercise 2 - Answer

One abdominal lymph node is involved, which corresponds to a non-haematogenous metastasis confined to the abdomen.

Exercise 3

- A 5 -year-old boy
- surgical exploration in emergency to stop internal bleeding at the local hospital. As the tumour was very large and adjacent to large vessels, radical resection was impossible.
- Biopsy was performed, and the pathological diagnosis revealed Wilms tumour
- Chemotherapy (vincristine) was given in specialised hospital
- Ultrasound and intravenous pyelography (IVP) showed a right retroperitoneal solid mass causing compression and deformation of the renal pelvis and calyx. There was no evidence of pulmonary metastasis.
- Intraoperatively was found that the tumour was 15 x 15 x 20 cm and located at the retroperitoneum, invading the ascending duodenum and mesocolon. Kidneys, liver and spleen were normal with no evidence of disease involvement.

What is the correct stage for this patient?

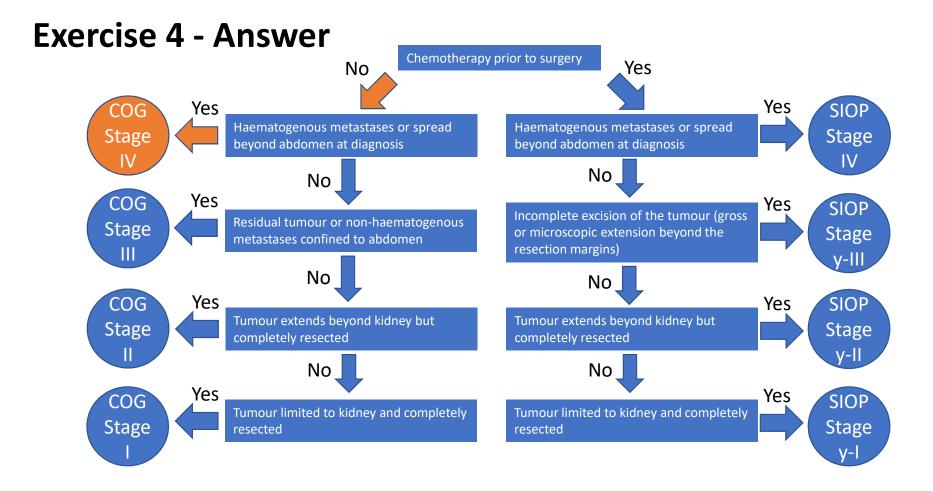
- A. Stage III
- B. Stage y-III
- C. Stage IV
- D. Case not to be included in the study

Exercise 3 - Answer

Only Wilms tumours from the kidney have to be included in the BENCHISTA project !!!

This one is located in the retroperitoneum, with both kidneys being normal with no evidence of disease involvement.

Exercise 4


Boy 2 years old, imaging shows a mass involving the left kidney

 All investigations performed before surgery exclude metastases except Chest X-ray which mentions 'suspicious lesion' of lung. Tumour is completed excised. CT scan thorax performed immediately after surgery and prior to any chemotherapy confirms presence of a definite lung metastasis.

What is the correct stage for this patient?

- A. Stage I
- B. Stage III
- C. Stage IV
- D. Stage X

The suspect lesion is confirmed positive before any treatment might alter its nature. We would recommend to encode this as Stage IV.

Neuroblastoma: Toronto Staging

Toronto Staging: Neuroblastoma

<u>Tier 1</u>

Localised	Locoregional	Metastatic	MS
Localised tumour confined to one body compartment and not involving vital structure	Locoregional tumour with spread	Distant metastatic disease, except stage MS	Patient less than 18 months (547 days) with a metastatic disease confined to skin, liver and/or bone marrow

Toronto Staging: Neuroblastoma

Tier 2 = International Neuroblastoma Risk Group Staging 'INRGSS'

- Staging requires assessment of
 - Extent of disease
 - Location and invasion
 - ➢Image-Defined Risk Factors IDRFs

L1	L2	Μ	MS
Localised tumour confined to one body compartment, neck, chest, abdomen or pelvis, and with the absence of IDRFs.	Locoregional tumour with the presence of one or more IDRFs.	Distant metastatic disease, except stage MS. Non-regional (distant) lymph node involvement is considered as metastatic disease.	Patient less than 18 months (547 days) with a metastatic disease confined to skin, liver and/or bone marrow.

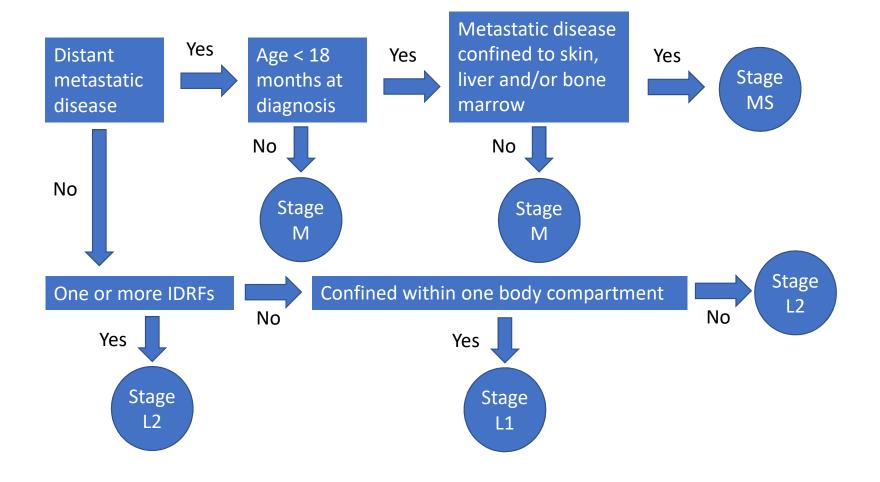
Tier 2 = International Neuroblastoma Risk Group Staging 'INRGSS'

L1	L2	Μ	MS
The isolated finding of intraspinal tumour extension that does not fulfill the criteria for an IDRF is consistent with stage L1.	The tumour may be ipsilaterally contiguous within body compartments (ie, a left- sided abdominal tumour with left-sided lung, bone or pleura involvement should be considered stage L2). However, a clearly left-sided abdominal tumour with right- sided lung, bone or pleura (or vice-versa) involvement is defined as a metastatic disease.	An upper abdominal tumour with enlarged lower mediastinal nodes or a pelvic tumour with inguinal lymph node involvement is considered as a locoregional disease. Ascites and/or pleural effusion, even with malignant cells, do not constitute metastatic disease unless they are remote from the body compartment of the primary tumour.	MIBG scintigraphy must be negative in bone and bone marrow. Provided there is MIBG uptake in the primary tumour, bone scans are not required.

Tier 2 = International Neuroblastoma Risk Group Staging 'INRGSS'

Image-Defined Risk Factors IDRFs are identified by imaging at diagnosis, so prior to any resection.

- Ipsilateral tumour extension within two body compartments
 - Neck-chest, chest-abdomen, abdomen-pelvis
- Neck
 - Tumour encasing carotid and/or vertebral artery and/or internal jugular vein
 - Tumour extending to base of skull
 - Tumour compressing the trachea
- Cervico-thoracic junction
 - Tumour encasing brachial plexus roots
 - Tumour encasing subclavian vessels and/or vertebral and/or carotid artery
 - Tumour compressing the trachea
- Thorax
 - Tumour encasing the aorta and/or major branches
 - Tumour compressing the trachea and/or principal bronchi
 - Lower mediastinal tumour, infiltrating the costo-vertebral junction between T9 and T12



Tier 2 = International Neuroblastoma Risk Group Staging 'INRGSS'

- Image-Defined Risk Factors IDRFs are identified by imaging at diagnosis, so prior to any resection.
- Thoraco-abdominal
 - Tumour encasing the aorta and/or vena cava
- Intraspinal tumour extension whatever the location provided that:
 - More than one third of the spinal canal in the axial plane is invaded and/or peri medullary eptomeningeal spaces are not visible and/or the spinal cord signal is abnormal
- Abdomen/pelvis
 - Tumour infiltrating the porta hepatis and/or the hepatoduodenal ligament
 - Tumour encasing branches of the superior mesenteric artery at the mesenteric root
 - Tumour encasing the origin of the coeliac axis, and/or of the superior mesenteric artery
 - Tumour invading one or both renal pedicles
 - Tumour encasing the aorta and/or vena cava
 - Tumour encasing the illiac vessels
 - Pelvic tumour crossing the sciatic notch
- Infiltration of adjacent organs/structures
 - Pericardium, diaphragm, kidney, liver, duodenopancreatic block and mesentery

Tier 2 = International Neuroblastoma Risk Group Staging 'INRGSS'

NSP: Neuroblastoma

- Registration of Non-Stage Prognostic Factors NSP
 Assessment of the N-MYC gene amplification
- The laterality is also important!
 - ✓Not applicable
 - ✓ Right
 - ✓ Left
 - ✓Unilateral NOS
 - ✓ Bilateral
 - ✓Unknown

Neuroblastoma: Exercises

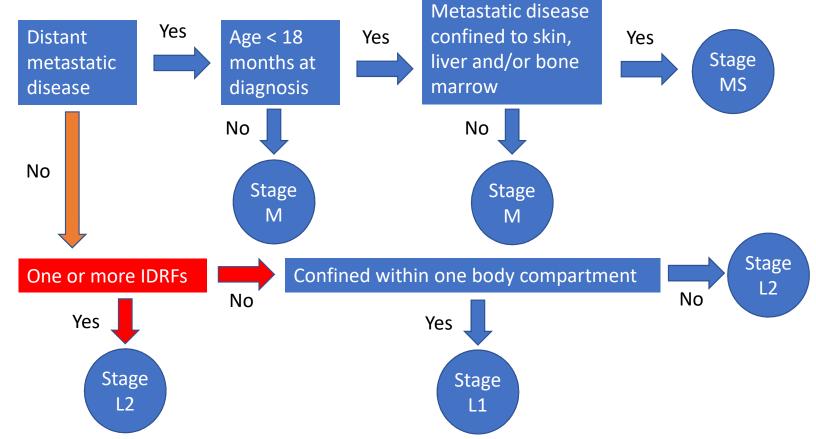
Available in the Kahoot application until November 10, 2021 at the following link:

https://kahoot.it/challenge/02504881?challenge-id=7382f979-7345-44c6-9f85-9268fb87bef4_1634207440160

Exercise 1

A 3-year old patient is diagnosed with a N-Myc amplified neuroblastoma of the adrenal gland.

No imaging is realised.


A puncture of the paraaortic lymph nodes is made, and shows the involvement of those regional lymph nodes.

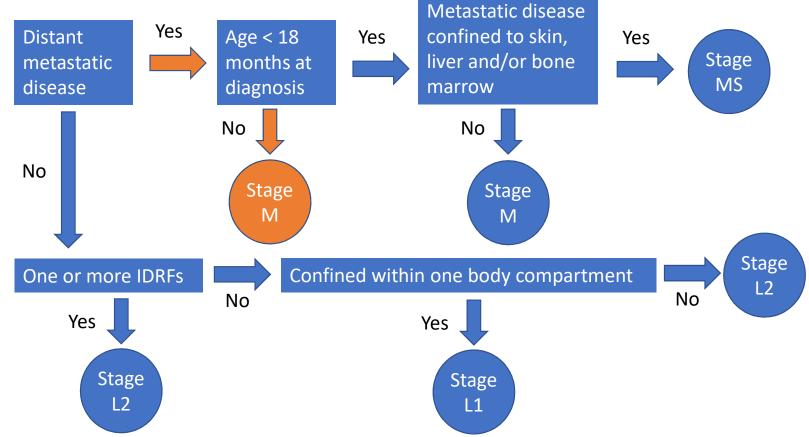
What is the correct stage for this patient?

