Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

Humanising mice to enable modelling of neurodegenerative diseases

A team of researchers at MRC Harwell, UCL Queen Square Institute of Neurology & the Canary Islands University Hospital have published their work on generating the first genomically humanised mice in which human genes for ALS/FTD-associated genes replace their mouse orthologues

30 November 2021

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterised by progressive loss of muscle control, leading to spreading paralysis and death typically within five years of diagnosis. Understanding of the disease is limited and it is essentially untreatable. New mouse models of the disease could do much for the development of future therapies.

A team of researchers at MRC Harwell, the Queen Square Motor Neuron Disease Centre at the UCL Queen Square Institute of Neurology, and the Canary Islands University Hospital, led by Thomas Cunningham, Elizabeth Fisher, and Abraham Acevedo-Arozena, have published a paper in iScience that describes their work to generate the first genomically humanised mice for 3 genes associated with ALS and frontotemporal dementia (FTD).

Although most ALS has an unknown cause, it can also be inherited and a number of genetic mutations have been identified as the source of this inheritance. These include the genes for the enzyme SOD1 and the RNA binding proteins FUS and TDP-43. Indeed, even in the absence of mutations, FUS and TDP-43 form abnormal pathological aggregates in the neurons of patients with ALS and FTD. A number of mechanisms for how mutations lead to disease have been proposed, but more work is needed.

Transgenic mice in which human ALS/FTD genes have been inserted have been of great use as they recapitulate human biochemistry and enable researchers to model these degenerative diseases within a short timeframe. However, these models are produced from random insertion of the human genes, meaning that effects seen in the mice could be due to the human protein or a negative effect of the disruption to the mouse gene sequence. Another issue is that this system usually results in insertion of multiple copies of the same gene, which is likely to increase the amount of that protein produced, which might also cause effects unrelated to the disease. Another option for creation of mouse models has been to edit mouse genes in order to insert equivalent mutations of interest, but this option is also limited where mouse and human proteins differ to too great an extent.

To address these limitations, the team generated three genomically humanised mouse models in which the human genes that code for SOD1, FUS, and TDP-43 precisely replaced their mouse counterparts. These human genes are driven by the mouse promoter to maintain normal expression levels and include the entire human sequence, including introns, to ensure that human splice variants can be produced.

The generation of these mice is technically challenging and required extensive quality control to assess that the human genes were inserted correctly and that human, not mouse, protein was produced within a physiological range. To demonstrate the capacity for this mouse to provide a useful model for the study of disease, the team then performed extensive characterisations of mice expressing the human FUS protein and demonstrated that these mice are normal throughout their lifespan. This means that human FUS can functionally replace the mouse version without detrimental effects.

The mice generated in this study carry healthy versions of human genes associated with ALS and FTD. It is then envisaged that mutations could be inserted using CRISPR/Cas9 so that it would be possible to generate a mouse model of disease and have a useful control mouse with the healthy human version of the protein. This would provide a more refined system for studying disease, thereby contributing to our commitment to the 3Rs. This system could be of great use to researchers wanting to better understand these diseases and develop new treatments. To support this, these lines are being made freely available to the scientific community through the European Mouse Mutant Archive, of which the MRC Harwell Archive acts as the UK node. This work also serves as a proof of principle, providing a pipeline through which more genomically humanised mouse lines could be produced in order to provide better models of human disease.

This work was supported by UKRI MRC, the Motor Neurone Disease Association, the ISCiii, CIBERNED, and the Rosetrees Trust.

Links

  • Devoy, A, Price, G, De Giorgio, F, Bunton-Stasyshyn, R, Thompson, D, Gasco, S, Allan, A, Codner, GF, Nair, RR, Tibbit, C, McLeod, R, Ali, Z, Noda, J, Marrero-Gagliardi, A, Brito-Armas, JM, Öztürk, MM, Simon, M, O’Neill, E, Bryce-Smith, S, Harrison, J, Atkins, G, Corrochano, S, Stewart, M, Teboul, L, Acevedo-Arozena, A, Fisher, EMC, Cunningham, TJ. Generation and analysis of innovative genomically humanised knock-in SOD1, TARDBP (TDB-43), and FUS mouse models. ISCIENCE (2021)
  • MRC Harwell Archive
  • Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology

Source

  • MRC Harwell

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in