Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

AI used to detect brain’s response to multiple-sclerosis treatment

A new artificial intelligence-based method for detecting the brain's response to treatment in multiple sclerosis (MS) has been developed by researchers at UCL and Kings College London.

11 June 2019

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

The new method has substantially higher sensitivity than conventional, radiologist-derived measures permit.

The team studied patients with relapsing–remitting MS treated with the disease-modifying drug natalizumab, where serial magnetic resonance imaging (MRI) scans were available before and after initiation of treatment.

Machine vision was used to extract from each scan an "imaging fingerprint" of the state of the brain, capturing detailed changes in white and grey matter and yielding a rich set of regional trajectories over time.

Compared with conventional analysis of the traditional measures of total lesion and grey matter volume a radiologist is able to extract, AI-assisted modelling of the complex imaging fingerprints was able to discriminate between pre- and post-treatment trajectories of change with much higher accuracy.

The study, published in Nature Digital Medicine, demonstrates that AI can be used to detect brain imaging changes in treated multiple sclerosis with greater sensitivity than measures simple enough to be quantified by radiologists, enabling "superhuman" performance in the task. The approach could be used to guide therapy in individual patients, detect treatment success or failure faster, and to conduct trials of new drugs more effectively and with smaller patient cohorts.

Dr Parashkev Nachev (UCL Queen Square Institute of Neurology) who led the study, said, "Rather than attempting to copy what radiologists do perfectly well already, complex computational modelling in neurology is best deployed on tasks human experts cannot do at all: to synthesise a rich multiplicity of clinical and imaging features into a coherent, quantified description of the individual patient as a whole. This allows us to combine the flexibility and finesse of a clinician with the rigour and objectivity of a machine".
Professor Olga Ciccarelli, NIHR Research Professor, who is the senior author of the study, said, "The method is currently focused on imaging changes only; we are extending the approach to predicting the clinical response to disease modifying treatment, in terms of cognitive and motor outcomes. I hope that this exciting field of research will lead to an individual prediction of treatment response in multiple sclerosis using AI”.

This work was funded by UCLH NIHR BRC, and the Wellcome Trust. The broad research programme, additionally funded by the NIHR, UK MS Society, and Novartis, is aligned with UCLH's Research Hospital Initiative, which seeks to embed advanced modelling techniques into real world clinical practice.

Links

  • Kanber et al. High-dimensional detection of imaging response to treatment in multiple sclerosis npj Digital Medicine 2, Article number: 49 (2019). DOI: 10.1038/s41746-019-0127-8
  • Dr Parashkev Nachev's academic profile
  • Professor Olga Ciccarelli's academic profile
  • UCLH NIHR BRC

Image

Disconnection pattern in the brains of patients with multiple sclerosis  (Credit: Dr Parashkev Nachev)

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in