- A. Localised
- B. Locoregional
- C. L1
- D. L2

Exercise 1 - Answer

For this patient, Tier 2 classification requires an imaging examination to know if one (or more) IDRF is present. Since not realised, we can only assign a Tier 1. The correct answer is thus Locoregional, since regional lymph nodes are involved.

Exercise 2


An intra-abdominal mass is found in a 7-year old patient. The diagnosis of a neuroblastoma is made. Imaging shows an infiltration of the left kidney. Bone metastases are also seen, and confirmed by biopsy.

What is the correct stage for this patient ?

- A. L2
- B. Metastatic
- C. M
- D. MS

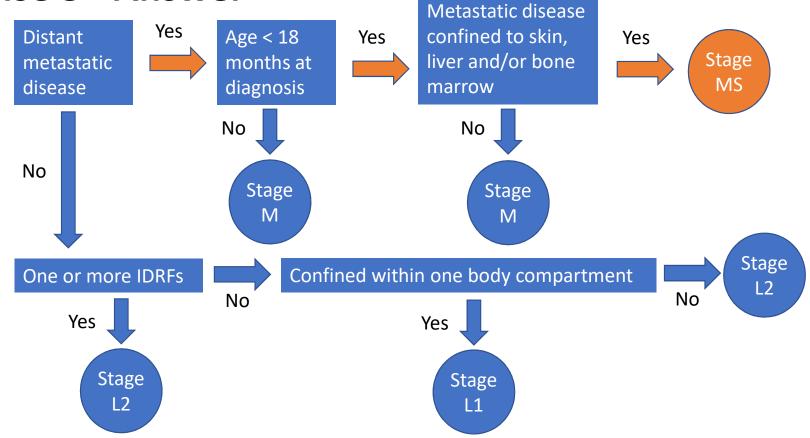
Exercise 2 - Answer

7 years old patient with a metastatic neuroblastoma. Since Tier 2 classification is more specific than Tier 1, it should be preferred when possible.

So, in this case, stage M should be recorded instead of stage Metastatic.

Exercise 3

A neuroblastoma is found in the adrenal gland of a 11 months old patient.


Imaging showed no image-defined risk factor, but identified a metastasis located in the liver.

What is the correct stage for this patient ?

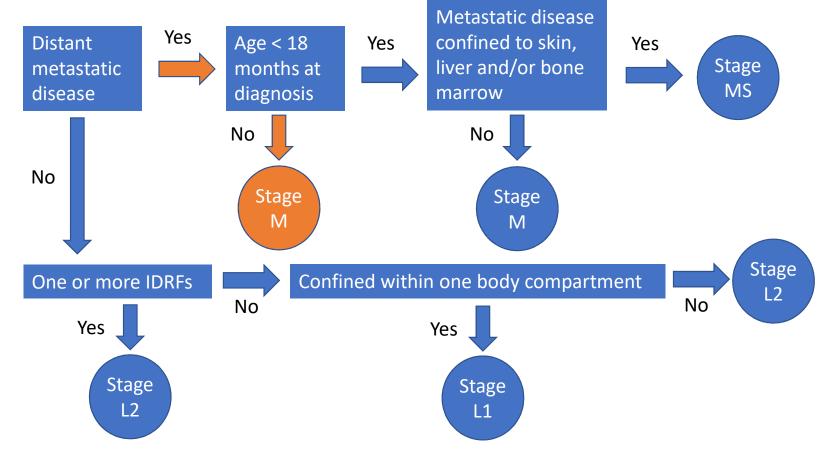
- A. L1
- B. L2
- C. M
- D. MS

Exercise 3 - Answer

Metastatic disease that meets the two conditions required for stage MS.

Exercise 4

A 7 years old girl from clinical record


- Bone marrow biopsy of left anterior iliac crest \rightarrow total infiltration of neuroblastic tumour
- Bone marrow aspirate of left and right iliac crest \rightarrow both infiltrated
- Chest X-ray negative
- CT rounded mass on the para-aortic right side (32 x 15 mm) which extends at bridge on the abdominal aorta also extending versus the left paraaortic and encases the right renal vein

What is the correct stage for this patient?

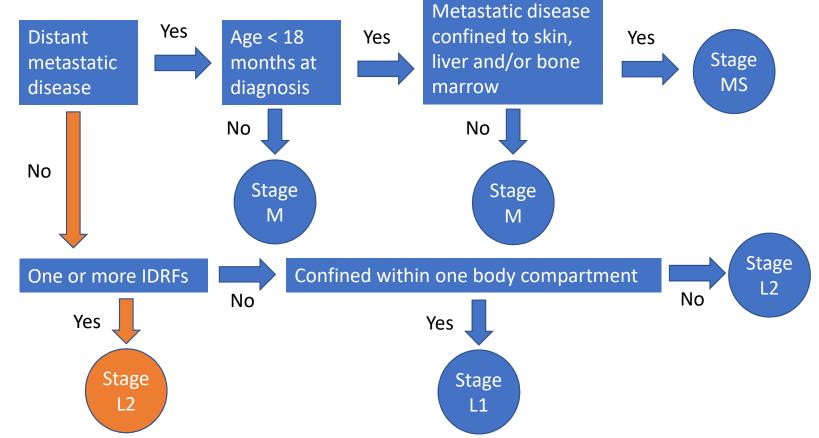
- A. L1
- B. L2
- C. M
- D. MS

Exercise 4 - Answer

Para-aortic lesion with metastases located in the bone marrow. The patient is 7 years old, and can thus not be staged as MS.

Exercise 5

A 17 months old boy, from clinical record


- diagnosed with a N-Myc not amplified neuroblastoma of the right adrenal gland.
- CT abdomen shows tumour is invading the porta hepatis and encasing some mesenteric vessels and is highly suspicious for invasion of the upper pole of the right kidney.
- Other staging investigations (bone marrow, MIBG scan, CT chest) are negative for distant metastases.
- Surgical excision is performed after a period of chemotherapy. The surgeon achieves complete macroscopic excision. Pathology finds positive resection margins.

What is the correct stage for this patient?

- A. L1
- B. L2
- C. MS
- D. M

Exercise 5 - Answer

Neuroblastoma of the right adrenal gland without any distant metastasis. The correct stage is L2 since we have the presence of IDRFs (tumour invading the porta hepatis and encasing some mesenteric vessels according to the CT scan of the abdomen).

Excel file Database Presentation: Wilms Tumour and Neuroblastoma

Fabio Didonè, Statistician, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano

Specific Variables: Imaging/examination performed for Neuroblastoma

Imaging/examination necessary for investigation of the **extension** of the disease are:

- CT/MRI primary site
- MIBG scan
- Abdominal ultrasound
- Bone scan
- X-ray Thorax
- Bone marrow (BM) aspirate or BM biopsy
- Tissue biopsy (of non-primary sites suspicious for metastasis)

Note: the result of each exam performed is requested except for 'CT/MRI primary site'

Specific Variables: Imaging/examination Performed for Wilms tumour

Imaging/examination necessary for investigation of the **extension** of the disease are:

- CT/MRI primary site
- CT Thorax
- Abdominal Ultrasound
- X-ray Thorax
- Tissue biopsy (of non-primary sites suspicious for metastasis)

Note: the result of each exam performed is requested except for 'CT/MRI primary site'

Specific Variables: TG staging and NSPs

	Variable name	values	Variable Description
	Stage Tier 1	1,2,3,4,9	L/LR/M/MS/X
Toronto staging, Neuroblastoma	Stage Tier 2	1,2,3,4,9	L1/L2/M/MS/X
	Laterality	0,1,2,3,4,9	Not applicable/Right/Left/Unilateral NOS/Bilateral//Unknown
	*_NSP: NMYC	1,0,9	Y/N/Unknown
Toronto staging, Wilms tumour	Stage Tier 1 after pre-surgery chemotherapy	1,2,9	L/M/X
	Stage Tier 2 after pre-surgery chemotherapy	1,2,3,4,9	y-I/y-II/y-III/IV/X
	Stage Tier 1 after immediate surgery (Or surgery first)	1,2,9	L/M/X
	Stage Tier 2 after immediate surgery	1,2,3,4,9	I/II/III/IV/X
	Laterality	1,2,3,9	R/L/B/Unknown
	*_NSP: Presence of anaplasia	0,1,2,3,9	No/Yes, unknown/Yes, Focal/Yes, diffuse/unknown

	Essential	Additional	New and promising	Comments
Solid tumours				
Neuroblastoma	*	N-myc	7626	
Wilms tumour	Histology		Specific aberrations on chromosomes 1p, 16q, or 1q	Histological sub-classification will depend on if assessed before or after adjuvant chemotherapy; see main text for details
Table 2: The Lyon Paediatrie	c Cancer Non-Stage Prognos	ticator Guidelines		

Specific Variables: TG staging and NSPs for Neuroblastoma

benchista

- 0=Not applicable
- 1=Right
- 2=Left
- 3=Unilateral NOS (Not Otherwise Specified)
- 4=Bilateral
- 9=Unknown

NSP: NMYC amplification

- 1=Yes
- 2=No
- 9=Unknown

Specific Variables: TG staging and NSPs for Wilms tumour

- 1=Right
- 2=Left
- 3=Bilateral
- 9=Unknown

NSP: Presence of Anaplasia

- 0=No
- 1=Yes, unknown subtype
- 2=Yes, focal
- 3=Yes, diffuse
- 9=Unknown

benchista

Medulloblastoma

Clinical expert: Prof Simon Bailey

Background

- 15 -20 % of CNS neoplasms in children
- Initially described by Bailey and Cushing in 1925
- Put in broad PNET group in 1973
- Peak incidence of 4 7 years
- M:F 1.7 :1.
- Metastatic spread in up to 35 %
- By definition primary is in the posterior fossa

Chang Staging

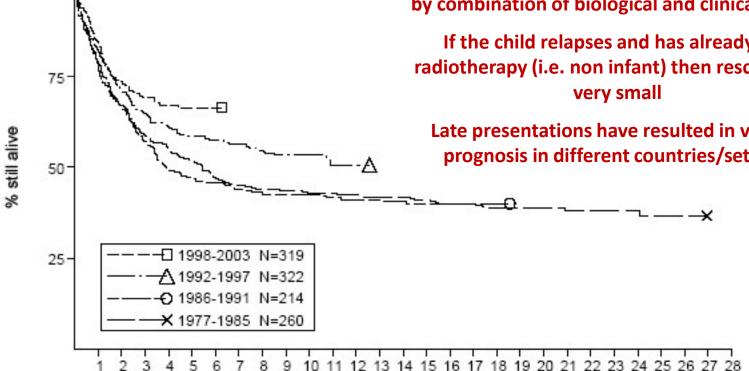
- M0: No evidence of metastatic disease
- M1: positive CSF cytology
- M2: Metastasis within the cranial vault
- M3: MRI visible spinal metastatic disease.
- M4: Metastasis outside the CNS (usually bone)

Staging Notes

- Staging is by MRI of head and spine.
- Distant metastatic disease outside the CNS is not routinely looked for in most places and only done if bone pain or abnormal bone chemistry unless cancer predisposition syndrome.
- Staging in simplest form is metastatic or non metastatic (Toronto staging).
- The highest stage is the one recorded e.g., if metastatic disease in the brain and spine it becomes M3.
- M1 is when the CSF shows cells and nothing outside the posterior fossa is seen on MRI scan this is only done on day 14 and often needs searching for in the notes. If positive before day 14 then needs repeating at this date.
- IF CSF is not done then it is usually recorded as MO/1 (M1 is rare (about 4%)).
- Stratification of treatment is done by MRI, Histological subtype and biology.

