Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Brain Sciences
    • Study
    • Research
    • About the Faculty
    • Institutes and Divisions
    • Active parent page: News and Events
    • Contact

Drugs could provide new treatment for epilepsy

Breadcrumb trail

  • Brain Sciences
  • News and Events

Faculty menu

  • Current page: Faculty news
  • Events

New drugs derived from components of a specific diet used by children with severe, drug-resistant epilepsy could offer a new treatment, according to research published today in the journal Neuropharmacology.

Scientists from UCL and Royal Holloway have identified specific fatty acids that have potent antiepileptic effects, which could help control seizures in children and adults.

The discovery could lead to the replacement of the ketogenic diet, which is often prescribed for children with severe drug-resistant epilepsy. The high fat, low carbohydrate diet is thought to mimic aspects of starvation by forcing the body to burn fats rather than carbohydrates. Although often effective, the diet has attracted criticism, as side effects can be significant and potentially lead to constipation, hypoglycaemia, retarded growth and bone fractures. The new drugs could provide similar epilepsy control, but without causing the troubling side effects.

By pinpointing fatty acids in the ketogenic diet that are effective in controlling epilepsy, researchers hope that they can develop a pill for children and adults that lacks the side effects of the diet.

Professor Robin Williams from the Centre of Biomedical Sciences at Royal Holloway said: “This is an important breakthrough. The family of medium chain fatty acids that we have identified provide an exciting new field of research with the potential of identifying, stronger, and safer epilepsy treatments.”

The study tested a range of fatty acids found in the ketogenic diet against an established epilepsy treatment. Researchers found that not only did some of the fatty acids outperform the drug in controlling seizures, they also had fewer side effects.

Professor Matthew Walker from the UCL Institute of Neurology said: “Epilepsy affects over 50 million people worldwide and approximately a third of these people have epilepsy that is not adequately controlled by our present treatments. This discovery offers a whole new approach to the treatment of drug-resistant epilepsies in children and adults.”

The research also builds on work funded by the NC3Rs in which most of the animal testing normally used in drug development for epilepsy has been replaced by using a simple amoeba to initially screen and identify improved treatments.

Professor Williams added: “Animals are often used in the search for new epilepsy treatments. Our work provides a new approach, helping us to reduce reliance on animals and provide potential major improvements in human health.”

The specific fatty acids identified in this work are the subject of a patent application, and Royal Holloway is seeking commercial collaborators to pursue the potential for new drug development.


Links:

  • Royal Holloway
  • Full paper in Neuropharmacology

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in