One-dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes

Martin Hart, Ji Chen, Angelos Michaelides, Andrea Sella, Milo S. P. Shaffer, and Christoph G. Salzmann

Abstract: The pnictogen nanomaterials, including phosphor-ene and arsenene, display remarkable electronic and chemical properties. Yet, the structural diversity that these main group elements are capable of is still poorly explored. Here we fill single-wall carbon nanotubes with elemental arsenic from the vapor phase. Using electron microscopy, we find chains of highly reactive As₄ molecules as well as new one-dimensional allotropes of arsenic: a single-stranded zig-zag chain and a double-stranded zig-zag ladder. These linear structures are important intermediates between the gas-phase clusters of arsenic and the extended sheets of arsenene. Raman spectroscopy indicates weak electronic interaction between the arsenic and the nanotubes which implies that the formation of the new allotropes is driven primarily by the geometry of the confinement. The relative stabilities of the new arsenic structures are estimated computationally. Band-gap calculations predict that the insulating As₄ chains become semiconducting, once converted to the zig-zag ladder, and form a fully metallic allotrope of arsenic as the zig-zag chain.

Despite its infamous toxicity, arsenic is considered to be an essential element and up to 25 μg per day are thought to be required for human health. In the electronics industry, arsenic is found in a wide range of semiconducting materials and it is used in car batteries to strengthen the lead components. The recent discovery of phosphorene, a single, two-dimensional sheet of black phosphorus, has sparked tremendous interest in the nanomaterials of the pnictogens including arsenic. In fact, arsenene, the single-layer arsenic equivalent to graphene, has been predicted to display a large band gap, which, combined with a low thermal conductivity, makes it a highly desirable material for thermoelectric applications. A large number of other electronic, optoelectronic, spintronic, and sensing applications are also envisaged. The first experimental steps towards the isolation of arsenene have recently been taken including the plasma-assisted deposition of arsenic on an InAs substrate as well as aqueous shear exfoliation.

Gray arsenic (α-As) is the most stable allotrope at ambient conditions and it consists of layers of puckered hexagons in a rhombohedral crystal structure. Black arsenic (β-As) is metastable with an orthorhombic layered crystal structure similar to that of black phosphorus. Amorphous arsenic, with a wide range of different densities, has also been isolated. Finally, yellow arsenic (γ-As) consists of tetrahedral As₄ molecules, analogous to white phosphorus (P₄). However, due to its extreme sensitivity to light and X-rays, which trigger the conversion to gray arsenic, no crystallographic data has been collected so far for the bulk material. In addition to the bulk allotropes, clusters in size up to As₁ have been found experimentally. Nanostructures that may exist between these small clusters and the two-dimensional sheets of arsenene have so far not been identified.

Carbon nanotubes have recently been used as molds to prepare new one-dimensional allotropes of a range of elements including carbon in the forms of carbyne, nanodiamond, and graphene nanoribbons, iodine, sulphur, selenium, and phosphorus. In the case of phosphorus, fibrous chains with alternating P₃ and P₂ units as well as single-stranded zig-zag chains have been identified so far, depending on the tube diameter. Furthermore, confinement within carbon nanotubes stabilizes the highly reactive P₄ molecules against reaction with atmospheric oxygen. The stabilization of individual As₄ molecules has been achieved by intercalation between polymeric chains, using a copper ligand and supramolecular tetrahedral cages, as well as in the confinement environments provided by activated carbon.

Herein, we investigate the filling of single-wall carbon nanotubes (SWCNTs) with arsenic from the vapor phase in order to achieve the stabilization of As₄ molecules and to search for new one-dimensional arsenic structures. In addition to the experimental work, density functional theory (DFT) is used to estimate the relative stabilities and electronic properties of the various arsenic nanostructures.

