Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

Gene therapy targeting overactive brain cells could treat neurological disorders

A new treatment for neurological and psychiatric diseases, that works by reducing the excitability of overactive brain cells, has been developed by UCL researchers.

4 November 2022

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

Many brain diseases, such as epilepsy, are caused by excessive activity of a small number of brain cells. These conditions often don’t respond well to drug treatment, mainly because drugs affect the whole brain.

Whilst genetic therapies could be a promising way to treat these conditions, current methods do not distinguish between overactive and normal brain cells.

However, the new treatment, outlined in Science and tested in mice, uses a technique that only alters overactive cells and spares those that are acting normally.

Corresponding author, Dr Gabriele Lignani (UCL Queen Square Institute of Neurology), said: “We invented a gene therapy that switches on only in overactive cells, and switches itself off if activity returns to normal.

“We harnessed the ability of certain DNA sequences to control gene expression in response to metabolic signals. By re-directing this activity-sensing mechanism to drive the production of molecules that stop brain cells from firing, we showed that epileptic seizures can be suppressed."

To create the gene therapy, the team screened several genes known to ‘switch on’ in response to stimulation, and coupled their promoters (DNA sequences that determine whether the DNA is copied to RNA) to potassium channels chosen for their ability to reduce the firing of nerve cells. The promoter-potassium channel combinations were tested both in mice and in miniature brain-like structures grown in dishes – which were created using skin-derived human stem cells.

They found that the immediate early gene cfos promoter, in combination with the KCNA1 potassium channel gene, proved to be highly effective in calming neuronal excitability following an induced seizure, and also in suppressing spontaneous seizures – without having any negative effects on cognition.

The new treatment was more effective than previous gene therapies or anti-seizure drugs tested in the same model, with around an 80% reduction in spontaneous seizures in epileptic mice.

Researchers say, the gene therapy could eventually – in theory – also be used for other disorders where some brain cells are overactive, such as Parkinson’s.

Co-corresponding author Professor Dimitri Kullmann (UCL Queen Square Institute of Neurology) said: “Our findings indicate that the activity of brain cells can be normalised, and that this approach can be used to treat important neuropsychiatric diseases that do not always respond to medication.

“The gene therapy is self-regulated and can therefore be used without deciding a priori which brain cells need to be targeted.

“Importantly, it could in principle, be extended to many other disorders such as Parkinson’s disease, schizophrenia and pain disorders, where some brain circuits are overactive.”

The study was funded by Epilepsy Research UK, with contributions from the MRC and Wellcome. UCL academics also received funding from a TAS award (TRO) and from UCL Technology funds.

Links

  • Qiu et al. On-demand cell-autonomous gene therapy for brain circuit disorders Science 3 Nov 2022 Vol 378, Issue 6619 pp. 523-532 DOI: 10.1126/science.abq66
  • Dr Gabriele Lignani's academic profile
  • Professor Dimitri Kullmann's academic profile

Image

  • cfos-GFP hippocampal neurons activated by an epileptic seizures. Credit: Benito Maffei

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in