Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

Invention for Innovation grant awarded to develop robotic system for retinal cellular delivery

The National Institute for Health Research (NIHR) awards £1m to a team, including Institute of Ophthalmology and Moorfields, to develop a robotic system for cell delivery to the retina.

1 November 2017

Example of a robotic surgical system

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

The NIHR has awarded the £1m Invention for Innovation (i4i) grant to a project led by the UCL Institute of Healthcare Engineering's Flagship Programme Leaders: Dr Christos Bergeles (UCL Faculty of Engineering Science) and Prof. Lyndon da Cruz (honorary senior lecturer, UCL Institute of Ophthalmology, and consultant ophthalmic surgeon, Moorfields Eye Hospital). They will work in collaboration with co-investigators Dr M. Jorge Cardoso and Dr Danail Stoyanov.

It will be a multidisciplinary venture with scientific, engineering and clinical input from UCL Institute of Healthcare Engineering, Wellcome EPSRC Centre for Interventional and Surgical Science (WEISS), IoO and Moorfields. The project is seeing further support through the Platform Grants scheme of WEISS, to ensure that maximum impact towards clinical translation is achieved.

Age-related macular degeneration (AMD) is an eye condition that affects the part of the eye responsible for central vision, known as the macula, making it difficult to see. AMD affects around a million people in the UK alone, making it one of the most common irreversible eye diseases.

However, new advances in regenerative and cellular therapies have meant that it may now be possible to restore sight loss from AMD. Researchers have been able to grow new retinal cells that could be transplanted to replace the damaged cells in the eye. Currently, delivery of these cells is performed using a hand-held needle. The manipulation required for this is very technically challenging and means that the treatment’s success depends on a surgeon’s manual skills. Further, the viewpoint of the surgeon throughout the procedure only provides access to limited visual data.

This grant will work on developing an innovative robotic system to overcome the limitations of cellular delivery. The flexible robot will steady motion and ensure sub-micrometre manipulation of delicate retinal tissue. In addition, the robotic technology will be coupled with advanced imaging techniques to allow for greater visual precision. Optical Coherence Tomography and Aniography will enable visualisation of all subretinal layers and vessels, assisting the surgeon to target the desired retinal layers.

This robotic system will enable the potential patient impact of novel therapies to be realised; assisting surgeons to deliver retinal cells with precision and impacting AMD patients’ quality of life. The i4i programme aims to advance healthcare technologies, devices and interventions for increased patient benefit in areas of clinical need.

The clinical lead on this project, Professor da Cruz, commented, “Significant progress in cellular therapy has meant that we are one step closer to restoring sight and improving AMD patients’ quality of life. However, this huge clinical advancement cannot be realised without the engineering input needed to enable effective cellular delivery. Interdisciplinary collaboration is essential to this research’s success.”

Dr Bergeles agrees, “This project is a truly multidisciplinary effort. It is a pioneering new treatment and, with millions of AMD sufferers worldwide, it has a potentially vast patient impact. Advancing successful retinal cellular delivery to become a clinical reality would be a major milestone in the capabilities of ocular research.”

Source

  • UCL Institute of Healthcare Engineering

Related

  • Wellcome EPSRC Centre for Interventional and Surgical Sciences (WEISS)
  • Moorfields Eye Hospital
  • Professor Lyndon da Cruz's IRIS profile
  • Dr Christos Bergeles's IRIS profile

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in