Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

Scientists discover key to Iron Age ‘Heslington brain’ preservation

The 2,600-year-old Heslington brain, discovered in 2008 near York in the UK, was probably so well-preserved due to tightly folded brain proteins, finds a new UCL-led study.

8 January 2020

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

The brain matter was the only soft tissue that remained in the skull, which dated from around 673-482 BCE.

The new findings, published in Journal of the Royal Society Interface, suggest that the first few months after the person’s death may have been key to the extraordinary degree of brain preservation. In the absence of any experimental evidence it is less likely, but still possible, that a yet unknown disease may have altered the brain proteins prior to death.

"The manner of this individual’s death, or subsequent burial, may have enabled the brain’s long term preservation,” said the study’s lead author Dr Axel Petzold (UCL Queen Square Institute of Neurology).

Dr Petzold was interested in studying this brain as he had spent years pioneering research in two types of filaments in the brain – neurofilaments and glial fibrillary acidic protein (GFAP) – which act like scaffolds to hold brain matter together (much like the scaffold in a historic building), and he suspected that the proteins may have played a key role.

He and his team found that both these filament types were still present in the Heslington brain, suggesting they were involved in keeping the brain matter together.

Typically, brains decompose quite quickly after death in a rapid process of autolysis – enzymes breaking up the tissue. The research team speculates that these enzymes must have been deactivated within three months after this individual’s death 2,600 years ago, as they found in experiments that it takes three months for proteins to fold themselves tightly into aggregates if autolysis does not occur.

Their findings suggest that an acidic fluid could possibly have got into the brain and prevented autolysis, either as part of how the person died, or after his death. The person is suspected to have been struck in the head or neck or hanged, and subsequently decapitated.

Neurofilament proteins are typically found in greater concentrations in inner areas of the brain (white matter), but in the preserved Heslington brain, they found the opposite, with more filaments in the outer areas of the brain (grey matter). The researchers say this suggests that the inhibition of autolysis would have started in the outer parts of the brain, perhaps as an acidic fluid seeped into the brain.

Dr Petzold says that the findings about brain protein folding and unfolding could also have implications to biomedical research. The research team conducted an experiment to see how long it took brain protein aggregates to unfold themselves, and found it took a full year, which could imply that treatments for neurodegenerative diseases (which involve protein aggregates) may also need to consider a more long-term approach to tackling harmful protein aggregates. The unfolding of the Heslington brain proteins still triggered a strong immune response which was used in this study to generate novel antibodies.

The Heslington brain project was co-funded by the University of York and English Heritage.

Links

  • Research paper in Journal of the Royal Society Interface
  • Dr Axel Petzold’s academic profile

Image 

  • Heslington brain. Credit: Petzold et al, 2020

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in