The successful filling of SWCNTs with arsenic (As@SWCNT) was achieved by exposing tip-opened HiPco (high-pressure carbon monoxide) SWCNTs, with a diameter range of about 0.8 to 1.2 nm, to arsenic vapor at 615°C in an
evacuated and sealed quartz-glass ampoule. Upon subsequent exposure to light and air, the excess arsenic is expected to either oxidize to give arsenic(III) oxide or to convert to gray arsenic. To remove the external arsenic materials, the crude As@SWCNT product was treated with dilute nitric acid, followed by washing with water. Full details of the filling and purification procedures are given in the Experimental section. As₄ molecules remained encapsulated within the SWCNTs and were successfully imaged using high-resolution transmission electron microscopy (HRTEM), as shown in Figure 1a–d. The “beads” of As₄ molecules are spaced 0.53 ± 0.06 nm apart from one another. X-ray photoelectron spectroscopy (XPS) confirmed the presence of elemental arsenic. The As@SWCNT sample was found to contain 20 wt% As⁰, 5 wt% As⁺³, 69 wt% C, and 6 wt% O (see Figure 1e). It is proposed that elemental arsenic closest to the ends of the SWCNTs is oxidized by exposure to atmospheric oxygen. The oxidized arsenic then acts as a “cork” to the SWCNTs preventing further oxidation of the confined material. According to powder X-ray diffraction, only 1.2 wt% of bulk gray arsenic is present in the sample after the final purification step which suggests that around 94% of the elemental arsenic is encapsulated within the SWCNTs (see Figure S1 in the Supporting Information). A completely filled SWCNT with a 0.9 nm diameter is predicted to contain 30 wt% As, considering the available space of the SWCNT cavity and the van der Waals volume of As₄.

The TGA/DSC analysis of As@SWCNT in air shows that the exothermic oxidation of the elemental arsenic is signaled by a small mass increase that starts at around 130°C (see Figure 1f). The mass loss in the 300–500°C range is then due to the sublimation of arsenic oxide. This process is followed by the exothermic burning of the carbon at around 550°C. Analysis of this feature shows that ~22.8 J are released per milligram of sample. Since graphitic carbon has an enthalpy of combustion[27] of ~33.2 J mg⁻¹ it follows that this sample is comprised of 70 wt% carbon, which is in very good agreement with the XPS analysis of the sample. Figure S2 shows that elemental arsenic can be released from As@SWCNT upon thermal annealing under high-vacuum conditions illustrating the reversibility of the filling process.

In addition to the encapsulated As₄ molecules, novel one-dimensional (1D) arsenic structures were observed inside the SWCNTs: either single-stranded zig-zag chains or double-stranded zig-zag ladders, as shown in Figure 2.

The HRTEM simulations shown in Figure 2b,e were generated by using filling materials rotationally-averaged about the axis of the SWCNTs. Stills of the structures can be seen in Figures S3 and S4, respectively, which show highly defined features that are not observed in any of the collected HRTEM images, supporting the interpretation that the arsenic chains spin dynamically about the nanotube axis. Similar dynamic rotations of filling materials have previously been observed for graphene nanoribbons[18] The zig-zag ladder displays a faint gap between the two strands in both the experimental as well as calculated HRTEM images (see Figure 2g,h). The average width of this gap was measured as 2.38 Å which closely matches the value obtained from the simulation. The single zig-zag chain on the other hand does not show such a feature and is defined by a narrow band in the center of the host SWCNTs.

A statistical analysis shows that the occurrence of the various 1D arsenic nanostructures is a function of the SWCNT diameter (see Figure 3). The most frequently observed structures are zig-zag ladders in the diameter range typical for HiPco SWCNTs between 0.8 and 1.2 nm. Single zig-zag chains and individual As₄ tetrahedra were most common in the 0.8–0.9 and 0.7–0.8 nm ranges, respectively. It is interesting to note that empty tubes are observed most frequently for diameters above 1.1 nm. This finding suggests that the arsenic structures must be confined in a narrow enclosure to prevent leakage and oxidation. The filling yield calculated from the data in Figure 3 is 73%, which is consistent with estimates from the XPS data. Several more HRTEM images of the As@SWCNT nanostructures are shown in Figure S7.

