A guide to the cellular Potts model

Computational Biology Working Group Seminar University College London 4. September, 2013

András Szabó Mayor lab Cell and Developmental Biology UCL, London

Models in biology

Space free

Spatial

- morphogenesis
- · pattern formation
- cell motion patterns
- ecology and evolution

Cell description:

scale of phenomenon

cell-based

density

sub-cellular

molecular

Models in biology

Space free

Spatial

- morphogenesis
- pattern formation
- cell motion patterns
- ecology and evolution

The cellular Potts model

Features:

- cells as fluid droplets (~ constant volume, $V_T(i)$)
- adhesion as surface tension
- stochastic, amoeboid cell motion

N elementary attempts is a time step: Monte Carlo step (MCS)

Model dynamics

 $p = e^{\frac{\Delta H}{T}} (\text{-cost) function} \\ \text{motility (temperature)} \\ \text{parameter}$

Hamiltonian function:

Volume termAdhesion term $H = \lambda_v \sum_i (V(i) - V_t(i))^2 + \sum_{\langle i,j \rangle} J(i,j)(1 - \delta_{i,j})$ ||||||target volumeKronecker's delta"lambda" volumeadhesion (or J) matrix

Two CPM Implementations

Open source Compatible with the 3 mayor platforms (Win, Mac, Linux)

<u>CompuCell3D</u>

Executable available Community backed (forum, help service, workshops)

2 levels of interaction (novice-py and advanced-C++)

Main dependencies: VTK, python

Tissue Simulation Toolkit

Source code only Support and development is small (missing?)

Intermediate difficulty, simpler code

Main dependency: Qt

CompuCell3D

end

Plugin: a Hamiltonian term (eg: volume, adhesion) Steppable: eg: cell division, cell growth

New modules in python or C++

→ www.CompuCell3D.org

CompuCell3D

2 main interfaces:

- compucell3d: simulation runs
- twedit++ : customised editor

Examples:

- Cell sorting (xml only, predefined modules)
- Feeder example (sorting + one type feeds the other)
- Creating a sorting model using Twedit++

Tissue Simulation Toolkit

Model defined by the whole code (not modular) Code structure:

- one directory with a handful of C++ source files
- "plugins" in **ca.cpp** (function DeltaH)
- "steppables" in **ca.cpp** (function AmoebaeMove)
- cell properties in **cell.h** and **cell.cpp**
- everything with PDE's goes to **pde.h** / **pde.cpp**
- main scripts: engulfment / pushing / sorting / tumor / vessel Parameters read from separate parameter file

Exmaples:

- sorting (sorting.par)
- checked sorting (checked.par)
- persistent cells (spp.par)
- persistent, adherent (viscous) cells (spp2.par)

Available from: http://sourceforge.net/projects/tst/

Summary

- CPM: stochastic, cell-based, multi-particle model
- Useful for modelling:
 - morphogenesis, pattern formation, cell migration, etc.
- Open source implementations here presented:
 - CompuCell3D:
 - 2D / 3D
 - easy to use interface (python and C++)
 - continuously developing, active support
 - Tissue Simulation Toolkit:
 - 2D only
 - C++ only
 - can serve as a sand-box for more complex features

- The CPM can also be re-implemented using other tools (eg: MatLab)

Thank you for your attention

CompuCell3D:

http://www.compucell3d.org/ Development directed by: James Glazier, Indiana University http://www.indiana.edu/~bioc/jglazier/

Tissue Simulation Toolkit:

http://sourceforge.net/projects/tst/ Development directed by: Roeland Merks, CWI (Amsterdam) http://biomodel.project.cwi.nl/

> András Szabó Mayor lab Cell and Developmental Biology UCL, London a.szabo@ucl.ac.uk