History

~ 650 EU cases / year


~ 250 deaths

Long-term disabilities

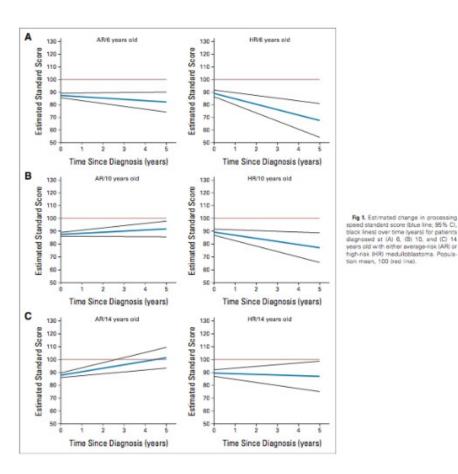
Prognosis can be more accurately determined by combination of biological and clinical factors

If the child relapses and has already had radiotherapy (i.e. non infant) then rescue rates very small

Late presentations have resulted in varying prognosis in different countries/settings

100

Cure vs burden of survival


VOLUME 31 · NUMBER 28 · OCTOBER 1 2013

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Processing Speed, Attention, and Working Memory After Treatment for Medulloblastoma: An International, Prospective, and Longitudinal Study

Shawna L. Palmer, Carol Armstrong, Arzu Ouar-Thomas, Shengjie Wu, Dana Wallaco, Melanie J. Bonner, Jene Schneiber, Michelle Swain, Lyen Chapieski, Donald Mabbott, Sanah Knight, Robyn Boyle, and Arnar Gagier

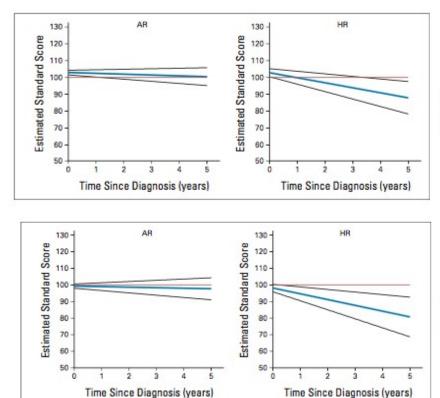
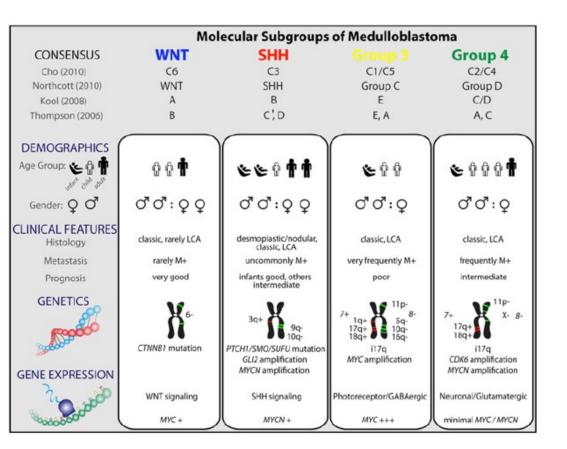
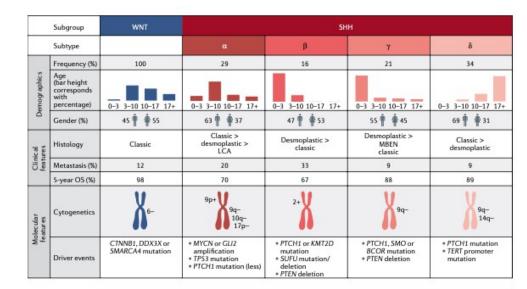




Fig 2. Estimated change in working memory standard score (blue line; 95% Cl, black lines) over time (years) for patients diagnosed with either average-risk (AR) or high-risk (HR) medulloblastoma. Population mean, 100 (red line).

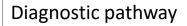
Fig 3. Estimated change in broad attention standard score (blue line; 95% Cl, black lines) over time (years) for patients diagnosed with average-risk (AR) or highrisk (HR) medulloblastoma. Population mean, 100 (red line).

Taylor 2012

Hovestadt 2020

WHO 2021

- Medulloblastoma, genetically defined
- Medulloblastoma, WNT-activated
- Medulloblastoma, SHH-activated and *TP53*-mutant
- Medulloblastoma, SHH-activated and *TP53*-wildtype
- Medulloblastoma, non-WNT/non-SHH Medulloblastoma (encompassing Group 3 and Group 4)
- Medulloblastoma, histologically defined
- Classic medulloblastoma
- Desmoplastic/nodular medulloblastoma
- Medulloblastoma with extensive nodularity
- Large-cell / anaplastic medulloblastoma


New

 123

 23(8), 1231-1251, 2021 | doi:10.1093/heuonc/noab106 | Advance Access date 29 June 2021

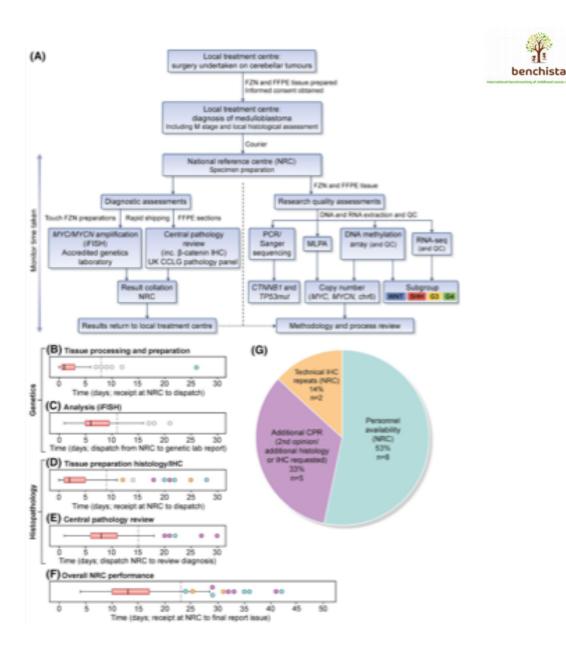
 The 2021 WHO Classification of Tumors of the Central Nervous System: a summary

David N. Louis, Arie Perry, Pieter Wesseling[®], Daniel J. Brat[®], Ian A. Cree, Dominique Figarella-Branger, Cynthia Hawkins, H. K. Ng, Stefan M. Pfister, Guido Reifenberger, Riccardo Soffietti, Andreas von Deimling, and David W. Ellison

Pre op MRI head and spine (reviewed centrally for trials)

Surgery + Frozen tissue

Postop Scan head within 72 hours to assess residual disease


Local Pathology to diagnose medulloblastoma

Central Reference

CSF for cytology done at 14 days – usually same time as central line insertion

Result with biology in 28 days ideally

Appropriate treatment

Mandatory diagnostic testing HIC

Current

Pathology review

H&E IHC panel: GFAP, synaptophysin, NFP, EMA, INI-1, vimentin, Ki-67 and reticulin special stain

WNT subgroup assignment

IHC: β -catenin *CTNNB1* mutation Chromosome 6 status – iFISH or SNP array

MYC and *MYCN* amplification iFISH or SNP array

Testing in accredited labs - Mandatory

Core research evaluations (all patients)

RNA-seq (Newcastle) 850K array (Newcastle/Heidelberg) Panel-seq (Heidelberg)

Current amendment:

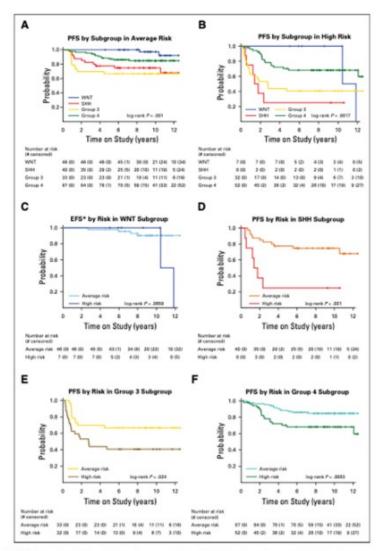
Pathology review to WHO (2016) criteria: Add GAB1, YAP1, filamin A, Lin28 to 2014 panel

Subgroup assignment: WNT, SHH, G3, G4

Consensus from 2 independent methods, from...

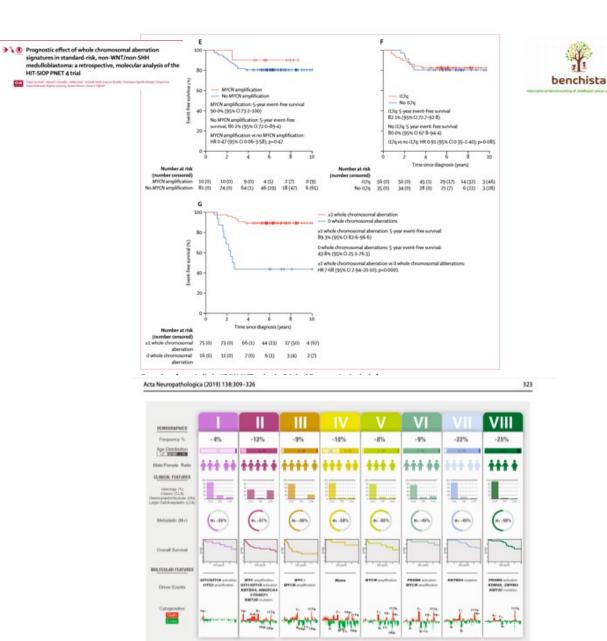
- 1. IHC (above)
- 2. 850K/EPIC DNA methylation array
- 3. Methylation signature assay (e.g. Sequenom)

WNT subgroup assignment *CTNNB1* mutation plus subgroup assignment (above)


MYC and *MYCN* amplification As 2014

Somatic mutation analysis of *PTCH, SUFU, TP53* (SHH patients) Perform by Sanger or Panel; Validate by Sanger

Germline mutation testing - all relevant syndromes


Perform if tumour *PTCH, SUFU* or *TP53* mutationpositive *Optional testing for *APC* (*CTNNB1* –ve WNT), Fanconi (*BRCA2/PALB2*).

Rapid genetics referral for germline patients

OA STO

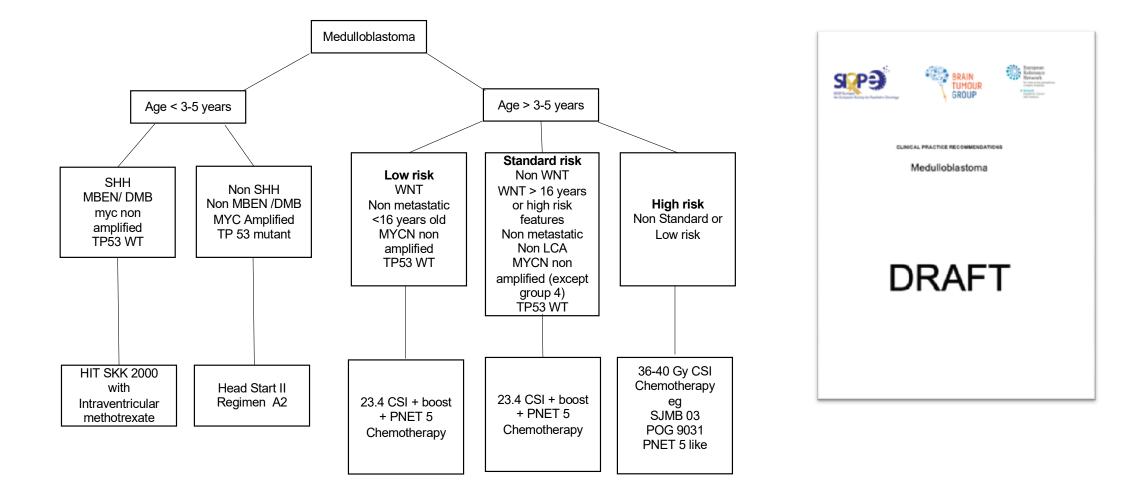
FIG 4. Survival analysis by molecular subgroup and subtype: PFS (A) by subgroup in average risk, (B) by subgroup in high risk, (C) EFS by risk in the WNT subgroup, (D) by risk in the SHH subgroup, (E) by risk in the group 3 subgroup, (F) by risk in the group 4 subgroup, (G) by SHH subtype, and (H) by group 3 or group 4 subtype. EFS, event-free survival; PFS, progression-free survival; SHH, Sonic Hedgehog; WNT, Wingless.

