Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

First language study using new wearable brain scanner

Researchers at UCL and the University of Nottingham have mapped the brain’s language area in the first study of human cognition using a new generation of brain scanner that can be worn like a helmet.

9 August 2018

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

This marks an important step forward in the translation of their new technique from the laboratory bench to a genuinely useful tool for cognitive neuroscience and clinical application, enabling researchers to scan the brains of people while they move about.

The Wellcome-funded study, published in NeuroImage, was conducted by researchers at the Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, and the Sir Peter Mansfield Imaging Centre, University of Nottingham.

“From a neuroscience perspective this work is very exciting as it allows us to study tasks that we could never have contemplated before with conventional scanners (where the head has to remain fixed). For example, people interacting naturally or people navigating through virtual worlds and laying down memories. Importantly, we can do this throughout the lifespan – allowing us to understand how key functions like memory or language develop and how they degrade in dementia.” co-lead author Professor Gareth Barnes (Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology).

Using the new wearable magnetoencephalography (MEG) system the research team were able to map the parts of the brain responsible for language.

Brain cells operate and communicate by producing electrical currents that generate tiny magnetic fields that can be detected outside the head using MEG scanners. The scans map brain function with a millisecond-by-millisecond picture of which parts of the brain are engaged when we undertake different tasks, such as speaking or moving.

In this study, subjects wearing the MEG scanner were shown nouns on a on a screen and told to think of related words without speaking, e.g. if presented with the word 'cake' subjects may think of words such as 'bake' or 'eat'. They were instructed to continue doing this until the word disappeared from the screen after a three second period.

Each verb generation period was followed by a baseline period of approximately two seconds where the subject was asked to do nothing. Images captured exactly how the language network was engaged when subjects undertake the task.

Co-author Dr Matt Brookes, who leads MEG work in the School of Physics and Astronomy at the University of Nottingham, said: "This is the first study of human cognition using this new scanner and it highlights this technology's potential as a tool for cognitive neuroscience. The study also shows the potential of our system to improve the accuracy of surgical planning, via mapping eloquent cortex. “If we can map, for example, the language network, then that will provide useful information for surgeons who may be planning resections in, for example, epilepsy. We hope the methods will be particularly beneficial for young children, who are often difficult to scan accurately using the fixed scanners which rely on the patient saying very still for long periods of time. This therefore represents an exciting step forward as it demonstrates the utility of a new generation of wearable MEG sensors for both cognitive and clinical neuroscience."

Conventional MEG scanners are large and weigh around half a ton. This is because the sensors used to measure the brain’s magnetic field need to be kept very cold (-269°C) which requires bulky cooling technology. With current scanners, the patient must remain very still whilst being scanned, as even a 5-mm movement can make the images unusable. This means it is often difficult to scan people who find it hard to remain still such as young children, or patients with movement disorders. 

The new system uses ‘quantum’ sensors that can be mounted in a 3D-printed prototype helmet. As the new sensors are very light in weight and can work at room temperature, they can be placed directly onto the scalp surface. Positioning the sensors much closer to the brain increases the amount of signal that they can pick up.

“We soon expect delivery of even smaller sensors which we should be able to put within a bicycle helmet and we are building a new room where subjects are free to move around naturally. We will be able allow people to interact with one another or within virtual worlds where we can study how they make decisions and lay down memories. This will also mean we will be able to study natural human movement and how it is compromised in diseases like Parkinson’s,” added Professor Barnes.

Links

  • Tierney et al. (2018) Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. NeuroImage Volume 181, 1 November 2018, Pages 513-520. DOI: 10.1016/j.neuroimage.2018.07.035. Available online: 23 July 2018
  • Professor Gareth Barnes' academic profile

  • Image

  • Source: Wellcome
  • Source

  • University of Nottingham

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in