To gain information about the relative stabilities of the various 1D arsenic nanostructures, DFT calculations were conducted using the structures shown in Figure 4a. These
types of structures were previously identified in work on 1D phosphorus structures;[22b] chains of As₈ clusters, which have been proposed elsewhere[28] were also considered. The confinement provided by the SWCNTs was described with an empirical cylindrical potential as outlined in more detail in the Supporting Information. The resulting DFT energies of these structures are shown as a function of the nanotube diameter in Figure 4b. According to DFT, the single zig-zag

Figure 2. New one-dimensional arsenic allotropes inside SWCNTs. a) HRTEM image, b) HRTEM simulation and c) structure of a SWCNT filled with a single zig-zag chain. d) HRTEM image, e) HRTEM simulation and f) structure of a SWCNT filled with a zig-zag ladder. Panels (a–c) and (d–f) are shown on the same scale, respectively.

g,h) Line profiles taken across the highlighted areas in (d) and (e).

Figure 3. Occurrence of the various 1D arsenic nanostructures observed in HRTEM as a function of the SWCNT diameter.

Figure 4. DFT analysis of one-dimensional arsenic structures within a nanotube. a) Geometry-optimized arsenic structures. b) Energies of the structures shown in (a) as a function of the nanotube diameter and defined as the per-atom binding energy relative to an isolated arsenic atom plus the confining energy. c) Energy differences relative to the starting structure along a computationally optimized reaction pathway from face-orientated As₄ to the trans butterfly chain calculated using climbing-image nudged-elastic band calculations (cNEB) with a nanotube diameter of 0.9 nm. d) Electronic band gaps of the confined arsenic structures. The insets show the density-of-states for the face-to-face As₄ chain and the single zig-zag chain, respectively.
These are not the final page numbers!
Communications

Allotropy

M. Hart, J. Chen, A. Michaelides, A. Sella, M. S. P. Shaffer, C. G. Salzmann*

One-dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes

Arsenic like never seen before: Highly reactive As$_4$ molecules are filled into single-wall carbon nanotubes where they transform to new one-dimensional allotropes of arsenic: a single-stranded zig-zag chain and a double-stranded zig-zag ladder. These structures represent important intermediates between the gas-phase clusters of arsenic and the sheets of arsenene, and are predicted to display diverse electronic properties.

Allotrope

M. Hart, J. Chen, A. Michaelides, A. Sella, M. S. P. Shaffer, C. G. Salzmann*

One-dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes

SPACE RESERVED FOR IMAGE AND LINK

Share your work on social media! *Angewandte Chemie* has added Twitter as a means to promote your article. Twitter is an online microblogging service that enables its users to send and read short messages and media, known as tweets. Please check the pre-written tweet in the galley proofs for accuracy. If you, your team, or institution have a Twitter account, please include its handle @username. Please use hashtags only for the most important keywords, such as #catalysis, #nanoparticles, or #proteindesign. The ToC picture and a link to your article will be added automatically, so the tweet text must not exceed 250 characters. This tweet will be posted on the journal’s Twitter account (follow us @angew_chem) upon publication of your article in its final (possibly unpaginated) form. We recommend you to re-tweet it to alert more researchers about your publication, or to point it out to your institution’s social media team.

Please check that the ORCID identifiers listed below are correct. We encourage all authors to provide an ORCID identifier for each coauthor. ORCID is a registry that provides researchers with a unique digital identifier. Some funding agencies recommend or even require the inclusion of ORCID IDs in all published articles, and authors should consult their funding agency guidelines for details. Registration is easy and free; for further information, see http://orcid.org/.

Martin Hart http://orcid.org/0000-0002-4732-1229
Dr. Ji Chen http://orcid.org/0000-0003-1603-1963
Prof. Angelos Michaelides http://orcid.org/0000-0002-9169-169X
Prof. Andrea Sella http://orcid.org/0000-0002-4263-8577
Prof. Milo S. P. Shaffer http://orcid.org/0000-0001-9284-9043
Dr. Christoph G. Salzmann http://orcid.org/0000-0002-0714-7342

www.angewandte.org © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!