Juraschka and Taylor

Risk Category	Low Risk	Standard Risk	High Risk	Very High Risk
Survival (%)	>90	75-90	50-75	<50
Subgroup, clinical and molecular characteristics	Non-metastatic	Non-metastatic, <i>TP53</i> WT and no <i>MYCN</i> amplification Non-metastatic and no <i>MYC</i> amplification	One or both: • Metastatic • <i>MYCN</i> amplification	TP53 Mutation
	Non-metastatic and Chromosome 11 loss			Metastatic
		Non-metastatic and no chromosome 11 loss		

FIG. 3. Proposed risk stratification for noninfant medulloblastoma, based on data from the following reference.⁵⁰ Box color represents the subgroup and the text reflects clinical and molecular criteria (WNT: *blue*, SHH: *red*, group 3: *yellow*, group 4: *green*). WT = wild type. Figure is available in color online only.

Treatment



- Surgery maximal safe resection of primary
- Chemotherapy
 - Many combinations and trials
 - May include treatment prior to radiotherapy (high risk disease)
 - May include chemotherapy with radiotherapy
 - Almost always includes chemotherapy after radiation therapy
- Radiotherapy
 - Usually craniospinal with boost (protons or photons no difference in outcome)
 - May be focal in younger children although less common now
 - Try to avoid in younger children (under 3-5 depending on country)

- M1 disease confers worse outlook not universally accepted as detailed analysis together with biological factors not done in trial setting yet.
- Generally prolonged chemotherapy prior to radiotherapy (bar infants and French High dose High risk study) shown to be less effective (PNET 3 and early German HIT Study).
- Prolonged time to radiation (>49 days) been shown in number of studies to confer worse prognosis.

Medulloblastoma: Non-stage prognostic factors

CNS Tumour	Essential	Additional	New and Promising	Comments
Medulloblastoma		Molecular classification (WNT vs SHH vs group 3 / 4)		Molecular classification according to the ICD-O-3 classification. Extent of resection not agreed as an NSP for collection by PBCRs due to its availability. It will be collected as an optional variable in BENCHISTA.

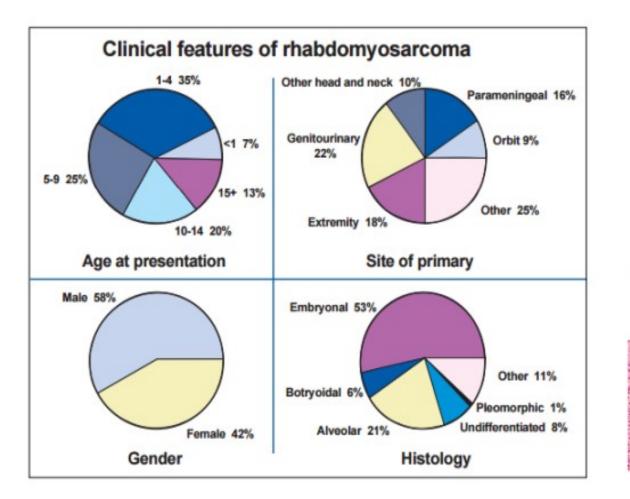
Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. Lancet Oncol 2020; 21: e444–51

Summary

- Medulloblastoma may be complicated to get the stratification and biology information to enable the correct treatment.
- Main things to look for though remain metastatic stage (M1 most difficult to find in the notes) and histology (LCA = high risk)
- Exclusive pre radiotherapy chemotherapy not used routinely anymore.
- Protons vs photons do not alter EFS but may reduce long term effects.

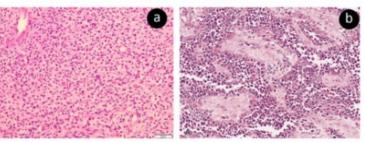
Rhabdomyosarcoma

Clinical expert: Dr Lisa Hjalgrim

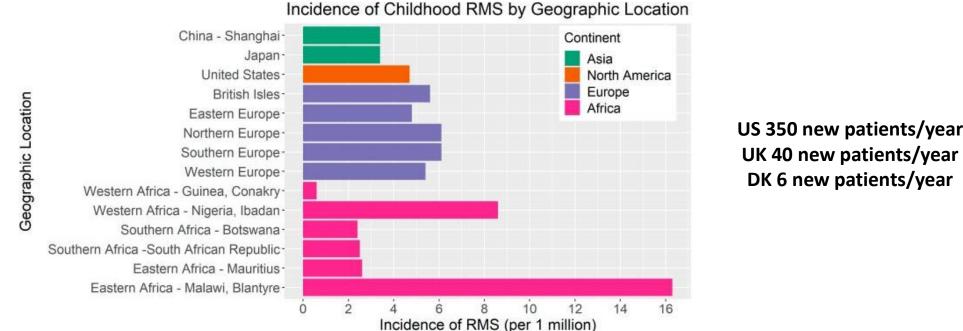

Epidemiology

- Rhabdomyosarcoma (RMS) is thought to arise from primitive mesenchymal cells committed to develop into striated muscles.
- It is a high-grade malignant neoplasm.
- It can be found virtually anywhere in the body, including those sites where striated muscles are not normally found.
- It is the commonest form (50%) of soft tissue sarcoma in children and young adults and accounts for approximately 4 - 5 % of all childhood malignancy.

Clinical characteristics

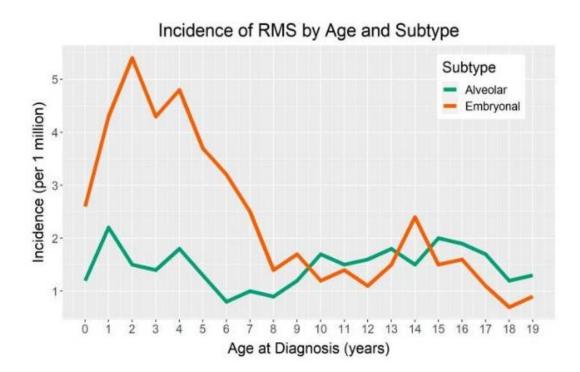


- 2/3 children < 10 years
- H&N, GU tract, extremities common sites
- Slight male predominance


a: Embryonal RMS (ERMS): dense spindle areas, loose myxoid stroma (60%)

b: Alveolar RMS (ARMS): nests with dense stroma, pseudoalveolar spaces (20-25%)

Epidemiology

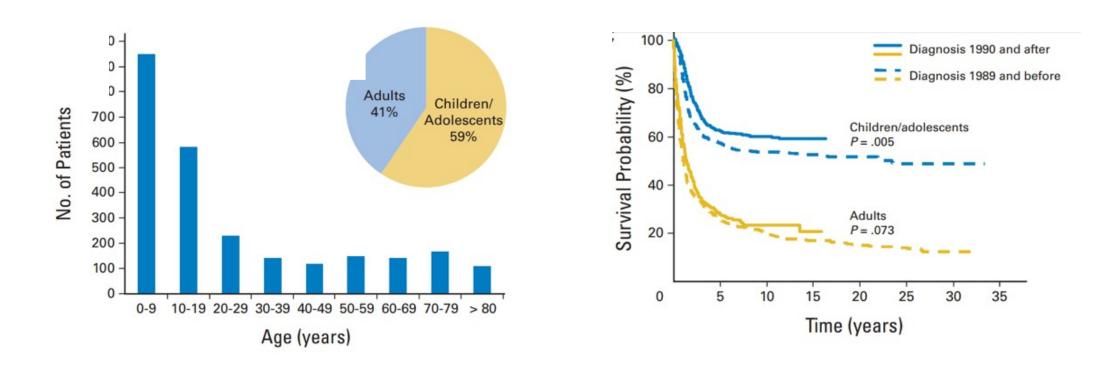


Variations in incidence – not many studies. No clear pattern regarding ethnicities An annual incidence of approx. 5 per million children under the age of 15

BA. Martin-Giacalone: J.Clin.Med.2021, 10, 2028

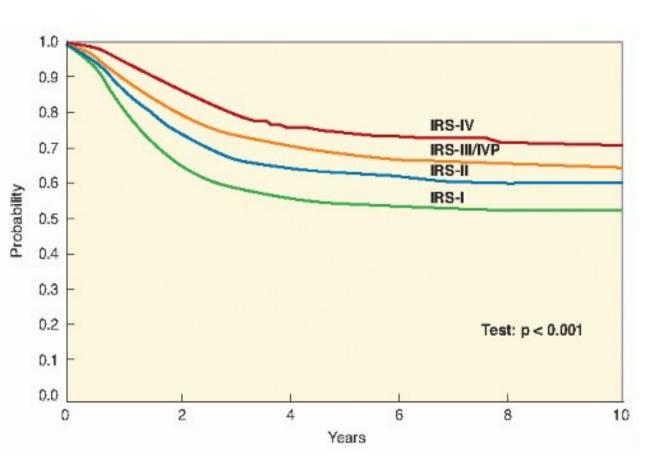
Epidemiology

- Incidence stable over time.
- The peak incidence is seen early in childhood with a median age at diagnosis of about 5 years for embryonal RMS.
- Alveolar more stable across ages.


Risk factors – Genetic predisposition

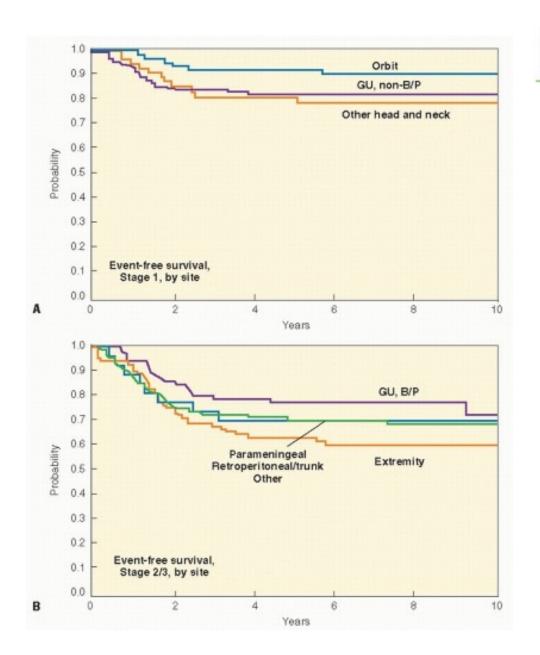
Heritable syndromes associated with an increased risk of RMS

Syndrome	Phenotype	Associated gene(s)		
Li-Fraumeni	Cancer susceptibility syndrome	TP53		
Neurofibromatosis type 1	Systemic effects	NFI		
DICER1	Cancer susceptibility syndrome	DICERI		
Costello	Systemic effects	HRAS		
Noonan	Systemic effects	BRAF; KRAS; NRAS; PTPNII; RAFI; SOSI		
Beckwith-Wiedemann syndrome	Overgrowth disorder	IGF2; CDKNIC; H19; KCNQ10T1		



Sultan I, JCO, 2009

Survival


Improvement in 5-year survival of children with RMS treated on the IRS trials. (From Wexler L, Meyer WH, Helman LJ. Rhabdomyosarcoma and the undifferentiated sarcomas.

