MSc in Chemical Research

Undergraduate Laboratory Teaching 3


UCL Chemistry offers a one year full-time degree course for the Master of Science (MSc) in Chemical Research for students with a first undergraduate degree in Chemistry or a related subject.

The MSc course is intended to be an extension of the usual undergraduate education and an introduction to the methods of Chemical Research. The course is thus partly taught, whilst the largest single component is a research project. 

Further information about this course can be found below.

Background

UCL Chemistry offers a one year full-time degree course for the Master of Science (MSc) in Chemical Research for students with a first undergraduate degree in Chemistry or a related subject. The course begins towards the end of September each year and finishes late the following September in time to allow progress to MPhil/PhD degree courses.

Programme Structure

The course begins towards the end of September each year and finishes late the following September in time to allow progress to MPhil/PhD degree courses.

The course structure is based on a credit system in which 15 UCL credits (equivalent to 6 ects - European credit transfer and accumulation system) comprise around 150 hours worth of study. For a Masters degree, the learning commitment at UCL is 180 credits, i.e. approximately 1800 hours. The MSc in Chemical Research comprises:

  • Taught Course (60 credits)
  • Literature Project (30 credits)
  • Research Project (90 credits)

Taught Course

Students attend four courses, each approximately 35 lectures in length, chosen to match the research interests of the student (15 credits each).

The 'Course Unit' tab lists the courses on offer in a typical year.

Literature Project

In this component of the degree, students will survey the scientific literature on a topic related to their research project (chosen in consultation with their research supervisor), and will produce a 7,000 word report. There will also be a short oral exam.

Research Project

The single largest component of the course is a research project on an approved topic selected after consultation with the student. The work will be supervised by one of the academic staff of the Department and will reflect his/her research interests (see UCL Chemistry - Academic Staff). Students will write a dissertation, not exceeding 15,000 words in length, which must be submitted in late August. An oral examination will take place in late September, when students will also present a short seminar on their work.

Pass Criteria

Students attend three M-level lecture courses and hence take three examinations in the May-June examination period. They are also examined on their Literature and Research Projects.

Candidates who achieve an aggregate score of 50% over all components will be deemed to have gained a Pass.

Candidates who achieve an aggregate score of 70% over all components will be deemed to have gained a Distinction, subject to the proviso that they obtain no less than 70% in the dissertation on the research project.

Course Units

(This list does not show precisely the courses offered in any session)

Structural Methods in Modern Chemistry

To present the theoretical and practical aspects of the three main methods for the characterisation of molecular species. To develop an appreciation for the strengths and weaknesses of each method. To help students acquire the skills needed to solve problems in crystallography, NMR spectroscopy, and mass spectrometry, and to appreciate the complementarity of the information provided by each method.

Organometallic Chemistry

This course aims at providing students with an appreciation of the following:

  • That fundamental transition-metal and organic chemistry merge to produce organometallic chemistry, a major area in its own right.
  • That the structure, bonding and properties of organic molecules can be modified in a controlled way by coordinating these to trandition metals.
  • That a knowledge of factors causing these modifications can be applied to new organic chemistry.
  • That transition metal organometallics form the basis of branch of organic synthesis in the laboratory and in industry with applications of both stoichiometric and catalytic transformations.

Microstructural Control in Materials Science

The course aims to provide academic broadening for students from science and engineering disciplines who wish to explore the ways in which their subject specific skills can be applied in the wider context of materials science. The module develops from two platforms: phase equilibria and phase transformations using metallurgical, ceramic and polymer systems. It deals with metal, ceramic and polymer matrix composite materials and with theoretical strength, fracture mechanics, fracture toughness and Weibull statistics.

Stereochemical Control in Asymmetric Total Synthesis

Our primary mission in this course is to instruct you in the modern methods of asymmetric organic synthesis, and to familiarise you with the very latest techniques for controlling the geometry of stereodefined olefins. Such methodology lies at the heart of high-level organic synthesis today. This course will give you the ideal synthetic organic chemistry knowledge you will need for a first destination career in the pharmaceutical or fine chemicals industry, or for embarking on a synthetic organic chemistry Ph.D. degree

Synthesis and Bio-synthesis of Natural Products

The aims of this module are to provide a thorough knowledge of the biogenetic relationships between classes of natural products and the methods by which they are synthesised in nature. Also how such molecules can be chemically synthesized. By the end of this module students should be able to disconnect organic molecules guided by their natural reactivity. Students should also have an appreciation of the control of stereochemistry in natural product syntheses. In addition, students should understand biocatalysis in synthesis and the principles of glycosylation chemistry.

