Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

Understanding the physics of pancakes to save sight

pancake canvas 1…

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

Understanding the textures and patterns of pancakes is helping UCL scientists improve surgical methods for treating glaucoma. View video

    The appearance of pancakes depends on how water escapes the batter mix during the cooking process and this varies with the thickness of the batter, according to new UCL research. Understanding the physics of the process can help perfect pancake making and gives important insights into how flexible sheets, like those found in human eyes, interact with flowing vapour and liquids.

    Co-author Professor Ian Eames, Professor of Fluid Mechanics at UCL Engineering, said: “Pancakes come in many shapes and sizes and everyone has their favourites – some prefer a small, thick pancake with a smooth surface whereas others enjoy a large, thin crêpe with ‘craters’ and crispy edges. We’ve discovered that the variations in texture and patterns result from differences in how water escapes the batter during cooking and that this is largely dependent on the thickness and spread of the batter.”

    The study, published in Mathematics TODAY, compared recipes for 14 different types of pancakes from across the world including the Canadian ploye and Malaysian lempeng kelapa. For each, the team analysed and plotted the aspect ratio, i.e. the pancake diameter to the power of three in relation to its volume of batter, and the baker’s percentage which is the ratio of liquid to flour in the batter, i.e. the thickness of the batter.

    They found thick, almost spherical pancakes such as Dutch poffertjes had the lowest aspect ratio at 3, whereas large, thin French crêpes had the biggest at 300. The baker’s percentage didn’t vary as dramatically, ranging from 100 for thick mixtures (i.e. equal measures of flour and liquid) to 175 for thinner mixtures containing more liquid.

    To explore how these ratios influence the textures and patterns of pancakes, the scientists made batters with a fixed amount of flour and egg but different amounts of milk. Pancakes were made using the batters in the same pan, at the same heat and without fat. The scientists found that:

    Thick batters with a baker’s percentage of 100-120 form pancakes with irregular craters on the bottom surface. Water vapours released during cooking get trapped, unevenly lifting the pancake from the pan. Islands form on top surface as the pancake isn’t a uniform thickness.


    Thinner batters with baker’s percentage of 175 form pancakes with an even colour on the bottom surface as water vapour is released smoothly from the base as it cooks. This effect is also seen in small pancakes irrespective of the thickness of the batter. 

    The thinnest batters with a baker’s percentage of 200-225 form pancakes with an even coloured bottom surface which is dotted with dark spots. Water vapours escape smoothly across the bottom surface and through channels in the batter. The top surface of the pancake is uniform in colour but is pitted with tiny channels where the vapour escaped. It also has a distinctive dark ring around the outer edge where the batter was thinnest. 

    pancake canvas 2…


    Co-author Dr Yann Bouremel, UCL Institute of Ophthalmology, said: “We found that the physics of pancake cooking is complex but generally follows one of two trends. If the batter spreads easily in the pan, the pancake ends up with a smooth surface pattern and less burning as the vapour flow buffers the heat of the pan. We found a thin pancake can only be created by physically spreading the batter across the pan and in this case, the vapour tends to escape through channels or diffusion.”

    Co-author Professor Sir Peng Khaw, Director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, said: “We work on better surgical methods for treating glaucoma, which is a build-up of pressure in eyes caused by fluid. To treat this, surgeons create an escape route for the fluid by carefully cutting the flexible sheets of the sclera. We are improving this technique by working with engineers and mathematicians. It’s a wonderful example of how the science of everyday activities can help us with the medical treatments of the future.”

    The research was funded in part by the Helen Hamlyn Trust in memory of Paul Hamlyn, the UK National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology and Moorfields Eye Charity.

    UCL footer

    Visit

    • Bloomsbury Theatre and Studio
    • Library, Museums and Collections
    • UCL Maps
    • UCL Shop
    • Contact UCL

    Students

    • Accommodation
    • Current Students
    • Moodle
    • Students' Union

    Staff

    • Inside UCL
    • Staff Intranet
    • Work at UCL
    • Human Resources

    UCL social media menu

    • Link to Soundcloud
    • Link to Flickr
    • Link to TikTok
    • Link to Youtube
    • Link to Instagram
    • Link to Facebook
    • Link to Twitter

    University College London, Gower Street, London, WC1E 6BT

    Tel: +44 (0) 20 7679 2000

    © 2025 UCL

    Essential

    • Disclaimer
    • Freedom of Information
    • Accessibility
    • Cookies
    • Privacy
    • Slavery statement
    • Log in