In: Pizzo P, Poplack D, eds. *Principles and Practice of Pediatric Oncology*. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006:988, Event-free survival of patientstreatedonIntergroupRhabdomyosarcomaStudy IV bystage and site.

A: nonmetastatic "favorable" site tumors (stage 1).

B: nonmetastatic unfavorable site tumors (stage 2 or 3)

(From Pizzo P, Poplack D, eds. Principles and Practice of Pediatric Oncology. Philadelphia, PA: Lippincott-Raven; 2006:991

Survival in metastatic RMS

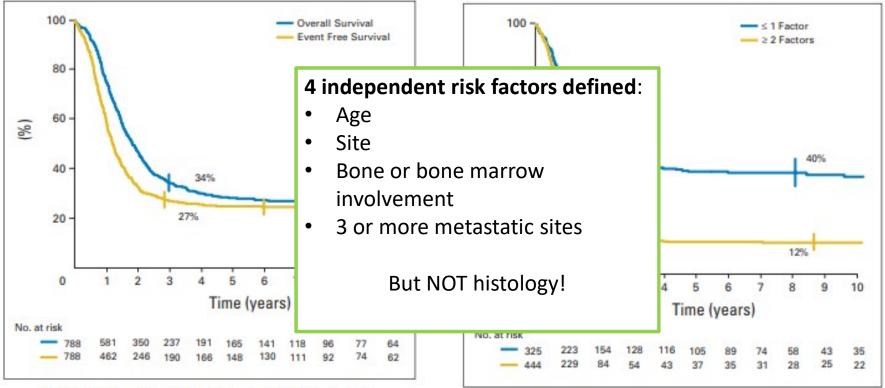


Fig 1. Overall survival and event-free survival of all 788 patients.

Fig 3. Event-free survival of patients according to risk score.

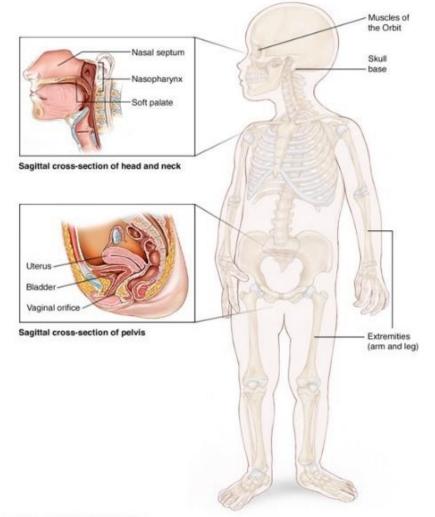
Oberlin O. et al, JCO 26, 2008

benchista

Clinical presentation

Head-neck	Asymptomatic mass, may mimick enlarged lymph node
Orbit	Proptosis, chemosis, ocular paralysis, eyelid mass
Nasopharynx	Snoring, nasal voice, epistaxis, rhinorrhoea, local pain, dysphagia, cranial nerve palsies
Paranasal sinuses	Swelling, pain, sinusitis, obstruction, epistaxis, cranial nerve palsies
Middle ear	Chronic otitis media, haemorrhagic discharge, cranial nerve palsies, extruding polypoid mass
Larynx	Hoarseness, irritating cough
Trunk	Asymptomatic mass (usually)
Biliary tract	Hepatomegaly, jaundice
Retroperitoneum	Painless mass, ascites, gastrointestinal or urinary tract obstruction, spinal cord symptoms
Bladder/prostate	Haematuria, urinary retention, abdominal mass, constipation
Female genital tract	Polypoid vaginal extrusion of mucosanguineous tissue, vulval nodule
Male genital tract	Painful or painless scrotal mass
Extremity	Painless mass, may be very small but with secondary lymph node involvement

Usually present with anatomical mass


- Surgical open biopsy.
- Bone marrow examination (bilateral) mandatory.
- In cases of para-meningeal disease lumbar puncture should be done.

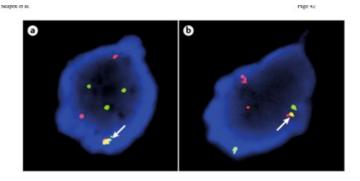
Imaging at diagnosis

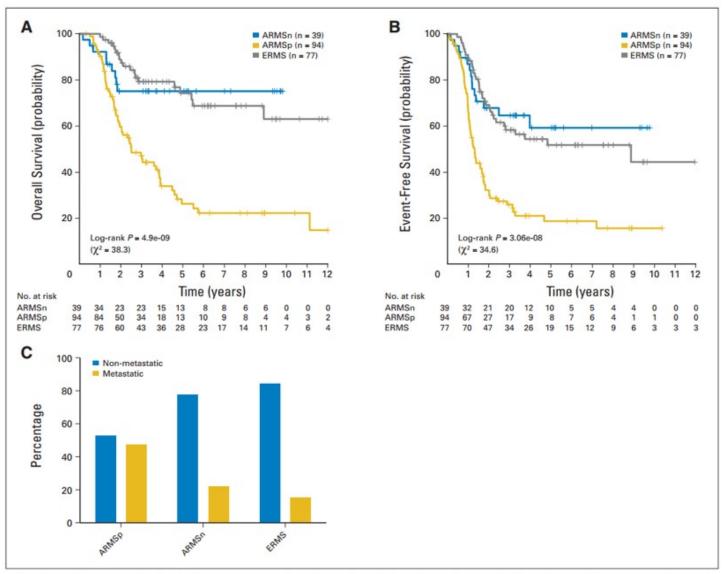
Robert Morreale/Visual Explana

- MRI of primary tumor and regional lymph node - mandatory
- Chest CT mandatory
- PET CT distant metastases now mandatory (bone scan in case PET is not available)
- Ultrasound regional lymph nodes

© 2005 American Society of Clinical Oncology

Pathology

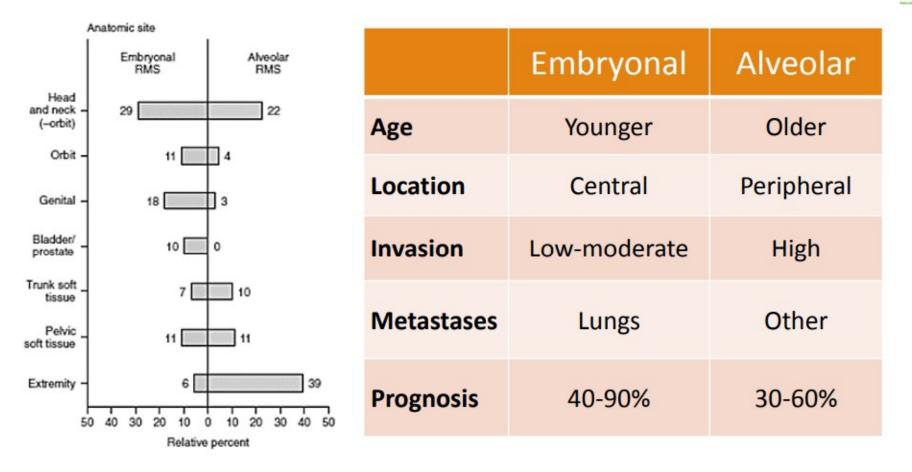

- Accurate pathology required
- H and E
- Immunohistochemistry (Myogenin, Desmin, MyoD)
- Molecular genetics


Gianni Risogno

- ERMS: Loss of heterozygosity at 11p15 locus
- ARMS: t(2;13) Translocation between long arms of chr 2 and 13 fusing FOX01 transcription facto to PAX3 or t(1;13) – Fuses FOX01 to PAX7

Pathology of childhood rhabdomyosarcoma: A consensus opinion document from the Children's Oncology Group, European Paediatric Soft Tissue Sarcoma Study Group, and the Cooperative Weichteilsarkom Studiengruppe	REVIEW	Cancer Statistics WILEY
European Paediatric Soft Tissue Sarcoma Study Group, and the		
ecoperative recentensaries of an eres appe		
	Erin R. Rudzinski ¹ Anna Janet Shipley ⁶ Simone He	Kelsey ² Christian Vokuhl ² Corinne M. Linardic ^{4,5} tmm ⁷ Ewa Koscielniak ⁸ Douglas S. Hawkins ⁹

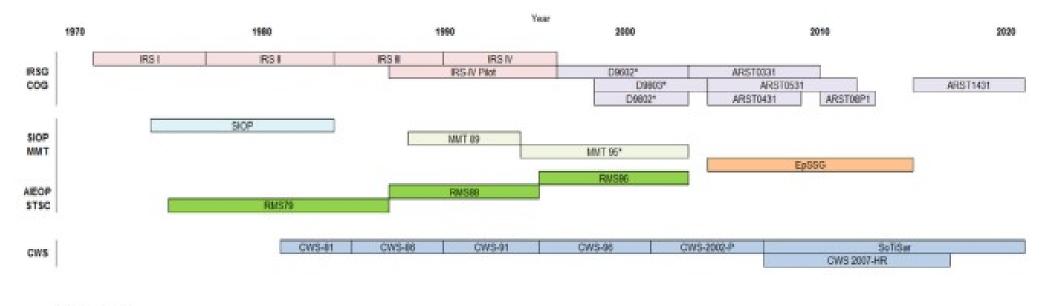
Skarpek et al, Nat rev Dis Primers, 2020


로 benchista

- ✓ Fusion-gene-negative ARMS is clinically and molecularly indistinguishable from ERMS
- ✓ Fusion-gene status is useful in risk stratification

Fig 1. Kaplan-Meier curves showing significant poorer prognosis in (A) overall survival and (B) event-free survival for patients with fusion gene–positive alveolar rhabdomyosarcoma (ARMSp). Survival of patients with fusion gene–negative ARMS (ARMSn) and embryonal RMS (ERMS) is not significantly different. (C) Percentage frequency of metastases is significantly higher in ARMSp than in ARMSn or ERMS. Three ERMS patients who survived and did not relapse for 12.3, 16.7, and 17.2 years were left out of the plot for presentational purposes but were included in the calculation of the statistics.

Wiliamsen D. et al, JCO, 2009



Nathan and Oski's Hematology and Oncology of Infancy and Childhood 8th ed, 2015

Treatment (COG, EpSSG, CWS)

1CR classification

FIGURE 1 Pediatric oncology cooperative group clinical trial studies across the Children's Oncology Group (COG), the European Paediatric Soft Tissue Sarcoma Group (EpSSG), and the Cooperative Weichteilsarkom Studiengruppe (CWS)

Rudzinski et al: Pediatr Blood Cancer, 2021

Regional nodes

✓ Nodal involvement indepedent risk factor.

✓ 23 % at diagnosis.