Topics in Quantum Mechanics

The aims of this course are:

  • To learn analytical methods commonly used in quantum mechanics and spectroscopy.
  • To understand and use the techniques of perturbation theory, operators and angular momentum and time-dependent quantum mechanics.

Frontiers in Experimental Physical Chemistry

This course covers three topics of considerable current research interest in experimental physical chemistry. The specific aims are:

Surface Science

  • To review the nature of metal surfaces and the different adsorption processes for gas molecules on metal surfaces.
  • To describe the various experimental techniques used to investigate the interaction of molecules with metal surfaces
  • To explain the way in which adsorbates interact with surfaces as a prerequisite to understanding the nature of surface processes.

Excited Molecules

  • To describe the role and classification of electronically excited molecules in the gas phase.
  • To examine the production, reactivity and relaxation of excited molecules
  • To describe examples of excited state chemistry such as interstellar chemistry, combustion and plasma chemistry, focussing on the excited states present and how these states define the chemistry in these regions.
  • To review experimental techniques for identifying and studying the behaviour of excited states.

Atmospheric Chemistry

  • To investigate the composition and physical structure of the Earth's atmosphere and the importance of atmospheric composition for the environment
  • To examine in detail the factors controlling atmospheric composition
  • To explain the factors controlling atmospheric temperature using radiative models.
  • To investigate the chemistry taking place in the atmosphere in both its natural (unpolluted) and polluted states
  • To discuss and explain the chemistry and photochemistry underlying particular issues of current concern in the atmospheric environment. This will include photochemical smog formation, stratospheric ozone depletion, the greenhouse effect and climate change.

Intense Radiation Sources in Chemistry

To introduce students to the wide-ranging use of intense radiation sources in the study of chemical systems. The main focus will be on the synchrotron, as a provider of the most intense/brilliant X-ray beams available. Neutrons sources provide a complimentary source of radiation.

Numerical Methods in Chemistry

To develop an understanding of numerical and analytical techniques in chemistry data analysis.

Research Projects

The following projects are a selection of those available to students enrolling in 2014. They are divided into Computational, Inorganic, Organic, Physical and Theoretcal categories, representing the broad research themes in the Department. Many of the projects feature more than one category due to the multidisciplinary nature of the research.

How to Apply

Information on the application procedure is included below.

Eligibility

Qualifications

In general, applicants should hold a good honours degree (i.e. equivalent to at least a second class honours degree at a British University) in chemistry or in a related subject. 

Other applicants will be considered if they have relevant postgraduate experience in a science related field. The MSc Course Organiser, Dr Chris Blackman, will advise on this matter. 

The UCL pages containing advice for international students can be found here.

Fees and Funding

Information on fees can be found on the UCL fees page. UCL offers some scholarships for graduate studies, the details of which can be found here.

Application Procedure

Formal application for the course should be done online here

In their application, candidates are asked to select between three and five research projects they would like to undertake (no more than one from any single supervisor) and place them in order of preference.

PLEASE NOTE: You are applying to undertake research with a particular supervisor NOT to the specific project shown. The projects are simply indicative of the current research interests of potential supervisors, hence the exact research project to be undertaken will be agreed only on commencing the degree.

Candidates are also asked to provide details of any project work or research they have already undertaken, particularly where relevant to their project choice.

Departmental visits can be arranged by contacting the postgraduate admissions secretary, Ms Mary-Lou Jabore, who will also advise on administrative matters related to MSc application.

Deadline for Application

The deadline for applications is in August of the year of entry. Please use the contact form under Further Information for exact dates and times.

Further Information

Information on all aspects of studying at UCL as a postgraduate can be found here and information specifically for international students thinking of studying at UCL can be found here.

For any further information regarding the MSc in Chemical Research please contact the course organiser by completing the following form, outlining your request using the Additional Information box.

Information Request

Please fill in the information below; (*) are required fields.

Title
First Name (*)
Last Name (*)
Address (*)
Postcode (*)
Country (*)
Email (*)
Phone
Additional Information