XClose

UCL Great Ormond Street Institute of Child Health

Home

Great Ormond Street Institute of Child Health

Menu

Dr Sergi Castellano

People Collaborators Publications Commentaries Outreach Jobs Teaching

Research

Our research examines the role of geneticspast, present and futurein human malnutrition. We are particularly interested in nutrients we need in tiny but essential quantities in the diet. These micronutrients (vitamins, iron, zinc, iodine and selenium, among others) are suboptimal in 2-3 billion people today and their overt deficiency has likely recurred throughout human history. All the more so, as humans have colonised vastly different environments and encountered very different levels of these micronutrients in their diets. Micronutrient deficiencies harm development during pregnancy and infancy, leading to stunting, mental retardation and increased risk of metabolic, cardiovascular and infectious diseases. 

Because our genomes are etched with the history of our past diets, we use populations —ancient and modern— to understand adaptations in micronutrients’ homeostasis that are important in the health of populations today. Because climate change is disrupting the incorporation of soil micronutrients into staple crops, we are interested in modelling future genetic risk to deficiency in populations and individuals worldwide. We have so far worked on selenium, dabbled in iodine, and are particularly interested in selenium and iodine deficient areas where Keshan disease (a children’s cardiomyopathy) and Kashin-Beck disease (a children’s osteochondropathy) are endemic due to the scarcity of these micronutrients in the soil. In addition, we are currently working towards using various omics approaches to better understand the metabolism under selenium and iodine deficiencies in mice models. The data we generate is integrated into our database SelenoDB for analysis by us and others. It is freely available.    

Other current interests include understanding how genetic variation, common and rare, impacts rare diseases phenotypes and their treatment using gene therapy, as well as accelerating crispr-based treatments for rare skin diseases. We also provide scientific leadership to UCL Genomics.

Currently recruiting, check our Jobs page!