 ✓ Pathological non-regional lymph node = metastatic disease.

reduktic Radiology (2021) 37:1940-1951 Mpc//doi.org/10.1021/1022417-01081-0	
ESPA	

European guideline for imaging in paediatric and adolescent rhabdomyosarcoma — joint statement by the European Paediatric Soft Tissue Sarcoma Study Group, the Cooperative Weichteilsarkom Studiengruppe and the Oncology Task Force of the European Society of Paediatric Radiology

Roelof van Ewijk ¹G - Reineke A. Schoot ¹ - Monika Sparber Sauer ² - Simone A. J. ter Horst ^{1,3} - Nina Jehanno ⁴ -Line Borgwardt ^{1,4} - Bart de Keber ^{1,3} - Johannes H. M. Meliki ⁻ - Alberto de Luca^{3,4} - Kieran Michagh⁴ - Thekla von Kalle ^{1,4} -Jörgen F. Schäft ^{1,4} - Sink R. van Kigh ^{1,4} - On behalf of the Cooperative Weidstelbarksmin Shadlengupe Imaging Group, the European Society of Paediatric Radiology Oncology Task Force and the European Paediatric Soft Tissue Sancoma Study Group Imaging Committee

Pediatr Radiol (2021) 51: 1940-1951

REGIONAL NODAL BASINS FOR RHABDOMYOSARCOMA

Extremity

Lower Extremity –inguinal, femoral, popliteal nodes (rarely involved) Upper extremity – axillary, brachial, epitrochlear, infraclavicular nodes (infraclavicular)

Genitourinary

Bladder/Prostate – pelvic, retroperitoneal nodes at renal artery level or below Cervix and Uterus– pelvic, retroperitoneal nodes at renal artery level or below Paratesticular – pelvic, retroperitoneal nodes at renal artery level or below Vagina – retroperitoneal, pelvic nodes at or below common iliacs inguinal nodes Vulva – inguinal nodes

Head and Neck

Head/Neck – ipsilateral cervical, jugular, preauricular, occipital, supraclavicular nodes for laterally placed tumors (excluding scalp); may have bilateral adenopathy with centrally placed tumors Orbit/Eyelid – ipsilateral jugular, preauricular, cervical nodes

Intrathoracic Internal mammary, mediastinal nodes

Retroperitoneum/Pelvis -Pelvic, retroperitoneal nodes

Trunk Abdominal Wall – inguinal, femoral nodes Chest Wall – axillary, internal mammary, infraclavicular nodes

OTHER Biliary/Liver – liver hilar nodes Perianal/Perineal – inguinal, pelvic nodes; may be bilateral

The world's childhood cancer experts

- Evidence of nodal involvement beyond the regional lymph nodes must be interpreted as distant metastasis and the patient must be treated according to the protocol for metastatic RMS.
- Examples:
 - Perineal tumour with nodes above the pelvis
 - Thigh tumour with iliac or periaortic nodes
 - Intrathoracic tumour with subdiaphragmatic nodes
 - Unilateral tumour with contralateral involved lymph nodes (except in the head and neck).

- Oval shaped nodes (with a preserved hilum at sonography) and a short axis diameter of less than 1 cm are considered normal nodes.
- Lymph node short axis >= 1.5 cm = pathological.
- Pet Pos lymph nodes < 1.5 cm considered suspicious.
- All suspicious (doubtful) lymph nodes merit biopsy or another form of nodal sampling.
- Surgical sampling of locoregional nodes is mandatory for all limb primaries, paratesticular > 10 years and probably also head and neck alveolar (regardless of imaging findings).
- Sentinel node examination (alveolar tumors, large tumors, extremities).

Pediatr Radiol (2021) 51: 1940-1951

Metastases

• 20% of RMS patients have metastatic disease at diagnosis.

Lung	39%
Bone Marrow	32%
Lymph Nodes	30%
Bone	27%
Omentum/Ascites	16%
Soft Tissue	16%

- One or more pulmonary nodules of 10 mm or more diameter or;
- Two or more well-defined nodules of 5 to 10 mm diameter or;
- 5 or more well-defined nodules smaller than 5 mm;
- Hence, 4 or less small nodules (<5mm) at diagnosis will not be considered as pulmonary metastatic disease and should be classified only as "non-specific pulmonary lesions". Biopsy is NOT recommended.

Name Namo 2003 31 30 400 - 400

European guideline for imaging in paediatric and adolescent rhabdomyosarcoma — joint statement by the European Paediatric Soft Tissue Sarcoma Study Group, the Cooperative Weichteilsarkom Studiengruppe and the Oncology Task Force of the European Society of Paediatric Radiology

Roteful van Exel(k¹) en Reinelle A. School¹ - Morelia Sparter Sauer² - Simone A. J. ter Horst.^{1,3} - Nara Jehanne⁴ -Lae Borgeardt² - Rart de teisen^{1,4} - Johannes H. M. Mels¹ - Alberts de Lucz^{2,4} - Rosan Motagli⁴ - Thesia van Kalle⁴ -Jogran - Schleff⁴ - Rick R. van Bill^{1,5} - On behalf of the Cooperative Weichtelandum Studeingroppe Insaigne Group, the European Society of Peolateix Ratiology Oncology Task Force and the European Peolatic Soft Tissue Sarcena Study Coron Jimaging Committee

Pediatr Radiol (2021) 51: 1940-1951

- For patients with pleural effusion or ascites, examination of the fluid is strongly recommended.
- If malignant cells are found on morphology = metastatic.
- If peritoneal or pleural nodules are evident on imaging, the tumour will be considered as metastatic and treated accordingly.

Paramenigeal site

- Middle ear, Nasal Cavity and Para nasal Sinuses, Nasopharynx Infratemporal Fossa/Pterygopalatinand Parapharyngeal Area, Orbital tumours with bone erosion.
- Tumours involving vessels or nerves with direct intracranial connection (Arteria carotis interna, vertebralis, N. opticus, trigeminus, facialis etc).
- All intracranial and intraspinal tumours (but tumours arising from the paraspinal muscles with intraspinal extension should be designated as paraspinal, see "Other site" definition).
- All tumors with cranial nerve paresis
 - (excluding parotid tumours with facial nerve palsy)
- CSF Tumour cell positive patients.

Staging of RMS

- The TMN stage
- The clinical group
- The fusion gene status

Staging TMN

Characteristic	Definition
Tumor	
T(site)1	Confirmed to anatomic site of origin
а	\leq 5 cm in diameter in size
b	> 5 cm in diameter in size
T(site)2	Extension and/or fixative to surrounding tissue
а	\leq 5 cm in diameter in size
b	> 5 cm in diameter in size
Regional nodes	
N0	Regional nodes not clinically involved
N1	Regional nodes clinically involved by neoplasm
Nx	Clinical status of regional nodes unknown (especially sites that preclude lymph node evaluation)
Metastasis	
M0	No distant metastasis
M1	Metastasis present

Pre-treatment TNM staging in RMS

Stage	Sites	Tumor	Size	Node	Metastasis
1	Orbit, F parar Favourable rinary: nonbladder/nonprostate, biliary tract	T1 or T2	a or b	N0 or N1 or Nx	M0
2	Bladder/prostate_extremity_cranial Unfavourable	T1 or T2	а	N0 or Nx	M0
3	Bladder/prostate_extremity_cranial Unfavourable	T1 or T2	а	N1	M0
			b	N0 or N1 or Nx	MO
4	All	T1 or T2	a or b	N0 or N1	M1

Meza J, JCO, 2006

Clinical grouping (IRS)

Group	Definition				
Group I	Localized disease, completely resected				
Group II	Total gross resection with evidence of regional spread				
а	Grossly resected tumor with microscopic residual disease				
b	Regional disease with involved nodes, completely resected with no microscopic residual disease				
С	Regional disease with involved nodes, grossly resected but with evidence of microscopic residual disease and/or histologic involvement of the most distal regional node (from the primary site) in the dissection				
Group III	Incomplete resection with gross residual disease				
Group IV	Distant metastatic disease present at onset				

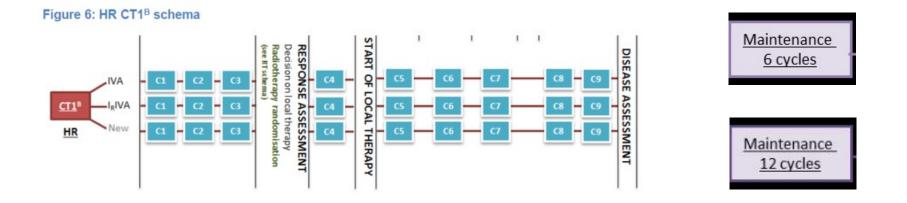
Meza J, JCO, 2006

- Fusion status: Where fusion gene status is unavailable histopathology will be used. Non-alveolar disease should be defined as fusion gene negative and alveolar disease should be defined as fusion gene positive.
- Site: Favourable sites are: GU (non-bladder-prostate*), head & neck nonparameningeal, orbit (no bone involvement) and biliary primaries. Unfavourable sites are: all other sites.
- Node Stage: N0 = 0 positive lymph nodes, N1 = $1 \ge positive lymph nodes$.
- Age: Favourable is defined as age over 1 and under 10 years of age at diagnosis.
- Size: Favourable primary tumour is ≤ 5 cm in longest diameter, patients that are assessed as not evaluable, they will be included in >5cm group).

*Has changed to favorable in the FaR-RMS - trial

EpSSG – FaR-RMS

Risk Group	Subgroup	Fusion Status	IRS Group		Site	Node Stage	Size or Age
Low Risk	A	Negative	1		Any	NO	Both Favourable
Standard Risk	В	Negative	I		Any	NO	One or both Unfavourable
	с	Negative	II, III		Favourable	NO	Any
	D	Negative	II, III	ι	nfavourable	NO	Any
High Risk	E	Negative	II, III		Any	N1	Any
	F	Positive	1, 11, 111		Any	NO	Any
Very High Risk	G	Positive	II, III	Γ	Any	N1	Any
	н	Any	IV		Any	Any	Any


Treatment principle

- Local control
 - Surgery (not debulking)
 - Radiotherapy
- Systemic control

VAC/IVA/VI/IVADo

• Chemotherapy, localised diasease require systemic treatment to eradicate micrometastic diasease typically present at diagnosis.

Rhabdomyosarcoma: Non-stage prognostic factors

Solid Tumour	Essential	Additional	New and Promising	Comments
Rhabdomyosarcoma	Histology Anatomical location Size	Cytogenetics (FKHR- PAX3 or FKHR-PAX7)	MYOD1	Histological categories based on ICD-O-3 classification; and anatomical location captured through ICD-O-3 topography codes. BENCHISTA captures clinical TNM (cTNM).

Gupta et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto Paediatric Cancer Stage Guidelines. Lancet Oncol 2020; 21: e444–51

- Diagnostic work up at diagnosis extremely important for correct risk assigment.
- Common imaging guidelines across protocols.
- Pre-treatment stage and clinical stage equal across protocols.
 - Site (will change over time)
 - Size
 - Node status
 - Metastasis
 - Fusion status NPS
- Risk assigment and treatment not the same across protocols.
- Treatment principles equal across protocols.

Toronto Staging

Méric Klein, Belgian Cancer Registry

Supported by: Gemma Gatta (Fondazione IRCCS, INT, Milan) Andrea Di Cataldo (University of Catania)

Toronto Staging:

CanStaging⁺ Tool

Developed by a collaboration between the Northern Ireland Cancer Registry (NICR), the International Agency for Research on Cancer (IARC), the Union for International Cancer Control (UICC)), and Cancer Council Queensland (CCQ).

Designed to help maximise the availability, standardisation and comparability of cancer staging internationally.

The tool provides:

- Automatic calculation of the international TNM staging classification versions 7 and 8 for a variety of tumour sites.
- Automatic calculation of stage for childhood cancers using the business rules developed for the Toronto Paediatric Cancer Stage Guidelines.

CanStaging+: an electronic staging tool for population-based cancer registries. I. Soerjomataram, M. Ervik, C. Fox, S.Hawkins, K. Yeung, G. Napolitano et al. August, 2021 LO, DOI:https://doi.org/10.1016/S1470-2045(21)00188-1 VOLUME 22, ISSUE 8, P1069].

oronto Guidelines					A
Acute lymphoblastic leukaemia	Hodgkin lymphoma	Non-Hodgkin lymphoma	Renal tumours (excluding renal cell carcinomas)		benchista
Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines		international basic branch raise of a shallhaved spices and a
Astrocytoma	Malignant bone tumours	Non-rhabdomyosarcoma soft tissue sarcoma	Retinoblastoma		
Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines		
Ependymoma	Medulloblastoma and other CNS embryonal tumours	Ovarian germ cell tumours	Rhabdomyosarcoma		
Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines		
Hepatoblastoma	Neuroblastoma		Testicular germ cell tumours		
Toronto Paediatric Cancer Staging Guidelines	Toronto Paediatric Cancer Staging Guidelines		Toronto Paediatric Cancer Staging Guidelines		
				CanStaging ⁺ Home Sites * Staging system *	

Medulloblastoma and other CNS embryonal tumours 尾

Toronto Guidelines

Tumour ID:	0 ZAuto
Tier1	
Metastasis at diagnosis 🗎	Oves ONo ® Don't know
Tier2	
Metastasis outside of the central nervous system	Offes ONo ® Dan't know
Visible metastasis on imaging in spine or cervicomedullary junction	Otes ONo ® Dan't know
Visible metastasis on imaging in brain	Offes ONo @Don't know
Tumour cells in cerebrospinal fluid	Offes ONo ® Don't know
	Reset form

https://canstaging.org/tool?tnm_version=Toronto

Rhabdomyosarcoma 📩

https://canstaging.org/site/rms

Foronto Guidelines

Tumour ID:	0 Auto
Tier1	
Distant metastasis at diagnosis 🖿	OYes ●No ODon't know
Tier2	1
Distant metastasis at diagnosis 🖿	OYes ●No ODon't know
Regional lymph nodes involved	OYes ●No ODon't know
Tumour size (greatest dimension)	>5cm 🗸
Favourable anatomic site	●Yes ONo ODon't know
Tier1	L
Distant metastasis at diagnosis 🖿	OYes ●No ODon't know
Tier2	3
Distant metastasis at diagnosis	OYes ●No ODon't know
Regional lymph nodes involved	OYes ●No ODon't know
Tumour size (greatest dimension)	>5cm 🗸
Favourable anatomic site	OYes [●] No ODon't know

Medulloblastoma: Toronto Staging

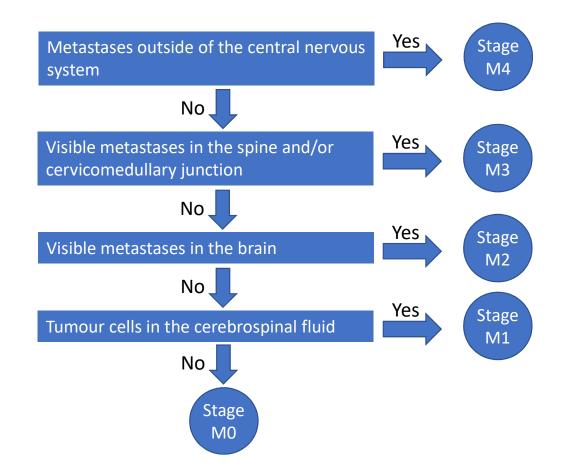
Toronto Staging: Medulloblastoma

<u>Tier 1</u>

Localised	Metastatic
Localised disease	Disease beyond local site

Toronto Staging: Medulloblastoma

Tier 2 = M staging system


- Staging requires assessment of
 - Extent of disease

M0	M1	M2	M3	M4
No visible disease on imaging beyond primary site of disease (MRI brain and spine) AND No tumour cells in the cerebrospinal fluid	Tumour cells in the cerebrospinal fluid	Visible metastasis in brain	Visible metastasis in spine OR Visible metastasis in cervicomedullary (junction)	Metastasis outside of the central nervous system

Toronto Staging: Medulloblastoma

Tier 2 = M staging system

NSP: Medulloblastoma

- Registration of Non-Stage Prognostic Factors NSP
 - ➢ Molecular classification (according to the ICD-O-3.2)
 - ✓ Wingless (WNT) medulloblastoma (10-15%)
 - ✓ Sonic Hedgehog (SHH) medulloblastoma (30%)
 - ✓ Group 3 / Group 4 medulloblastoma (Non-WNT/ non-SHH)

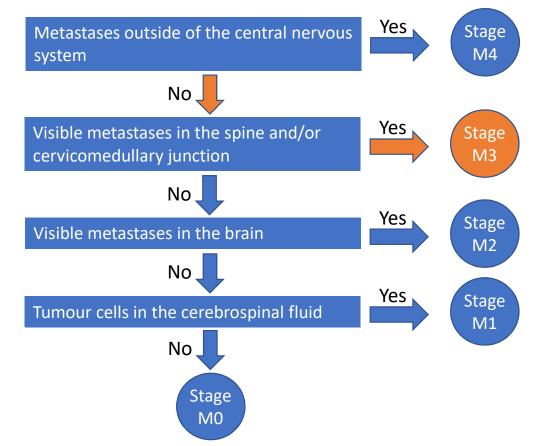
• Evaluation of post-operative residual disease volume

- ✓ R0 = No residual cerebellar tumour
- ✓ R1 = Residual tumour \leq 1.5 cm²
- ✓ R2 = Residual tumour > 1.5 cm^2
- \checkmark R+ = Residual tumour with unknown volume
- Unknown = Unknown presence of residual tumour

Medulloblastoma: Exercises

Available in the Kahoot application until November 14, 2021 at the following link:

https://kahoot.it/challenge/03305576?challenge-id=7382f979-7345-44c6-9f85-9268fb87bef4 1634549115290


A 2-year old patient is diagnosed with a WNT-activated medulloblastoma in the posterior cranial fossa. Tumour cells are present in the cerebrospinal fluid at the day 14 lumbar puncture. There is also evidence of spinal metastasis.

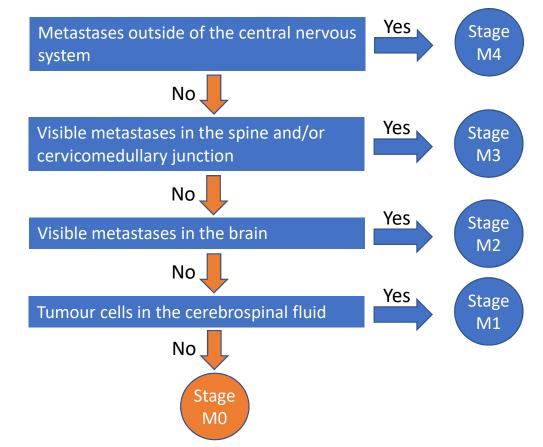
What is the correct stage for this patient?

- A. M1
- B. M3
- C. M4

Exercise 1 - Answer

Medulloblastoma with tumours cells in the cerebrospinal fluid and spinal metastasis. The highest stage has to be recorded, so the stage is M3 and not M1.

A MRI of the brain performed on a 9-year old patient suffering from headaches shows a solitary posterior fossa tumour. This is subsequently identified as a group 3 medulloblastoma.


A MRI of the spine shows nothing suspicious. The cerebrospinal fluid is analysed, but no tumour cells are found.

What is the correct stage for this patient ?

- A. M0
- B. M2
- C. M4

Exercise 2 - Answer

No metastasis identified for this patient, so the correct stage is M0.

A SHH-activated medulloblastoma is described as being metastatic without further details in a 12-year old patient.

What is the correct stage for this patient?

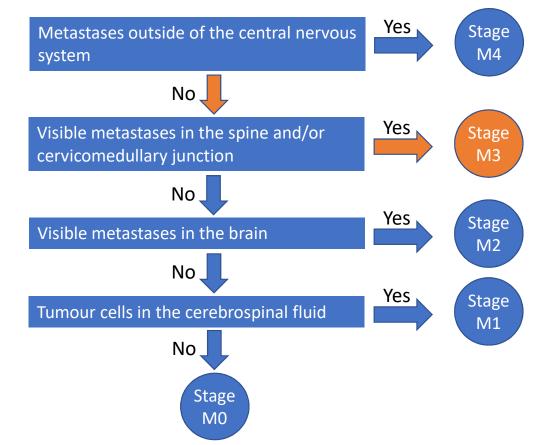
- A. M1
- B. M3
- C. M4
- D. Metastatic

Exercise 3 - Answer

Tier 2 classification can not be used in this case, since it would require clarifications about how metastases were found, and at which anatomical site.

Since you do not have those information, you have to use the Tier 1 classification, and record the patient as Metastatic.

A 3-year old patient hospitalised for vomiting and disturbances of balance.


- CT of brain: lesion of the posterior cranial fossa that could be a choroid plexus papilloma or an ependymoma of the 4th ventricle, which gives hydrocephalus.
- MRI confirms the lesion. An offshoot of this lesion insinuates itself into the left lateral recess of the 4th ventricle. Dissemination in spine of nodules located at the posterior spinal cord at T2. No clear metastatic lesions in the brain. The imaging concludes to a possibly disseminated medulloblastoma.
- No CSF analysis performed
- Surgically treated two days later

What is the correct stage for this patient?

- A. M1
- B. M2
- C. M3

Exercise 4 - Answer

Medulloblastoma of the posterior cranial fossa with dissemination in the spine.

The same 3-year old patient:

- CT of brain at diagnosis: lesion of the posterior cranial fossa that could be a choroid plexus papilloma or an ependymoma of the of the 4th ventricle, which gives hydrocephalus
- MRI confirms the lesion; the imaging concludes to a possibly disseminated medulloblastoma.
- Surgically treated two days later
- Some days later, MRI post surgery: primary lesion completely resected. Persistence in the spine of a pathological enhancement, identified as leptomeningeal carcinomatosis, less evident comparing with the pre surgery imaging.

What is the correct answer about the evaluation of postoperative residual disease?

- A. R0
- B. R1
- C. R+
- D. Unknown

Exercise 5 - Answer

The postoperative residual disease corresponds to the volume of the primary tumour.

So, in this case, even if leptomeningeal carcinomatosis is still present, the primary tumour is completely resected, and the correct answer is thus RO.

Rhabdomyosarcoma: Toronto Staging

<u>Tier 1</u>

Localised	Metastatic
Tumour confined to the area of origin, including regional lymph nodes	Distant metastases present

Tier 2 = modified TNM

- Several factors involved for prognosis
 - TNM classification
 - Favourable and unfavourable anatomic site
- => TNM revised to incorporate the anatomic site
- Staging requires assessment of
 - Paediatric TNM
 - Anatomic site

Stage I	Stage II	Stage III	Stage IV
Favourable site Any T Any N M0	Unfavourable site T1a or T2a N0 M0	Unfavourable site T1a or T2a N1 M0 OR Unfavourable site T1b or T2b Any N M0	Any site Any T Any N M1

Tier 2 = modified TNM

Favourable anatomic sites:

- ✓ Orbit
- ✓ Head and neck (excluding parameningeal tumours)
- ✓ Genitourinary sites (excluding bladder and prostate tumours)

✓ Trunk

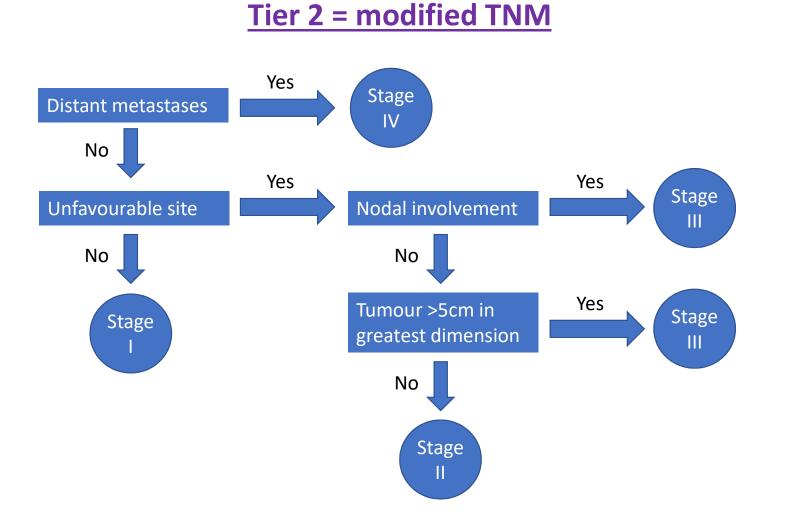
> Unfavourable anatomic sites:

✓ Bladder

✓ Parameningeal

- ✓ Prostate
- ✓ Extremity
- ✓ Cranial

- ✓ Retroperitoneum
- ✓ All other sites not noted as favourable


Tier 2 = modified TNM

Paediatric TNM classification of rhabdomyosarcoma:

TNM Classification of Malignant Tumours, 8th edition, page 248

- T Primary tumour
 - TX: Primary tumour cannot be assessed
 - T0: No evidence of primary tumour
 - T1: Confined to a single anatomic site
 - T1a: Tumour 5cm or less in greatest dimension
 - T1b: Tumour more than 5cm in greatest dimension
 - T2: Extension beyond anatomic site
 - T2a: Tumour 5cm or less in greatest dimension
 - T2b: Tumour more than 5cm in greatest dimension
- N Regional lymph nodes
 - NX: Regional lymph nodes cannot be assessed
 - NO: No regional lymph node metastasis
 - N1: Regional lymph node metastasis

- M Distant metastasis
 - M0: No distant metastasis
 - M1: Distant metastasis

NSP: Rhabdomyosarcoma

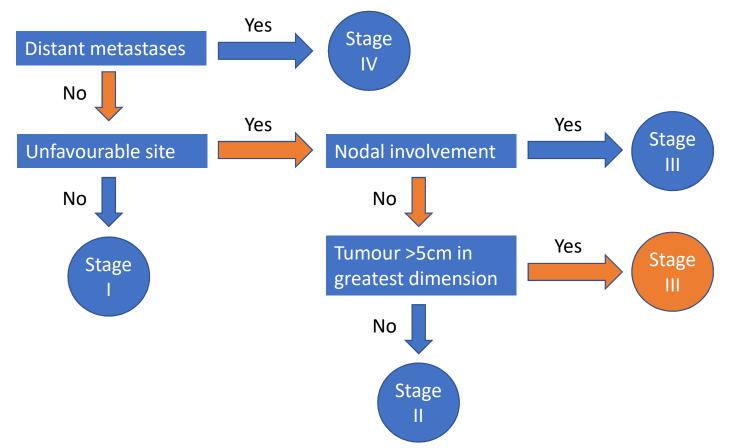
Registration of Non-Stage Prognostic Factors NSP
 ➢ Genetic expression
 ✓ FKHR-PAX3
 ✓ FKHR-PAX7

Rhabdomyosarcoma: Exercises

Available in the Kahoot application until November 14, 2021 at the following link:

https://kahoot.it/challenge/02598258?challenge-id=7382f979-7345-44c6-9f85-9268fb87bef4 1634549175471

A rhabdomyosarcoma is found in the bladder of a 6-year old patient. The tumour is 3.9x3x5.2cm in greatest dimension, and invades the seminal vesicle.


Imaging of regional lymph nodes and investigations for distant metastases are negative.

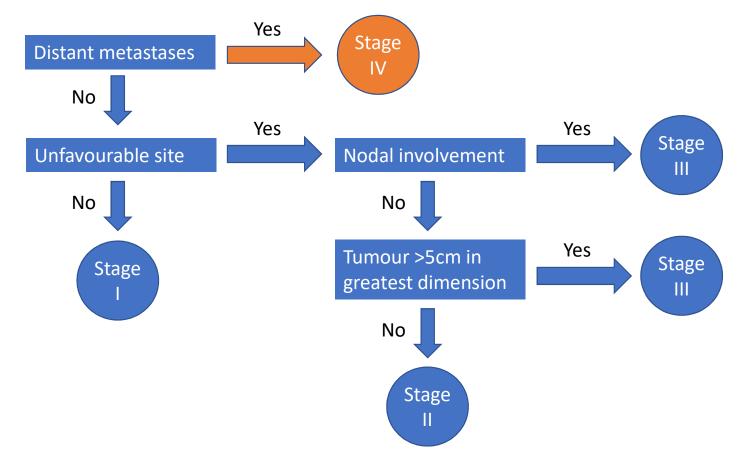
What is the correct stage for this patient?

- A. Stage I
- B. Stage II
- C. Stage III

Exercise 1 - Answer

Tumour located in the bladder, an unfavourable site, without any distant metastasis nor regional lymph node involvement. The tumour is 5.2cm in greatest dimension, and the correct stage is thus III.

A metastasis of a spindle cell rhabdomyosarcoma is found in the lung of a 7-year old patient.

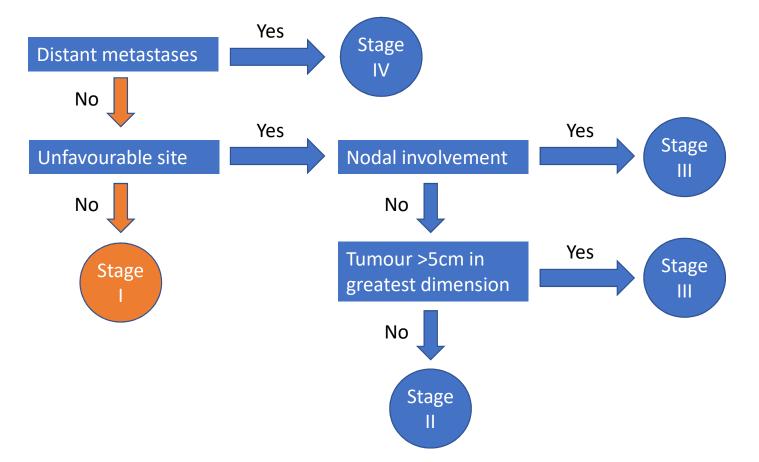

No primary tumour can be identified.

What is the correct stage for this patient?

- A. Metastatic
- B. Stage III
- C. Stage IV

Exercise 2 - Answer

The primary tumour location is not required for staging, if we know that distant metastases are present.


A confined rhabdomyosarcoma of 3.6cm is diagnosed in the scalp of a 12-year old patient. There are no regional or distant metastases.

What is the correct stage for this patient?

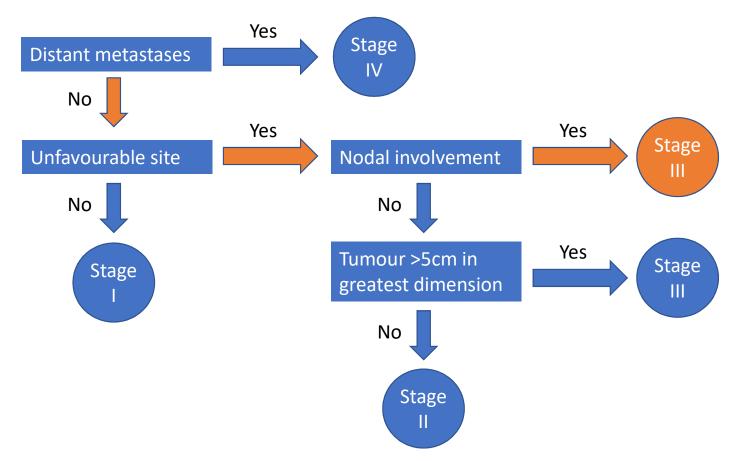
- A. Stage I
- B. Stage II
- C. Stage III

Exercise 3 - Answer

The scalp is a favourable site. Since there are no distant metastases, this tumour is classified Stage I.

13-year old boy with a painful, swollen, with functional limitation right lower limb, and homolateral inguinal lymphadenomegaly (9 cm).

Biopsy of lymph node \rightarrow rhabdomyosarcoma


A more detailed clinical inspection showed the primary lesion in the sole of the right foot (3 cm). All the major investigations confirmed the extension of the tumour.

What is the correct stage for this patient ?

- A. Stage I
- B. Stage III
- C. Stage X

Exercise 4 - Answer

The sole of the foot is an unfavourable site. There is a regional lymph node involvement, so the tumour has to be classified as Stage III.

Excel file Database Presentation: Medulloblastoma and Rhabdomyosarcoma

Fabio Didonè, Statistician, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano

Specific Variables: Imaging/examination performed for Medulloblastoma

Imaging/examination necessary for investigation of the **extension** of the disease are:

- CT/MRI primary site
- MRI whole neuraxis
- CSF (Cerebrospinal fluid)

• Note: the result of each exam performed is requested except for 'CT/MRI primary site'

Specific Variables: Imaging/examination Performed for Rhabdomyosarcoma

Imaging/examination necessary for investigation of the extension of the disease are:

- CT/MRI primary site
- CT thorax
- Imaging of regional lymph nodes
- Bone scan
- Bone Marrow (BM) aspirate or BM biopsy
- X-ray thorax
- PET
- Tissue biopsy (of non-primary sites suspicious for metastasis)
- Note: the result of each exam performed is requested except for 'CT/MRI primary site'

Specific Variables: TG staging and NSPs for Medulloblastoma and Rhabdomyosarcoma

	Variable name	values	Variable Description
	Stage Tier 1	1,2,9	L/M/X
Toronto staging,	Stage Tier 2	0,1,2,3,4,9	M0/M1/M2/M3/M4/X
Medulloblastoma	*_Evaluation of postoperative residual disease	0,1,2,3,9	R0/R1/R2/R+/Unknown
Meduliobiastoma	*_NSP: Wingless (WNT)	1,0,9	Y/N/unknown
	*_NSP: Sonic Hedgehog (SHH)	1,0,9	Y/N/unknown
20.000	Stage Tier 1	1,2,9	L/M/X
Toronto staging,	Stage Tier 2	1,2,3,4,9	I/II/III/IV/X
Rhabdomyosarcoma	*_NSP: FKR-PAX3	1,0,9	Y/N/unknown
	*_NSP: FKR-PAX7	1,0,9	Y/N/unknown

	Essential	Additional	New and promising	Comments
Solid tumours				
Rhabdomyosarcoma	Histology; anatomical location	Cytogenetics		Histological categories based on ICD-O-3 classification; and anatomical location captured through ICD-O-3 topography codes
CNS tumours				
Medulloblastoma	***	Molecular classification	177.	Molecular classification according to the ICD-O-3 classification

Specific Variables: TG staging and NSPs for Medulloblastoma

Evaluation of postoperative residual disease:

- 0=R0 (no residual cerebellar tumour)
- 1=R1 (residual tumour \leq 1,5 cm²)
- 2=R2 (residual tumour > 1,5 cm²)
- 3=R+ (residual tumour with unknown volume)
- 9=Unknown

NSP: Wingless (WNT)

- 1=Yes
- 0=No
- 9=Unknown

NSP: Sonic Hedgehog (SHH)

- 1=Yes
- 0=No
- 9=Unknown

Specific Variables: TG staging and NSPs for Rhabdomyosarcoma

benchista

- 1=Yes
- 0=No
- 9=Unknown

NSP: Presence of FKR-PAX7

- 1=Yes
- 0=No
- 9=Unknown

BENCHISTA Contact

Any questions?

Please feel free to email the BENCHISTA Team in case there are further questions/queries or guidance is required:

benchista@istitutotumori.mi.it

Thank you for your participation!